A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of Textured Si Substrate
2.2. Preparation of PD Device
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eng, P.C.; Song, S.; Ping, B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics 2015, 4, 277–302. [Google Scholar] [CrossRef]
- Anabestani, H.; Nabavi, S.; Bhadra, S. Advances in Flexible Organic Photodetectors: Materials and Applications. Nanomaterials 2022, 12, 3775. [Google Scholar] [CrossRef]
- Wang, P.; Xue, W.; Ci, W.; Yang, R.; Xu, X. Intrinsic Vacancy in 2D Defective Semiconductor In2S3 for Artificial Photonic Nociceptor. Mater. Futures 2023, in press. [CrossRef]
- Luo, Z.; Yang, M.; Wu, D.; Huang, Z.; Gao, W.; Zhang, M.; Zhou, Y.; Zhao, Y.; Zheng, Z.; Li, J. Rational Design of WSe2/WS2/WSe2 Dual Junction Phototransistor Incorporating High Responsivity and Detectivity. Small Methods 2022, 6, e2200583. [Google Scholar] [CrossRef] [PubMed]
- Casalino, M.; Coppola, G.; De La Rue, R.M.; Logan, D.F. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev. 2016, 10, 895–921. [Google Scholar]
- Casalino, M.; Coppola, G.; Iodice, M.; Rendina, I.; Sirleto, L. Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives. Sensors 2010, 10, 10571–10600. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.W.; Sobhani, H.; Nordlander, P.; Halas, N.J. Photodetection with Active Optical Antennas. Science 2011, 332, 702–704. [Google Scholar] [CrossRef]
- Nazirzadeh, M.A.; Atar, F.B.; Turgut, B.B.; Okyay, A.K. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection. Sci. Rep. 2014, 4, 7103. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Chen, Y.; Liu, W.; Su, Q.; Grant, J.; Qi, Z.; Wang, Q.; Chen, Q. Enhanced Photoelectric and Photothermal Responses on Silicon Platform by Plasmonic Absorber and Omni-Schottky Junction. Laser Photonics Rev. 2017, 11, 1700059. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Chu, H.S.; Lo, G.Q.; Bai, P.; Kwong, D.L. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction. Appl. Phys. Lett. 2012, 100, 061109. [Google Scholar] [CrossRef]
- Knight, M.W.; Wang, Y.; Urban, A.S.; Sobhani, A.; Zheng, B.Y.; Nordlander, P.; Halas, N.J. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692. [Google Scholar] [CrossRef]
- Li, X.; Deng, Z.; Li, J.; Li, Y.; Guo, L.; Jiang, Y.; Ma, Z.; Wang, L.; Du, C.; Wang, Y.; et al. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current. Photonics Res. 2020, 8, 1662. [Google Scholar] [CrossRef]
- Graham, M.W.; Shi, S.; Ralph, D.C.; Park, J.; McEuen, P.L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 2013, 9, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, Q.; Luo, S.; Du, H.; Wei, D. Infrared photodetector based on photo-thermionic effect of graphene-nanowalls/silicon heterojunction. Acs Appl. Mater. Interfaces 2019, 11, 17663–17669. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, Z.; Wang, Y.; Ajayan, P.M.; Nordlander, P.; Halas, N.J. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Lin, L.; Liu, W.; Zu, S.; Yu, Y.; Li, Z.; Kang, Y.; Peng, H.; Zhu, X.; Fang, Z. Plasmonic hot electron tunneling photodetection in vertical Au-graphene hybrid nanostructures. Laser Photonics Rev. 2017, 11, 1600148. [Google Scholar] [CrossRef]
- Zaidi, S.H.; Ruby, D.S.; De Zetter, K.; Gee, J.M. Enhanced near IR absorption in random, RIE-textured silicon solar cells: The role of surface profiles. In Proceedings of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002; pp. 142–145. [Google Scholar]
- Dai, X.; Wu, L.; Yu, L.; Yu, Z.; Ma, F.; Zhang, Y.; Yang, Y.; Sun, J.; Lu, M. Sub-bandgap near-infrared photovoltaic response in Au/Al2O3/n-Si metal–insulator–semiconductor structure by plasmon-enhanced internal photoemission. Discov. Nano 2023, 18, 33. [Google Scholar] [CrossRef]
- Amirmazlaghani, M.; Raissi, F.; Habibpour, O.; Vukusic, J.; Stake, J. Graphene-Si Schottky IR Detector. IEEE J. Quantum Elect. 2013, 49, 589–594. [Google Scholar] [CrossRef]
- Wang, C.; Dong, Y.; Lu, Z.; Chen, S.; Xu, K.; Ma, Y.; Xu, G.; Zhao, X.; Yu, Y. High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction. Sens. Actuators A Phys. 2019, 291, 87–92. [Google Scholar] [CrossRef]
- Lee, J.Y.; Glunz, S.W. Investigation of various surface passivation schemes for silicon solar cells. Sol. Energ. Mat. Sol. C 2006, 90, 82–92. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Zhang, R.J.; Wang, S.Y.; Lu, M.; Chen, X.; Zheng, Y.X.; Chen, L.Y.; Ye, Z.; Wang, C.Z.; Ho, K.M. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 2015, 5, 7810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Z.; Zhai, Y.; Wen, L.; Wang, Q.; Chen, Q.; Iqbal, S.; Chen, G.; Xu, J.; Tu, Y. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology 2017, 28, 275202. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Z.; Ma, Z.; Jiang, Y.; Du, C.; Jia, H.; Wang, W.; Chen, H. Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure. Sensors 2022, 22, 4536. [Google Scholar] [CrossRef] [PubMed]
- Desiatov, B.; Goykhman, I.; Mazurski, N.; Shappir, J.; Khurgin, J.B.; Levy, U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2015, 2, 335. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, A.; Knight, M.W.; Wang, Y.; Zheng, B.; King, N.S.; Brown, L.V.; Fang, Z.; Nordlander, P.; Halas, N.J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Nan, H.; Chen, Z.; Jiang, J.; Li, J.; Zhao, W.; Ni, Z.; Gu, X.; Xiao, S. The effect of graphene on surface plasmon resonance of metal nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 25078–25084. [Google Scholar] [CrossRef]
- Casiraghi, C. Raman spectroscopy of graphene. Phys. Chem. Chem. Phys. 2012, 14, 232. [Google Scholar]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Chu, J.; Zhao, H.; Xu, P.; Sun, M. Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J. Mater. Chem. C 2015, 3, 924–937. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.W.; Yin, Z.G.; Meng, J.H.; Gao, H.L.; Zhang, L.Q.; Zhao, Y.J.; Wang, H.L. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl. Phys. Lett. 2014, 105, 183901. [Google Scholar] [CrossRef]
- Xiao, P.; Mao, J.; Ding, K.; Luo, W.; Hu, W.; Zhang, X.; Zhang, X.; Jie, J. Solution-Processed 3D RGO–MoS2/Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultra-Broadband Photodetection. Adv. Mater. 2018, 30, 1801729. [Google Scholar] [CrossRef]
- Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 2015, 11, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Distefano, J.G.; Murthy, A.A.; Cain, J.D.; Hanson, E.D.; Li, Q.; Castro, F.C.; Chen, X.; Dravid, V.P. Superior Plasmonic Photodetectors Based on Au@MoS2 Core-Shell Heterostructures. ACS Nano 2017, 11, 10321–10329. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Chen, H.; Feng, R.; Feng, W.; Hu, Y.; Yang, H.; Liu, G.; Chen, X.; Zhang, J.; Xu, C.; et al. A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano 2018, 12, 8739–8747. [Google Scholar] [CrossRef]
- Fang, Y.; Jiao, Y.; Xiong, K.; Ogier, R.; Yang, Z.J.; Gao, S.; Dahlin, A.B.; Li, M.K. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO2 Nanostructures. Nano Lett. 2015, 15, 4059. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87. [Google Scholar] [CrossRef]
- Luther, J.M.; Law, M.; Beard, M.C.; Song, Q.; Reese, M.O.; Ellingson, R.J.; Nozik, A.J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, C.; Shao, W.; Li, X. Photodetection by Hot Electrons or Hot Holes: A Comparable Study on Physics and Performances. ACS Omega 2019, 4, 6020–6027. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Zhang, X.; Zhang, X.; Deng, W.; Jie, J. High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors. IEEE Electr. Device L 2013, 34, 1337–1339. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wang, M.Z.; Hu, H.; Nie, B.; Yu, Y.Q.; Wu, C.Y.; Wang, L.; Hu, J.G.; Xie, C.; Liang, F.X. Monolayer Graphene/Germanium Schottky Junction as High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wu, Q.; Jia, Z.; Jin, X.; Xu, J. Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation. Adv. Opt. Mater. 2020, 8, 1901808. [Google Scholar] [CrossRef]
- Jia, C.; Wu, S.; Fan, J.; Luo, C.; Fan, M.; Li, M.; He, L.; Yang, Y.; Zhang, H. Ferroelectrically Modulated and Enhanced Photoresponse in a Self-Powered α-In2Se3/Si Heterojunction Photodetector. ACS Nano 2023, 17, 6534–6544. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-on-silicon Schottky junction solar cells. Adv Mater 2010, 22, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Lv, P.; Nie, B.; Jie, J.; Zhang, X.; Wang, Z.; Jiang, P.; Hu, Z.; Luo, L.; Zhu, Z.; et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 2011, 99, 133113. [Google Scholar] [CrossRef]
- Tang, H.; Chen, C.J.; Huang, Z.; Bright, J.; Meng, G.; Liu, R.S.; Wu, N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901. [Google Scholar] [CrossRef]
PD Device | R (mA/W) | D* (cm × Hz1/2/W) | Jdark (nA/cm2) | Ref. |
---|---|---|---|---|
Si/Au NPs (RT) | 3.4 | 4.1 × 1010 | 22 | This work |
Si/Au NPs/Gr (RT) | 3.9 | 7.2 × 1010 | 9 | |
Si/Au NPs/Gr (−60 °C) | 3.9 | 1.5 × 1011 | 2 | |
Si/Au NPs | 5.8 | 2.3 × 1010 | 200 | [24] |
Si/Au | 1.7 | 5.1 × 109 | 356 | [41] |
Si/monolayer Gr (850 nm) | 29 | 3.9 × 1011 | 17 | [42] |
Ge/monolayer Gr (1550 nm) | 51.8 | 1.4 × 1010 | ~4 × 104 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Wu, L.; Liu, K.; Ma, F.; Yang, Y.; Yu, L.; Sun, J.; Lu, M. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film. Sensors 2023, 23, 6184. https://doi.org/10.3390/s23136184
Dai X, Wu L, Liu K, Ma F, Yang Y, Yu L, Sun J, Lu M. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film. Sensors. 2023; 23(13):6184. https://doi.org/10.3390/s23136184
Chicago/Turabian StyleDai, Xiyuan, Li Wu, Kaixin Liu, Fengyang Ma, Yanru Yang, Liang Yu, Jian Sun, and Ming Lu. 2023. "A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film" Sensors 23, no. 13: 6184. https://doi.org/10.3390/s23136184
APA StyleDai, X., Wu, L., Liu, K., Ma, F., Yang, Y., Yu, L., Sun, J., & Lu, M. (2023). A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film. Sensors, 23(13), 6184. https://doi.org/10.3390/s23136184