In Situ Evaluation of the Self-Heating Effect in Resistance Temperature Sensors
Abstract
Highlights
- The self-heating effect of a resistance sensor depends on its thermal resistance, which should be determined in situ.
- The thermal resistance of a sensor can be determined as the slope of the temperature characteristic as a function of heating power.
- The internal thermal resistance of the sensor depends on its design, and the external thermal resistance of the sensor is dependent on the heat transfer conditions between the sensor’s sheath and its environment.
- In situ testing of sensors allows the separation of self-heating due to internal and external effects.
Abstract
1. Introduction
2. State of the Art
3. Research Method
3.1. Characteristics of Platinum Sensors
3.2. Principle for Determining Thermal Resistance of the Sensor
3.3. Testing Other Sensors
3.4. Method of Measuring Electrical Resistance of the Sensor
4. Results of Experimental Studies
4.1. Resistance Temperature Sensors Tested
4.2. Selected Sensor Characteristics
4.3. Selected Characteristics of All Tested Sensors
4.4. Measurement Uncertainty Evaluation
4.5. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AWS | Automatic weather station |
IPRT | Industrial platinum resistance thermometer |
PRT | Platinum resistance thermometers |
RTD | Resistance temperature sensors |
SPRT | Standard platinum resistance thermometers |
References
- Fellmuth, B. CCT Guidebooks: Guides to Thermometry. 1. Guide to the Realization of the ITS-90. Introduction; International Committee for Weights and Measures (CIPM): France, Sèvres, 2018; Available online: https://www.bipm.org/documents/20126/41773843/Guide_ITS-90_1_Introduction_2018.pdf (accessed on 14 January 2025).
- Pokhodun, A.I.; Mendeleyev, D.I.; Fellmuth, B.; Pearce, J.V.; Rusby, R.L.; Steur, P.P.; Tamura, O.; Tew, W.L.; White, D.R. CCT Guidebooks: Guides to Thermometry. 1. Guide to the Realization of the ITS-90. Part 5—Platinum Resistance Thermometry; International Committee for Weights and Measures (CIPM): Sèvres, France, 2021; Available online: https://www.bipm.org/documents/20126/41773843/Guide_ITS-90_5_SPRT_2021.pdf (accessed on 14 January 2025).
- Pearce, J.V.; Rusby, R.L.; Yamazawa, K.; Rudtsch, S.; Iacomini, L.; Lopardo, G.; White, D.R.; Tew, W.L. CCT Guidebooks: Guides to Thermometry. 3. Guide to Secondary Thermometry. Industrial Platinum Resistance Thermometers; International Committee for Weights and Measures (CIPM): Sèvres, France, 2021; Available online: https://www.bipm.org/documents/20126/41773843/BIPM_CCT_Guide_to_IPRTs.pdf (accessed on 14 January 2025).
- Bedford, R.E.; Bonnier, G.; Maas, H.; Pavese, F. CCT Guidebooks: Guides to Thermometry. 3. Guide to Secondary Thermometry. Techniques for Approximating the International Temperature Scale of 1990; International Committee for Weights and Measures (CIPM): Sèvres, France, 2021; Available online: https://www.bipm.org/documents/20126/41773843/ITS-90_Techniques_Approx_signets WITH HIGHLIGHT.pdf (accessed on 14 January 2025).
- International Standard IEC 60751: 2022; Industrial Platinum Resistance Thermometers and Platinum Temperature Sensors. Edition 3.0. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2022.
- ASTM Standard E1137/E1137M-08; Standard Specification for Industrial Platinum Resistance Thermometers. ASTM International Committee E20: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM Standard E644-11; Standard Test Methods for Testing Industrial Resistance Thermometers. ASTM International Committee E20: West Conshohocken, PA, USA, 2011. [CrossRef]
- Li, J.; Pei, H.; Kochan, O.; Wang, C.; Kochan, R.; Ivanyshyn, A. Method for Correcting Error Due to Self-Heating of Resistance Temperature Detectors Suitable for Metrology in Industry 4.0. Sensors 2024, 24, 7991. [Google Scholar] [CrossRef] [PubMed]
- Brückner, J. Measuring Resistors and Their Representation in IEC and ASTM (Comparing Apples and Oranges?); Special Hannover Messe, cpp 2-2017. 2017, pp. 14–16. Available online: https://www.wika.ca/upload/TA_0417_cpp_en_co_84372.pdf (accessed on 14 January 2025).
- Batagelj, V.; Bojkovski, J.; Ek, J.D.; Drnovšek, J. Methods of reducing the uncertainty of the self-heating correction of a standard platinum resistance thermometer in temperature measurements of the highest accuracy. Meas. Sci. Technol. 2003, 14, 2151–2158. [Google Scholar] [CrossRef]
- Pearce, J.V.; Rusby, R.L.; Harris, P.M.; Wright, L. The optimization of self-heating corrections in resistance thermometry. Metrologia 2013, 50, 345–353. [Google Scholar] [CrossRef]
- Pearce, J.V.; Rusby, R.L.; Harris, P.M.; Wright, L. Optimising the Extrapolation to Zero Current in SPRT Self-Heating Corrections, Technical Report January 2012; Document to CCT 2012 (ref. WG3); CCT/12-16; National Physical Laboratory: Teddington, UK, 2012. [Google Scholar]
- Babita; Pant, U.; Meena, H.; Gupta, G.; Bapna, K.; Shivagan, D. Evaluation of self-heating effect in platinum resistance thermometers. Measurement 2022, 203, 111994. [Google Scholar] [CrossRef]
- Veltcheva, R.L.; Pearce, J.V.; da Silva, R.; Machin, G.; Rusby, R.L. Strategies for minimising the uncertainty of the SPRT self-heating correction. In Proceedings of the Ninth International Temperature Symposium, Los Angeles, CA, USA, 19–23 March 2012; Volume 1552, pp. 433–438. [Google Scholar] [CrossRef]
- Miczulski, W.; Krajewski, M.; Sienkowski, S.; Kawecka, E.; Perec, A. Intelligent Transducer for Temperature Measurement with Two-Wire or Three-Wire Platinum RTD. Sensors 2024, 24, 7689. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhou, G.; Liu, L.; Xiong, L.; Dong, B.; Li, Z.; Li, Q. Reducing the Uncertainty of Self-heating in High-accuracy Cryogenic Temperature Measurements. Phys. Procedia 2015, 67, 1157–1163. [Google Scholar] [CrossRef]
- Li, K.R.; Zhou, G.; Dong, B.; Liu, L.Q.; Xiong, L.Y.; Meng, Y.R.; Li, Q. The Measurement and Uncertainty Analysis of Thermal Resistance in Cryogenic Temperature Sensor Installation. In Proceedings of the 26th International Cryogenic Engineering Conference & International Cryogenic Materials Conference 2016, New Delhi, India, 7–11 March 2016; Volume 171, p. 012126. [Google Scholar] [CrossRef]
- Dinu, C.; Negau, M. Self-heating effect research for a SPRT measuring the triple point of water. U.P.B. Sci. Bull. Ser. A 2014, 76, 243–250. Available online: https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full23d_943488.pdf (accessed on 14 January 2025).
- Sestan, D.; Zvizdic, D.; Grgec-Bermanec, L. Experimental Method for Determination of Self-Heating at the Point of Measurement. Int. J. Thermophys. 2017, 38, 132. [Google Scholar] [CrossRef]
- Pavlasek, P.; Palencar, R.; Duris, S.; Palencar, J.; Merlone, A.; Sanna, F.; Coppa, G. Determination of overall self-heating of automatic weather stations. J. Phys. Conf. Ser. 2018, 1065, 192002. [Google Scholar] [CrossRef]
- Izquierdo, C.G.; Hernández, S.; González, A.; Matias, L.; Šindelářová, L.; Strnad, R.; del Campo, D. Evaluation of the self-heating effect in a group of thermometers used in meteorological and climate applications. Meteorol. Appl. 2019, 26, 117–129. [Google Scholar] [CrossRef]
- King, G.; Fukushima, T. RTD Interfacing and Linearization Using an ADuC8xx MicroConverter, AN-709 Analog Devices Application Note. 2004, pp. 1–12. Available online: https://www.analog.com/media/en/technical-documentation/application-notes/an709_0.pdf (accessed on 14 January 2025).
- Otomański, P.; Pawłowski, E.; Szlachta, A. Application of LabVIEW to Determine Characteristics of Two-Terminal Passive Components. In Proceedings of the 14th International Conference on Measurement, Smolenice, Slovakia, 29–31 May 2023; pp. 305–308. [Google Scholar] [CrossRef]
- Ricci, S. Multichannel Emulator for Resistance Temperature Detectors (RTDs). IEEE Trans. Ind. Electron. 2024, 71, 15151–15160. [Google Scholar] [CrossRef]
- USB-6341, 16 AI (16-Bit, 500 kS/s), 2 AO (900 kS/s), 24 DIO USB Multifunction I/O Device, National Instruments Specifications 377879A-01. 2019. Available online: https://www.ni.com/docs/en-US/bundle/usb-6341-specs/page/specs.html (accessed on 14 January 2025).
- Pawłowski, E.; Szlachta, A.; Otomański, P. The Influence of Noise Level on the Value of Uncertainty in a Measurement System Containing an Analog-to-Digital Converter. Energies 2023, 16, 1060. [Google Scholar] [CrossRef]
- JCGM 100:2008; Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. BIPM Joint Committee for Guides in Metrology: Paris, France, September 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf (accessed on 14 January 2025).
- Dorozhovets, M. Uncertainty of the conversion function caused by systematic effects in measurements of input and output quantities. Metrol. Meas. Syst. 2023, 30, 581–600. [Google Scholar] [CrossRef]
- Klauenberg, K.; Martens, S.; Bošnjaković, A.; Cox, M.G.; van der Veen, A.M.; Elster, C. The GUM perspective on straight-line errors-in-variables regression. Measurement 2022, 187, 110340. [Google Scholar] [CrossRef]
- Lasance, C.J.M. Ten Years of Boundary-Condition- Independent Compact Thermal Modeling of Electronic Parts: A Review. Heat Transf. Eng. 2008, 29, 149–168. [Google Scholar] [CrossRef]
Range VDiff | Gain Error ppm of Reading | Offset Error ppm of Range | Offset Tempco ppm of Range/°C | Random Error μVrms | Absolute Accuracy at Full Scale mV |
---|---|---|---|---|---|
±10 | 65 | 13 | 23 | 270 | 2.190 |
Symbol | Case | Internal Rth K/mW | External Rth K/mW | ΔTsens@1 mA (External) °C | Isens@ ΔTsens = 1 °C (External) mA |
---|---|---|---|---|---|
Pt1000 | thin film | 0.048 | 0.553 | 0.553 | 1.35 |
Pt100 | ceramic | 0.016 | 0.148 | 0.015 | 8.22 |
Pt100 | steel industrial case | 0.012 | 0.061 | 0.006 | 12.8 |
Pt500 | steel laboratory sensor | 0.011 | 0.158 | 0.079 | 3.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otomański, P.; Pawłowski, E.; Szlachta, A. In Situ Evaluation of the Self-Heating Effect in Resistance Temperature Sensors. Sensors 2025, 25, 3374. https://doi.org/10.3390/s25113374
Otomański P, Pawłowski E, Szlachta A. In Situ Evaluation of the Self-Heating Effect in Resistance Temperature Sensors. Sensors. 2025; 25(11):3374. https://doi.org/10.3390/s25113374
Chicago/Turabian StyleOtomański, Przemysław, Eligiusz Pawłowski, and Anna Szlachta. 2025. "In Situ Evaluation of the Self-Heating Effect in Resistance Temperature Sensors" Sensors 25, no. 11: 3374. https://doi.org/10.3390/s25113374
APA StyleOtomański, P., Pawłowski, E., & Szlachta, A. (2025). In Situ Evaluation of the Self-Heating Effect in Resistance Temperature Sensors. Sensors, 25(11), 3374. https://doi.org/10.3390/s25113374