The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO2/FTO Memory Device
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. The Structure and Morphology of the TiO2 Nanowire Arrays
3.2. The Chemical Composition and Surface States of the TiO2 Nanowire Arrays
3.3. The Electrical Characteristics of the W/TiO2/FTO Memory Device
3.4. The Resistive Switching Mechanism of the W/TiO2/FTO Memory Device
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Xla, B.; Zza, B.; Dcwi, C. Memristor-based LSTM network with in situ training and its applications. Neural Netw. 2020, 131, 300–311. [Google Scholar]
- Yu, F.; Kong, X.; Mokbel AA, M.; Yao, W.; Cai, S. Complex Dynamics, Hardware Implementation and Image Encryption Application of Multiscroll Memeristive Hopfield Neural Network with a Novel Local Active Memeristor. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 326–330. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D.-k. Neuro-transistor based on uv-treated charge trapping in MoTe2 for artificial synaptic features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef]
- Yang, S. Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt. Laser Technol. 2021, 133, 106553. [Google Scholar] [CrossRef]
- Sahin, M.E.; Taskiran, Z.C.; Guler, H.; Hamamci, S.E. Simulation and implementation of memristive chaotic system and its application for communication systems. Sens. Actuators A Phys. 2019, 290, 107–118. [Google Scholar] [CrossRef]
- Sun, J.; Han, J.; Wang, Y.; Liu, P. Memristor-based neural network circuit of emotion congruent memory with mental fatigue and emotion inhibition. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 606–616. [Google Scholar] [CrossRef]
- Yang, T.; Wang, H.; Zhang, B.; Yan, X. Enhanced memory characteristics of charge trapping memory by employing graphene oxide quantum dots. Appl. Phys. Lett. 2020, 116, 103501. [Google Scholar] [CrossRef]
- Sun, T.; Tu, J.; Zhou, Z.; Sun, R.; Zhang, X.; Li, H.; Xu, Z.; Peng, Y.; Liu, X.; Wangyang, P.; et al. Resistive switching of self-assembly stacked h-BN polycrystal film. Cell Rep. Phys. Sci. 2022, 3, 100939. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Tu, J.; Zhou, Z.; Cao, L.; Liu, X.; Li, H.; Li, Q.; Fu, T.; Zhang, F.; et al. Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization. Mater. Des. 2020, 194, 108960. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Fu, T.; Li, Q.; Zhang, F.; Xiao, G.; Chen, Y.; Liu, X.; Zhao, W.; Yu, Z.; et al. Morphology-dependent high antireflective surfaces via anodic aluminum oxide nanostructures. Appl. Surf. Sci. 2019, 496, 143697. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Ma, X.; Chen, X.; Zhong, R.; Liu, X.; Ma, D.; Zhang, M.; Li, Z. Morphology-controllable polycrystalline TiO2 nanorod arrays for efficient charge collection in dye-sensitized solar cells. Nano Energy 2015, 16, 99–111. [Google Scholar] [CrossRef]
- Perillo, P.M.; Rodriguez, D.F. A room temperature chloroform sensor using TiO2 nanotubes. Sens. Actuators B Chem. 2014, 193, 263–266. [Google Scholar] [CrossRef]
- Xiao, M.; Musselman, K.P.; Duley, W.W.; Zhou, Y.N. Reliable and Low-Power Multilevel Resistive Switching in TiO2 Nanorod Arrays Structured with a TiOx Seed Layer. ACS Appl. Mater. Interfaces 2017, 9, 4808–4817. [Google Scholar] [CrossRef]
- Zhang, F.; Gan, X.; Li, X.; Wu, L.; Gao, X.; Zheng, R.; He, Y.; Liu, X.; Yang, R. Realization of Rectifying and Resistive Switching Behaviors of TiO2 Nanorod Arrays for Nonvolatile Memory. Electrochem. Solid-State Lett. 2011, 14, H422–H425. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Jiang, C.; Wang, L.; Wang, Z.; Du, Z.; Sun, J.; Abrahams, I.; Huang, X. Nitrogen-doped titanium dioxide nanorod array memristors with synaptic features and tunable memory lifetime for neuromorphic computing. J. Alloys Compd. 2021, 868, 159194. [Google Scholar] [CrossRef]
- Sun, B.; Li, Q.L.; Zhao, W.X.; Li, H.W.; Wei, L.J.; Chen, P. White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array. J. Nanopart. Res. 2014, 16, 2389. [Google Scholar] [CrossRef]
- Hu, S.; Yue, J.; Jiang, C.; Tang, X.; Huang, X.; Du, Z.; Wang, C. Resistive switching behavior and mechanism in flexible TiO2@Cf memristor crossbars. Ceram. Int. 2019, 45, 10182–10186. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhu, Y.Y.; Fu, D.J. Coexistence of bipolar and unipolar resistive switching characteristics of thin TiO2 film grown on Cu foil substrate for flexible nonvolatile memory device. J. Alloys Compd. 2017, 695, 2669–2671. [Google Scholar] [CrossRef]
- Park, J.; Biju, K.P.; Jung, S.; Lee, W.; Lee, J.; Kim, S.; Park, S.; Shin, J.; Hwang, H. Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering. IEEE Electron Device Lett. 2011, 32, 476–478. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Zhu, K.; Sun, F.; Guo, C.; Wu, X.; Cheng, G.; Zheng, R. Core-shell copper nanowire-TiO2 nanotube arrays with excellent bipolar resistive switching properties. Electrochim. Acta 2019, 316, 133–142. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, F.; Mao, S.; Zhu, S.; Jia, Y.; Yuan, L.; Salmen, M.; Sun, B. Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem. Phys. Lett. 2018, 706, 477–482. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, J.G.; Ling, L.; Liu, S.E.; Lim, H.K.; Sangwan, V.K.; Hersam, M.C.; Lee, H.-B. Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures. Adv. Mater. 2022, 34, 2106913. [Google Scholar] [CrossRef]
- Fu, L.P.; Song, X.Q.; Gao, X.P.; Wu, Z.W.; Chen, S.K.; Li, Y.T. TiOx-based self-rectifying memory device for crossbar WORM memory array applications. Chin. Phys. B 2021, 30, 016103. [Google Scholar] [CrossRef]
- Chu, D.W.; Younis, A.; Li, S.A. Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics. J. Phys. D Appl. Phys. 2012, 45, 355306. [Google Scholar] [CrossRef]
- Bogle, K.A.; Bachhav, M.N.; Deo, M.S.; Valanoor, N.; Ogale, S.B. Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2. Appl. Phys. Lett. 2009, 95, 203502. [Google Scholar] [CrossRef]
- Zou, L.; Hu, W.; Xie, W.; Bao, D. Uniform resistive switching properties of fully transparent TiO2-based memory devices. J. Alloys Compd. 2017, 693, 1180–1184. [Google Scholar] [CrossRef]
- Manning, H.G.; Biswas, S.; Holmes, J.D.; Boland, J.J. Nonpolar Resistive Switching in Ag@TiO2 Core-Shell Nanowires. ACS Appl. Mater. Interfaces 2017, 9, 38959–38966. [Google Scholar] [CrossRef]
- Park, J.; Park, E.; Kim, S.; Yu, H.Y. Nitrogen-Induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system. ACS Appl. Mater. Interfaces 2019, 11, 32178–32185. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
Device Structure | Vset/Vreset (V) | Preparation Method | RHRS/RLRS Ratio | Retention (s) | Reference |
---|---|---|---|---|---|
Al/TiO2/TiOx/FTO | ~+4/~−4 | Hydrothermal | >20 | 3 × 104 | [16] |
Pt/TiO2 NRAs/FTO | +1.5/−1.5 | Hydrothermal | ~10 | 3 × 105 | [17] |
Al/N-TiO2 NARs/FTO | ~−3/~+3 | Hydrothermal | >16 | - | [18] |
Ag/[TiO2/α-Fe2O3]/FTO | ~+4/~−4 | Hydrothermal | ~10 | 103 | [19] |
Ni/TiO2/Cu | −0.5/+0.35 | Magnetron sputtering | ~10 | 1.5 × 103 | [21] |
Ir/TiOx/TiN | ~−1/~+1.5 | Magnetron sputtering | ~10 | 104 | [22] |
Au/Cu NWs/TiO2 NTAs/Ti | +0.6/−0.9 | Electrochemical anodization | >40 | 104 | [23] |
Ag/TiO2/Ti | +0.59/−0.58 | Anodic oxidation | ~27 | - | [24] |
Pt/Na-doped TiO2/Pt | ~+2/~−2 | Atomic layer deposition | ~30 | 105 | [25] |
Pt/TiOx/W | −5/+2 | Atomic layer deposition | >10 | 104 | [26] |
Au/TiO2 nanotube/FTO | +2.5/−1.3 | Electrochemical deposition | ~9 | - | [27] |
Cu/TiO2−δ/Pt | +1.5/−1.5 | Pulsed laser deposition | 10 | 5 × 103 | [28] |
ITO/TiO2/FTO | ~+1/~−0.8 | Chemical solution deposition | >10 | 104 | [29] |
Ti/TiOx/Pt | ~+1.5/~−1.4 | Magnetron sputtering | ~10 | - | [31] |
W/TiO2/FTO | +1.09/−4.87 | Hydrothermal | ~103 | 103 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Han, X.; Xu, J.; Chen, C.; Qu, X.; Liu, B.; Sun, Z.; Sun, T. The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO2/FTO Memory Device. Sensors 2023, 23, 3480. https://doi.org/10.3390/s23073480
Yu Z, Han X, Xu J, Chen C, Qu X, Liu B, Sun Z, Sun T. The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO2/FTO Memory Device. Sensors. 2023; 23(7):3480. https://doi.org/10.3390/s23073480
Chicago/Turabian StyleYu, Zhiqiang, Xu Han, Jiamin Xu, Cheng Chen, Xinru Qu, Baosheng Liu, Zijun Sun, and Tangyou Sun. 2023. "The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO2/FTO Memory Device" Sensors 23, no. 7: 3480. https://doi.org/10.3390/s23073480
APA StyleYu, Z., Han, X., Xu, J., Chen, C., Qu, X., Liu, B., Sun, Z., & Sun, T. (2023). The Effect of Nitrogen Annealing on the Resistive Switching Characteristics of the W/TiO2/FTO Memory Device. Sensors, 23(7), 3480. https://doi.org/10.3390/s23073480