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Abstract: We present a straightforward approach to develop a high-detectivity silicon (Si) sub-
bandgap near-infrared (NIR) photodetector (PD) based on textured Si/Au nanoparticle (NP) Schottky
junctions coated with graphene film. This is a photovoltaic-type PD that operates at 0 V bias. The
texturing of Si is to trap light for NIR absorption enhancement, and Schottky junctions facilitate sub-
bandgap NIR absorption and internal photoemission. Both Au NPs and the texturing of Si were made
in self-organized processes. Graphene offers additional pathways for hot electron transport and to
increase photocurrent. Under 1319 nm illumination at room temperature, a responsivity of 3.9 mA/W
and detectivity of 7.2 × 1010 cm × (Hz)1/2/W were obtained. Additionally, at −60 ◦C, the detectivity
increased to 1.5 × 1011 cm × (Hz)1/2/W, with the dark current density reduced and responsivity
unchanged. The result of this work demonstrates a facile method to create high-performance
Si sub-bandgap NIR PDs for promising applications at ambient temperatures.

Keywords: Si sub-bandgap near-infrared photodetector; Schottky junction; internal photoemission;
graphene

1. Introduction

Photodetectors (PDs), which convert light into electrical signals, play a crucial role
in various fields such as data transmission [1], night vision imaging [2], biomedical
testing [3], and automotive radar system [4]. Silicon (Si) PDs are compatible with con-
temporary complementary metal-oxide-semiconductor (CMOS) technology, offering cost-
effectiveness and technical availability for electronic and photonic integration [5,6]. At present,
Si PDs are excellent detectors at visible wavelengths. However, Si PDs that can operate
at sub-bandgap near-infrared (NIR) wavelengths, or Si sub-bandgap NIR PDs, have been
a big challenge, since NIR light with photon energy lower than the Si bandgap width of
1.1 eV, or with a wavelength longer than 1100 nm, is transparent to Si. To address this
issue, three mechanisms have been proposed so far, which are the internal photoemission
effect (IPE), surface or bulk defect-mediated absorption (SDA or BDA), and two-photon
absorption (TPA) [5,6]. Among them, IPE-based PDs exhibit relatively good controllability
in fabrication, but their responsivities, and especially detectivities, need much improvement
for practical applications. For this purpose, various efforts have been made to enhance the
NIR absorption [7–9], strengthen the NIR-induced carrier transport and separation [10,11],
and reduce dark current [12], and novel approaches for creating Si sub-bandgap NIR PDs
with superior performance and low fabrication cost are still in demand. In this work,
we propose a facile method to make a Si sub-bandgap NIR PD with high detectivity,
which works at ambient temperatures. As the primary structure of the Si PD, Si/Au
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nanoparticle (NP) Schottky junctions were prepared on textured Si, with both Au NPs
and texturing of Si made through self-organized processes. Furthermore, considering
that graphene (Gr) has a longer hot electron relaxation time and higher hot carrier tem-
perature [13], Gr was introduced for higher hot carrier emission efficiency [14–16]. To
achieve low dark current for high detectivity, the photovoltaic type of PD operating at
0 V bias was adopted for the proposed NIR PD based on textured Si/Au NPs/Gr structure
in this work. Under 1319 nm illumination, a responsivity of 3.9 mA/W and detectivity of
7.2 × 1010 cm × (Hz)1/2/W were obtained at room temperature. At −60 ◦C, the detectivity
increased to 1.5 × 1011 cm × (Hz)1/2/W due to a further reduction in dark current.

2. Experiment
2.1. Preparation of Textured Si Substrate

N-type Si(100) wafer (Rdmicro, Suzhou, China, 1~10 Ω·cm, two sides polished, and
200 ± 10 µm thick) was chosen as the substrate. The Si wafer was ultrasonically cleaned
in acetone (Dahe Chemicals, Shanghai, China), ethanol (Titan, Shanghai, China), and
deionized water in sequence, and then dried with nitrogen. To fabricate textured Si with
pyramid structure, the Si wafer was etched in a solution of NaOH (Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China, 2 wt%), Na2SiO3 (Aladdin, Shanghai, China, 2 wt%),
and isopropyl alcohol (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, 7 vol%)
at 80 ◦C for 25 min. Textured Si could enhance the light absorption through light trap-
ping and simultaneously facilitate the subsequent formation of Si/Au NPs Schottky junc-
tions [17,18]. The textured Si was then rinsed in deionized water and cleaned in a solu-
tion of H2O:H2O2 (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, 30%):NH3
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, 25%) = 6:1:1 at 70 ◦C for
20 min and H2O:H2O2(30%):HCl (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China,
36%) = 6:1:1 at 70 ◦C for 10 min in sequence. Finally, the wafer was dipped in dilute HF
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, 1%) for 1 min to remove the
naturally formed surface Si oxide.

2.2. Preparation of PD Device

Au (ZhongNuo Advanced Material Technology Co., Ltd., Beijing, China) thin film
was deposited on the front side of the textured Si at a rate of 0.05 nm/s by resistance
heating in a vacuum chamber at a base pressure lower than 6 × 10−4 Pa. Subsequently, it
was annealed in a forming gas of hydrogen and nitrogen (H2:N2 = 5%:95% in volume) at
450 ◦C for 30 min to form Au NPs, and, thus, Si/Au NPs Schottky junctions. To deposit
Gr film, the Gr suspension (XFNano, Nanjing, China, 0.5 mg/mL) mixed with alcohol
(1:3 volume ratio) was dropped using a micropipette and spin-coated onto the surface
of Au-NP-incorporated textured Si (50 µL, 5000 rpm, and 10 s). The Gr was then firmly
adhered to the Au NPs and the exposed Si surface. It could provide bypass pathways to
transport hot electrons produced in Au NPs to the conduction band of Si through Si/Gr
contact [19,20], in addition to the Si/Au NP contact pathway. A 100.0 nm thick indium
tin oxide (ITO, ZhongNuo Advanced Material Technology Co., Ltd., Beijing, China) layer
was deposited as the front electrode. A 20.0 nm thick SiO2 (ZhongNuo Advanced Material
Technology Co., Ltd., Beijing, China) layer was made on the backside of the textured Si
by electron beam evaporation for surface passivation, and a 1.0 µm thick Al (ZhongNuo
Advanced Material Technology Co., Ltd., Beijing, China) layer was grown via resistance
heating as the rear electrode. ITO was chosen to be the front electrode because it is a typical
transparent and conductive oxide thin film. For the rear electrode, we chose Al because
there is a standard process to form Al-Si ohmic contact. The SiO2 passivation layer at the
rear could serve to saturate dangling bonds on the Si surface, thereby reducing the trapping
of photoinduced charges by these defects [21]. The thickness of SiO2 was optimized to
maximize the passivation effect and avoid the influence of larger resistance. Finally, thermal
annealing was conducted at 450 ◦C in nitrogen for 5 min to form ohmic contacts. The
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surface area of the PD was 1 cm × 1 cm. Figure 1 presents a schematic illustration of the
textured Si/Au NPs/Gr NIR PD.
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Figure 1. Schematic illustration of Si/Au NPs/Gr Schottky junction near-infrared PD.

2.3. Characterization

The surface morphology of the Schottky junction was measured with scanning electron
microscopy (SEM, Philips XL30, Philips, Amsterdam, The Netherlands). The thickness
of the Gr film was measured using an atomic force microscope (AFM, Bruker Dimension
Icon, Mannheim, Germany). The absorption spectra of the Schottky junction were obtained
using a vis-NIR spectrometer (Ideaoptics, NIR2500, Shanghai, China) with an integrating
sphere. The Raman spectrum of the Gr film was tested on an instrument of Renishaw
InVia (Wotton-under-Edge, UK) before and after contact with Au. The current–voltage (I-V)
characteristics of the PD were measured at room temperature under darkness or NIR
light illumination, using a source meter (Keithley, SMU2400, Cleveland, OH, USA). The
NIR light source was a 1319 nm laser diode (CNI laser, MIL-H-1319, Changchun, China).
When measuring the I-V characteristics under light conditions, the front side of the PD
faced a 1319 nm light beam with illumination power of 0.1 W/cm2. The external quantum
efficiency (EQE) of the PD was measured with a QE/IPCE system of Oriel/Newport
(Irvine, CA, USA). A photoresponse measurement of the PD under low temperature was
conducted at −60 ◦C in an in-house cryochamber. The surface potential of Schottky junction
was tested with a Kelvin probe force microscope (KPFM) equipped on the AFM. To obtain
the time response of the PD, the rise and fall time at 0 V bias were tested with an oscilloscope
(Siglent, SDS1202X-E, Shenzhen, China) when the device was illuminated by the 1319 nm
light modulated through a chopper (Daheng Optics, GCI-15, Shanghai, China).

3. Results and Discussion

Figure 2 displays the surface and cross-sectional SEM images of the textured Si/Au
NPs coated with Gr. The Gr was found to adhere tightly to both Au NPs and the remaining
Si surface area. The thickness of the Gr film spin-coated on planar Si ranged from 5 to 10 nm
(Figure S1). Given that the thickness of a single layer of Gr is approximately 1.0 nm [22],
the spin-coated Gr on the PD device could be considered multilayered. The textured Si
surface exhibited micrometer-sized pyramid-like structures with an average base width of
8.0 ± 5.1 µm and an average height of 5.6 ± 2.8 µm, as shown in Figure 2b. The deposited
Au film had an apparent thickness of 25.0 nm. After annealing, Au NPs were formed on
the textured Si surface, with sizes of 40.1 ± 25.9 nm. On the other hand, a small number of
larger Au NPs, approximately 100 nm in size, appeared on the ridges of the Si pyramids,
which could be more favorable for Au NP nucleation [18].

The absorption spectra of the textured Si, textured Si/Au NPs, and textured Si/Au
NPs/Gr in the NIR wavelength range of 1200–1800 nm were measured, as shown in
Figure 3. For comparison, the absorption of planar Si and planar Si/Au NPs was also
plotted. The average NIR absorption of the textured Si was approximately 25%, which
was attributed to the antireflection effect and doped impurity absorption. This higher NIR
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absorption compared to the planar Si was in accordance with the theoretical calculations
of Si nanocone arrays [23]. Following the formation of Au NPs, the NIR absorption of
the textured Si/Au NP sample increased significantly to an average of about 70%. This
enhanced absorption stemmed from the Au NPs, where localized surface plasmons (LSPs)
were induced by incident NIR light, generating energetic hot electrons [7,18,24,25]. These
hot electrons were primarily responsible for photodetection by forming a photoinduced
current through the IPE process [26,27]. Au NPs with identical sizes distributed on the
Si substrate would show a resonance absorption peak due to LSPs [8]. In a fabricated
sample, Au NPs with various sizes would result in a broadband absorption spectrum [8],
as demonstrated in Figure 3. According to the FDTD simulation results in reference [24],
for textured Si/Au NPs’ structure, there was higher optical absorption in the NIR region
and a larger enhancement of the localized electric field compared with planar Si/Au NPs’
structure. The experimental data in Figure 3 also indicate higher NIR absorption for the
textured Si/Au NPs, consistent with the FDTD simulation. This phenomenon could be
explained by the tilted interface of the textured Si, which reflected light to the adjacent
pyramids, increased the optical path, and strengthened the interaction between light and
Au NPs [24]. After introducing the Gr film, the absorption of the textured Si/Au NPs/Gr
was further improved slightly by approximately 1%, since Gr itself can also absorb NIR
light [28]. Since the broadband NIR absorption remained nearly unaffected, it is inferred
that the introduction of Gr does not disturb the LSPs on Au NPs; only the resonance
absorption peak might experience a slight red shift by tens of nanometers [29].
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Figure 4 presents Raman spectra of the planar Si/Gr and planar Si/Au NPs/Gr samples.
Both Raman spectra exhibit the characteristic D, G, and 2D peaks of Gr, which are typi-
cally situated at approximately 1350 cm−1, 1580 cm−1, and 2700 cm−1, respectively [30,31],
indicating that Gr did exist on the Si/Au NP junctions. It was also observed that the
presence of Au NPs led to a notable increase in the intensity of the Gr Raman peaks. This
is consistent with the result of creating a Gr-Au hybrid structure for high-performance
surface-enhanced Raman scattering [32], and is ascribed to the enhanced electromagnetic
field induced by the LSP resonance of Au NPs [32,33].
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Figure 5a,b display the I-V characteristics of the textured Si/Au NPs and textured
Si/Au NPs/Gr PDs under dark and 1319 nm light illumination conditions at room tem-
perature. Responsivity (R) is a crucial figure of merit for PDs as it measures the electrical
response to light, and is defined as [34]

R =
Ip

Pin
=

Ilight − Idark

Pin
, (1)

where Ip and Pin are the photoinduced current and incident light power; Ilight and Idark
are the measured current under light illumination and darkness, respectively. Based on
this equation, R was calculated to be 3.4 mA/W for the textured Si/Au NP device and
3.9 mA/W for the textured Si/Au NPs/Gr one, both working at 0 V bias. It is worth
pointing out that the strong plasmonic effect of Au NPs was a critical factor leading to
good responsivities [35–37]. In our previously reported work, the device fabricated with
Au thin film showed responsivities lower than 1 mA/W [18]. Compared with the case
of Au thin film, the localized surface plasmons generated by Au NPs could enhance the
NIR absorption and localized electric field, which increased the number and kinetic energy
of hot electrons, thus enhancing the photocurrent [24,38]. Moreover, the presence of Gr
induced a higher photocurrent. This is because the Gr film offers an additional pathway
for hot electron extraction, increasing the IPE efficiency. It is noted that the dark current
under reverse bias was reduced when introducing the Gr film, as shown in Figure 5a. The
saturation current density of the Schottky junction at reverse bias can be expressed as [39]

JS = A∗T2 exp(− eφb
kT

), (2)

where A* is the Richardson constant and φb is the Schottky barrier height. Thus, the lower
saturation current after adding the Gr is due to the increment in the Schottky barrier height
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(φb). By fitting these typical I-V curves to the thermionic emission equation [39], the φb
was obtained as 0.59 eV and 0.61 eV for the Si/Au NP structure device and the Si/Au
NPs/Gr one, respectively. For a Schottky diode, the open circuit voltage (VOC) is linearly
proportional to the Schottky barrier height [40]. From Figure 5b, the VOC increased by
0.02 V, which is consistent with the barrier height improvement between the two devices.
The tested EQE of the textured Si/Au NPs/Gr PD at 1100–1600 nm is drawn in Figure 5c.
Because of the NIR absorption and realization of IPE, the EQE at 1200–1400 nm remained
larger than zero, with an EQE value of 0.1% at 1319 nm. Considering the definition of EQE,
it could be calculated using

EQE =
Ip/e

Pin/hυ
, (3)

where hυ is the photon energy. By using the data in I-V characteristics, the EQE at 1319 nm
could be calculated as ~0.3%, which was close to the measured value.
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Specific detectivity (D*), on the other hand, is another important figure of merit, which
measures detector sensitivity and determines the ability to distinguish weak light signals
from noise. This parameter is particularly significant for NIR testing and imaging, as a
higher D* indicates a more sensitive PD. Assuming that shot noise from dark current is the
major contributor to the total noise, D* can be expressed as [34]

D∗ =
R

(2q · Jdark)
1/2 , (4)
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where q is the unit charge and Jdark is the dark current density. From Equation (4), D* was
deduced to be 4.1 × 1010 and 7.2 × 1010 cm × (Hz)1/2/W for the textured Si/Au NPs
without and with Gr, respectively, operating at 0 V bias. The higher detectivity of the
textured Si/Au NPs/Gr PD could be attributed to the fairly good responsivity and lower
dark current at 0 V bias. In order to further reduce the dark current and elevate the D*,
we tested the photoresponse of the Si/Au NPs/Gr PD device working at a lower ambient
temperature (Figure S3). Compared with the performance at room temperature, the PD
operating at −60 ◦C had a further lower dark current of 2 nA, and the D* increased further
to 1.5 × 1011 cm × (Hz)1/2/W. In Table 1, the responsivity, detectivity, and dark current
density are listed for our Si sub-bandgap NIR PDs, compared to the other results of PDs
with testing conditions at 0 V bias and room temperature [24,41–43]. The responsivities
of the listed Si/Au structure PDs were in the same magnitude, while our proposed PD
evidently had a lower Jdark, leading to higher detectivity. The lower Jdark could be attributed
to the high barrier height [25] and optimized surface passivation [44]. In comparison
to PDs with other structures working in the NIR wavelength range, the responsivities
in this work were relatively lower, which could be explained by the difference in light
absorption materials.

Table 1. Performance parameters of textured Si/Au NPs PD without and with Gr working at room
temperature (RT) and low temperature, compared with the PDs in the literature.

PD Device R (mA/W) D* (cm × Hz1/2/W) Jdark (nA/cm2) Ref.

Si/Au NPs (RT) 3.4 4.1 × 1010 22
This workSi/Au NPs/Gr (RT) 3.9 7.2 × 1010 9

Si/Au NPs/Gr (−60 ◦C) 3.9 1.5 × 1011 2

Si/Au NPs 5.8 2.3 × 1010 200 [24]
Si/Au 1.7 5.1 × 109 356 [41]

Si/monolayer Gr (850 nm) 29 3.9 × 1011 17 [42]
Ge/monolayer Gr (1550 nm) 51.8 1.4 × 1010 ~4 × 104 [43]

To investigate the interfacial built-in electric field of the Schottky junction, the surface
potentials of planar Si/Au NPs and planar Si/Gr were acquired using a KPFM, as shown
in Figure 6a,b, respectively. The tested average surface potentials of the Au NPs and Gr
were −420 mV and −130 mV, and the potential of the Si region was 440 mV. The potential
value of Au was lower than Si by 860 mV, which conformed well with the larger work
function of Au (~5.1 eV) than that of n-Si (~4.3 eV) by ~0.8 eV [24]. The work function of
Gr was calculated as ~4.8 eV according to the relatively higher potential compared with
Au [45], consistent with the value (4.8~5.0 eV) in reference [46]. Figure 6c,d illustrate the
energy band diagram of the Si/Au NPs/Gr Schottky junction, and the band alignment
of each component in the PD device, respectively. Due to the work function difference
between Gr and n-Si verified by the KPFM results, a Schottky junction also formed at their
interface [42,47]. Since Gr was p-type-doped after contact with Au [33], the built-in electric
field between the Gr and Si aligned with the one created by the Au/n-Si interface. Hot
electrons generated in Au NPs can transfer into the conduction band of a Gr sheet directly
because Gr has no bandgap [16]. Consequently, hot electrons could enter the conduction
band of Si through the two Schottky junction pathways. In this case, hot electrons in
Au NPs with lateral momentum can transfer to Gr first and then enter Si, resulting in an
improved photocurrent and, thus, enhanced R and D*, as displayed in Table 1.

Figure 7 shows the temporal response of the textured Si/Au NPs/Gr device at room
temperature under 0 V bias. With the chopper operating at 3000 Hz, the photoresponse
demonstrated that the PD device can follow a modulated light with a frequency of at least
3000 Hz. The estimated rise time and fall time were 31 µs and 55 µs, respectively. These
results manifested the high response speed of the Si/Au NPs/Gr device, compared with
the Si/Gr Schottky junction PDs [14,42]. Once LSP resonances are excited on Au NPs,
they quickly decay into electron–hole pairs through Landau damping at the femtosecond
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scale [48]. Therefore, the speed of a PD is mainly limited by the carrier drifting time from
NPs to electrodes and the resistance capacitance (RC) constant [10].
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4. Conclusions

In summary, we demonstrated a facile method to make a high-performance Si
sub-bandgap NIR Schottky junction PD, i.e., a textured Si/Au NP/Gr PD. The Au
NPs and the texturing were all made in a self-organized manner, and the photovoltaic
mode of PD was adopted. A responsivity of 3.9 mA/W and specific detectivity of
7.2 × 1010 cm × (Hz)1/2/W were achieved at room temperature. The detectivity increased
to 1.5 × 1011 cm × (Hz)1/2/W, with the responsivity unchanged at −60 ◦C. By further
increasing the NIR absorbance and transport of hot electrons via optimizing the Si texturing
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condition and band bending of the Schottky junction, the performance of the PD can be
further improved. This work provides a practical route for developing a low-cost and
highly efficient Si sub-bandgap NIR Schottky junction PD.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s23136184/s1, Figure S1: AFM image of the graphene film spin-coated on
the planar Si. A step was made to obtain the thickness of graphene film; Figure S2: I-V characteristics
of planar Si/Au NPs and planar Si/Au NPs/Gr PD under dark condition (a) and 1319 nm light
illumination with incident power of 0.1 W (b); Figure S3: Photoresponse of Si/Au NPs/Gr PD device
working at zero bias and −60 ◦C under 0.1 W 1319 nm light illumination.
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