Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach
Abstract
:1. Introduction
- (a)
- A large database consisting of 627 cases has been collected for slope stability classification.
- (b)
- Based on the updated dataset, an AutoML approach was proposed for slope stability classification without the need for manual trial and error. The proposed AutoML approach outperformed the existing ML models by achieving superior performance.
2. Database
3. Methodology
3.1. AutoML
3.2. Search Space and Search Strategy
3.3. Performance Evaluation Measures
3.4. Slope Stability Assessment through AutoML
4. Results and Discussions
4.1. Performance Analysis
4.2. Model Interpretation
4.3. Validation of the AutoML Model in ACADS Example
4.4. Comparison with Exiting Models
4.5. Advantages and Limitations of the Proposed Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A. Updated Dataset for Slope Stability Assessments of Circular Mode Failure
No | (kN/m3) | c (kPa) | (°) | (°) | H (m) | Status | |
---|---|---|---|---|---|---|---|
1 | 17.98 | 4.95 | 30.02 | 19.98 | 8 | 0.3 | Stable |
2 | 18 | 5 | 30 | 20 | 8 | 0.3 | Stable |
3 | 21.47 | 6.9 | 30.02 | 31.01 | 76.8 | 0.38 | Failure |
4 | 21.51 | 6.94 | 30 | 31 | 76.81 | 0.38 | Failure |
5 | 21.78 | 8.55 | 32 | 27.98 | 12.8 | 0.49 | Failure |
6 | 21.82 | 8.62 | 32 | 28 | 12.8 | 0.49 | Failure |
7 | 22.4 | 10 | 35 | 30 | 10 | 0 | Stable |
8 | 21.4 | 10 | 30.34 | 30 | 20 | 0 | Stable |
9 | 22.4 | 10 | 35 | 45 | 10 | 0.4 | Failure |
10 | 27.3 | 10 | 39 | 41 | 511 | 0.25 | Stable |
11 | 27.3 | 10 | 39 | 40 | 470 | 0.25 | Stable |
12 | 22.4 | 10 | 35 | 30 | 10 | 0.25 | Stable |
13 | 21.4 | 10 | 30.34 | 30 | 20 | 0.25 | Stable |
14 | 27 | 10 | 39 | 41 | 511 | 0.25 | Stable |
15 | 27 | 10 | 39 | 40 | 470 | 0.25 | Stable |
16 | 27.3 | 10 | 39 | 40 | 480 | 0.25 | Stable |
17 | 21.36 | 10.05 | 30.33 | 30 | 20 | 0 | Stable |
18 | 19.97 | 10.05 | 28.98 | 34.03 | 6 | 0.3 | Stable |
19 | 22.38 | 10.05 | 35.01 | 30 | 10 | 0 | Stable |
20 | 22.38 | 10.05 | 35.01 | 45 | 10 | 0.4 | Failure |
21 | 19.08 | 10.05 | 9.99 | 25.02 | 50 | 0.4 | Failure |
22 | 19.08 | 10.05 | 19.98 | 30 | 50 | 0.4 | Failure |
23 | 18.83 | 10.35 | 21.29 | 34.03 | 37 | 0.3 | Failure |
24 | 16.5 | 11.49 | 0 | 30 | 3.66 | 0 | Failure |
25 | 16.47 | 11.55 | 0 | 30 | 3.6 | 0 | Failure |
26 | 19.03 | 11.7 | 27.99 | 34.98 | 21 | 0.11 | Failure |
27 | 19.06 | 11.7 | 28 | 35 | 21 | 0.11 | Failure |
28 | 19.06 | 11.71 | 28 | 35 | 21 | 0.11 | Failure |
29 | 19.06 | 11.75 | 28 | 35 | 21 | 0.11 | Failure |
30 | 14 | 11.97 | 26 | 30 | 88 | 0 | Failure |
31 | 19.63 | 11.97 | 20 | 22 | 12.19 | 0.41 | Failure |
32 | 14 | 11.97 | 26 | 30 | 88 | 0.45 | Failure |
33 | 19.63 | 11.97 | 20 | 22 | 21.19 | 0.4 | Failure |
34 | 18.5 | 12 | 0 | 30 | 6 | 0 | Failure |
35 | 18.5 | 12 | 0 | 30 | 6 | 0.25 | Failure |
36 | 19.6 | 12 | 19.98 | 22 | 12.2 | 0.41 | Failure |
37 | 13.97 | 12 | 26.01 | 30 | 88 | 0 | Failure |
38 | 18.46 | 12 | 0 | 30 | 6 | 0 | Failure |
39 | 13.97 | 12 | 26.01 | 30 | 88 | 0.45 | Failure |
40 | 27.3 | 14 | 31 | 41 | 110 | 0.25 | Stable |
41 | 27 | 14 | 31 | 41 | 110 | 0.25 | Stable |
42 | 18.84 | 14.36 | 25 | 20 | 30.5 | 0 | Stable |
43 | 18.84 | 14.36 | 25 | 20 | 30.5 | 0.45 | Failure |
44 | 18.84 | 14.36 | 25 | 20.3 | 50 | 0.45 | Failure |
45 | 18.8 | 14.4 | 25.02 | 19.98 | 30.6 | 0 | Stable |
46 | 18.8 | 14.4 | 25.02 | 19.98 | 30.6 | 0.45 | Failure |
47 | 18.8 | 15.31 | 30.02 | 25.02 | 10.6 | 0.38 | Stable |
48 | 18.84 | 15.32 | 30 | 25 | 10.67 | 0.38 | Stable |
49 | 20.56 | 16.21 | 26.51 | 30 | 40 | 0 | Failure |
50 | 20.6 | 16.28 | 26.5 | 30 | 40 | 0 | Failure |
51 | 27.3 | 16.8 | 28 | 50 | 90.5 | 0.25 | Stable |
52 | 27 | 16.8 | 28 | 50 | 90.5 | 0.25 | Stable |
53 | 20.96 | 19.96 | 40.01 | 40.02 | 12 | 0 | Stable |
54 | 21.98 | 19.96 | 36 | 45 | 50 | 0 | Failure |
55 | 19.97 | 19.96 | 36 | 45 | 50 | 0.25 | Failure |
56 | 19.97 | 19.96 | 36 | 45 | 50 | 0.5 | Failure |
57 | 18.77 | 19.96 | 9.99 | 25.02 | 50 | 0.3 | Failure |
58 | 18.77 | 19.96 | 19.98 | 30 | 50 | 0.3 | Failure |
59 | 21.98 | 19.96 | 22.01 | 19.98 | 180 | 0 | Failure |
60 | 21.98 | 19.96 | 22.01 | 19.98 | 180 | 0.1 | Failure |
61 | 22 | 20 | 36 | 45 | 50 | 0 | Failure |
62 | 20 | 20 | 36 | 45 | 50 | 0.25 | Failure |
63 | 20 | 20 | 36 | 45 | 50 | 0.5 | Failure |
64 | 18 | 24 | 30.15 | 45 | 20 | 0.12 | Failure |
65 | 17.98 | 24.01 | 30.15 | 45 | 20 | 0.12 | Failure |
66 | 18.83 | 24.76 | 21.29 | 29.2 | 37 | 0.5 | Failure |
67 | 20.41 | 24.9 | 13 | 22 | 10.67 | 0.35 | Stable |
68 | 20.39 | 24.91 | 13.01 | 22 | 10.6 | 0.35 | Stable |
69 | 18.5 | 25 | 0 | 30 | 6 | 0 | Failure |
70 | 18.5 | 25 | 0 | 30 | 6 | 0.25 | Failure |
71 | 18.46 | 25.06 | 0 | 30 | 6 | 0 | Failure |
72 | 18.77 | 25.06 | 19.98 | 30 | 50 | 0.2 | Failure |
73 | 18.77 | 25.06 | 9.99 | 25.02 | 50 | 0.2 | Failure |
74 | 27.3 | 26 | 31 | 50 | 92 | 0.25 | Stable |
75 | 27 | 26 | 31 | 50 | 92 | 0.25 | Stable |
76 | 18.68 | 26.34 | 15 | 35 | 8.23 | 0 | Failure |
77 | 18.66 | 26.41 | 14.99 | 34.98 | 8.2 | 0 | Failure |
78 | 28.4 | 29.41 | 35.01 | 34.98 | 100 | 0 | Stable |
79 | 28.44 | 29.42 | 35 | 35 | 100 | 0 | Stable |
80 | 18.77 | 30.01 | 9.99 | 25.02 | 50 | 0.1 | Stable |
81 | 18.77 | 30.01 | 19.98 | 30 | 50 | 0.1 | Stable |
82 | 20.96 | 30.01 | 35.01 | 40.02 | 12 | 0.4 | Stable |
83 | 18.97 | 30.01 | 35.01 | 34.98 | 11 | 0.2 | Stable |
84 | 27.3 | 31.5 | 29.7 | 41 | 135 | 0.25 | Stable |
85 | 27 | 31.5 | 29.7 | 41 | 135 | 0.25 | Stable |
86 | 27 | 32 | 33 | 42.6 | 301 | 0.25 | Failure |
87 | 27 | 32 | 33 | 42.4 | 289 | 0.25 | Stable |
88 | 27 | 32 | 33 | 42 | 289 | 0.25 | Stable |
89 | 20.39 | 33.46 | 10.98 | 16.01 | 45.8 | 0.2 | Failure |
90 | 20.41 | 33.52 | 11 | 16 | 45.72 | 0.2 | Failure |
91 | 20.41 | 33.52 | 11 | 16 | 45.7 | 0.2 | Failure |
92 | 20.96 | 34.96 | 27.99 | 40.02 | 12 | 0.5 | Stable |
93 | 27 | 35 | 35 | 42 | 359 | 0.25 | Stable |
94 | 27 | 37.5 | 35 | 37.8 | 320 | 0.25 | Stable |
95 | 27 | 37.5 | 35 | 38 | 320 | 0.25 | Stable |
96 | 28.4 | 39.16 | 37.98 | 34.98 | 100 | 0 | Stable |
97 | 28.44 | 39.23 | 38 | 35 | 100 | 0 | Stable |
98 | 27 | 40 | 35 | 43 | 420 | 0.25 | Failure |
99 | 19.97 | 40.06 | 30.02 | 30 | 15 | 0.3 | Stable |
100 | 19.97 | 40.06 | 40.01 | 40.02 | 10 | 0.2 | Stable |
101 | 20.96 | 45.02 | 25.02 | 49.03 | 12 | 0.3 | Stable |
102 | 17.98 | 45.02 | 25.02 | 25.02 | 14 | 0.3 | Stable |
103 | 25 | 46 | 35 | 47 | 443 | 0.25 | Stable |
104 | 25 | 46 | 35 | 44 | 435 | 0.25 | Stable |
105 | 25 | 46 | 35 | 46 | 432 | 0.25 | Stable |
106 | 25 | 46 | 35 | 46 | 393 | 0.25 | Stable |
107 | 25 | 48 | 40 | 49 | 330 | 0.25 | Stable |
108 | 26.43 | 50 | 26.6 | 40 | 92.2 | 0.15 | Stable |
109 | 26.7 | 50 | 26.6 | 50 | 170 | 0.25 | Stable |
110 | 27 | 50 | 40 | 42 | 407 | 0.25 | Stable |
111 | 25 | 55 | 36 | 45.5 | 299 | 0.25 | Stable |
112 | 25 | 55 | 36 | 44 | 299 | 0.25 | Stable |
113 | 18.84 | 57.46 | 20 | 20 | 30.5 | 0 | Stable |
114 | 18.8 | 57.47 | 19.98 | 19.98 | 30.6 | 0 | Stable |
115 | 26.8 | 60 | 28.8 | 59 | 108 | 0.25 | Stable |
116 | 31.3 | 68 | 37 | 47 | 213 | 0.25 | Failure |
117 | 31.3 | 68 | 37 | 46 | 366 | 0.25 | Stable |
118 | 31.3 | 68.6 | 37 | 47 | 305 | 0.25 | Failure |
119 | 16 | 70 | 20 | 40 | 115 | 0 | Failure |
120 | 15.99 | 70.07 | 19.98 | 40.02 | 115 | 0 | Failure |
121 | 22.38 | 99.93 | 45 | 45 | 15 | 0.25 | Stable |
122 | 22.4 | 100 | 45 | 45 | 15 | 0.25 | Stable |
123 | 25 | 120 | 45 | 53 | 120 | 0 | Stable |
124 | 24.96 | 120.04 | 45 | 53 | 120 | 0 | Stable |
125 | 26.49 | 150 | 33 | 45 | 73 | 0.15 | Stable |
126 | 26.7 | 150 | 33 | 50 | 130 | 0.25 | Stable |
127 | 26.89 | 150 | 33 | 52 | 120 | 0.25 | Stable |
128 | 26 | 150 | 45 | 30 | 200 | 0.25 | Stable |
129 | 26 | 150.05 | 45 | 50 | 200 | 0 | Stable |
130 | 25.96 | 150.05 | 45 | 49.98 | 200 | 0 | Stable |
131 | 26.81 | 200 | 35 | 58 | 138 | 0.25 | Stable |
132 | 26.57 | 300 | 38.7 | 45.3 | 80 | 0.15 | Failure |
133 | 26.78 | 300 | 38.7 | 54 | 155 | 0.25 | Failure |
134 | 19.9652 | 19.95665 | 36 | 44.997 | 50 | 0.25 | Failure |
135 | 25.6 | 38.8 | 36 | 25 | 26 | 0 | Stable |
136 | 22.88 | 0 | 31.78 | 36.86 | 45.45 | 0.54 | Failure |
137 | 23.5 | 25 | 20 | 49.1 | 115 | 0.41 | Stable |
138 | 16 | 7 | 20 | 40 | 115 | 0 | Failure |
139 | 27.3 | 37.3 | 31 | 30 | 30 | 0 | Stable |
140 | 22 | 0 | 36 | 45 | 50 | 0.25 | Stable |
141 | 27 | 31.5 | 30 | 41 | 135 | 0.25 | Stable |
142 | 18.8008 | 14.4048 | 25.02 | 19.981 | 30.6 | 0 | Stable |
143 | 19.6 | 17.8 | 29.2 | 46.8 | 201.2 | 0.37 | Stable |
144 | 18.84 | 15.32 | 30 | 25 | 10.7 | 0.38 | Stable |
145 | 25 | 46 | 36 | 44.5 | 299 | 0.25 | Stable |
146 | 19.63 | 11.98 | 20 | 22 | 12.19 | 0 | Failure |
147 | 25 | 12 | 45 | 53 | 120 | 0 | Stable |
148 | 18.7724 | 30.01 | 9.99 | 25.016 | 50 | 0.1 | Stable |
149 | 25 | 46 | 35 | 47 | 443 | 0.29 | Stable |
150 | 18.7724 | 25.05835 | 9.99 | 25.016 | 50 | 0.2 | Failure |
151 | 30.95 | 30.79 | 27.08 | 39.77 | 131.22 | 0.22 | Stable |
152 | 17.4 | 14.95 | 21.2 | 45 | 15 | 0.4 | Failure |
153 | 23.1 | 25.2 | 29.2 | 36.5 | 61.9 | 0.4 | Stable |
154 | 21.51 | 6.94 | 30 | 31 | 76.8 | 0.38 | Failure |
155 | 20.9592 | 45.015 | 25.02 | 49.025 | 12 | 0.3 | Stable |
156 | 27 | 32 | 33 | 42.6 | 301 | 0.29 | Failure |
157 | 15.9892 | 70.07335 | 19.98 | 40.015 | 115 | 0 | Failure |
158 | 12 | 0 | 30 | 45 | 8 | 0.29 | Failure |
159 | 25 | 46 | 35 | 50 | 285 | 0.25 | Stable |
160 | 13.9728 | 12.004 | 26.01 | 29.998 | 88 | 0.45 | Failure |
161 | 18.68 | 26.34 | 15 | 35 | 8.23 | 0.25 | Failure |
162 | 18.7724 | 30.01 | 19.98 | 29.998 | 50 | 0.1 | Stable |
163 | 22 | 0 | 40 | 33 | 8 | 0.35 | Stable |
164 | 20 | 0 | 36 | 45 | 50 | 0.25 | Failure |
165 | 31.3 | 68.6 | 37 | 47 | 305 | 0 | Failure |
166 | 22 | 10 | 35 | 45 | 10 | 0.403 | Failure |
167 | 18 | 5 | 26.5 | 15.52 | 53 | 0.4 | Failure |
168 | 21.7 | 32 | 27 | 45 | 60 | 0 | Failure |
169 | 14 | 11.97 | 26 | 30 | 88 | 0.25 | Failure |
170 | 18.84 | 14.36 | 25 | 20 | 30.5 | 0.25 | Stable |
171 | 12 | 0 | 30 | 45 | 4 | 0.25 | Stable |
172 | 18 | 5 | 22 | 15.52 | 53 | 0.4 | Failure |
173 | 26.2 | 44.14 | 32.26 | 37.71 | 359.04 | 0.21 | Stable |
174 | 19.9652 | 19.95665 | 36 | 44.997 | 50 | 0.5 | Failure |
175 | 22 | 20 | 36 | 45 | 50 | 0.25 | Failure |
176 | 12 | 0 | 30 | 35 | 4 | 0 | Stable |
177 | 25 | 120 | 45 | 53 | 120 | 0.25 | Stable |
178 | 31.3 | 68 | 37 | 46 | 366 | 0 | Failure |
179 | 26.5 | 36.1 | 31 | 35 | 39 | 0 | Stable |
180 | 20.9592 | 30.01 | 35.01 | 40.015 | 12 | 0.4 | Stable |
181 | 27.3 | 10 | 39 | 40 | 470 | 0.29 | Stable |
182 | 27.3 | 36 | 1 | 50 | 92 | 0.29 | Stable |
183 | 18.84 | 0 | 20 | 20 | 7.62 | 0.45 | Failure |
184 | 26.2 | 41.5 | 36 | 35 | 30 | 0 | Stable |
185 | 27.4 | 38.1 | 31 | 25 | 42 | 0 | Stable |
186 | 26.93 | 0 | 41.13 | 31.68 | 8.16 | 0.3 | Stable |
187 | 20.8 | 15.6 | 20 | 30 | 45 | 0 | Failure |
188 | 27 | 27.3 | 29.1 | 34 | 126.5 | 0.3 | Failure |
189 | 30.33 | 15.62 | 24.21 | 52.5 | 85.76 | 0.25 | Failure |
190 | 19 | 11.9 | 20.4 | 21.04 | 54 | 0.75 | Stable |
191 | 18.8 | 9.8 | 21 | 19.29 | 39 | 0.25 | Failure |
192 | 21.1 | 34.2 | 26 | 30 | 75 | 0 | Failure |
193 | 20 | 0.1 | 36 | 45 | 50 | 0.29 | Failure |
194 | 24 | 0 | 40 | 33 | 8 | 0.3 | Failure |
195 | 24.45 | 11.34 | 39.31 | 44.03 | 9.79 | 0.43 | Failure |
196 | 18 | 0 | 30 | 33 | 8 | 0.303 | Stable |
197 | 20.41 | 24.91 | 13 | 22 | 10.67 | 0.35 | Stable |
198 | 21.8 | 31.2 | 25 | 30 | 60 | 0 | Failure |
199 | 20 | 0.1 | 36 | 45 | 50 | 0.503 | Failure |
200 | 24 | 0 | 40 | 33 | 8 | 0.303 | Stable |
201 | 26.78 | 26.79 | 30.66 | 43.66 | 249.7 | 0.25 | Stable |
202 | 31.25 | 25.73 | 27.97 | 48.23 | 91.55 | 0.21 | Failure |
203 | 12 | 0.03 | 30 | 35 | 4 | 0.29 | Failure |
204 | 22 | 0 | 36 | 45 | 50 | 0.25 | Failure |
205 | 25 | 55 | 36 | 45 | 239 | 0.25 | Stable |
206 | 23 | 24 | 19.8 | 23 | 380 | 0 | Failure |
207 | 21.2 | 0 | 35 | 23.75 | 150 | 0.25 | Failure |
208 | 20.9592 | 34.96165 | 27.99 | 40.015 | 12 | 0.5 | Stable |
209 | 12 | 0 | 30 | 45 | 8 | 0.25 | Failure |
210 | 27 | 70 | 22.8 | 45 | 60 | 0.32 | Stable |
211 | 18.7724 | 19.95665 | 19.98 | 29.998 | 50 | 0.3 | Failure |
212 | 28.44 | 29.42 | 35 | 35 | 100 | 0.25 | Stable |
213 | 20.8 | 15.4 | 21 | 30 | 53 | 0 | Failure |
214 | 19.596 | 12.004 | 19.98 | 21.995 | 12.2 | 0.405 | Failure |
215 | 22.1 | 24.2 | 39.7 | 45.8 | 49.5 | 0.21 | Stable |
216 | 22.4 | 29.3 | 26 | 50 | 50 | 0 | Failure |
217 | 20 | 0 | 24.5 | 20 | 8 | 0.35 | Stable |
218 | 25 | 55 | 36 | 45.5 | 299 | 0 | Stable |
219 | 17.55 | 22.08 | 0 | 34.99 | 5.88 | 0.35 | Failure |
220 | 20.52 | 14.06 | 26.23 | 25.38 | 9.86 | 0.37 | Stable |
221 | 21.9816 | 19.95665 | 22.005 | 19.981 | 180 | 0.1 | Failure |
222 | 18.46 | 12.004 | 0 | 29.998 | 6 | 0 | Failure |
223 | 20.45 | 16 | 15 | 30 | 36 | 0.25 | Stable |
224 | 21.1 | 33.5 | 28 | 40 | 31 | 0 | Failure |
225 | 22 | 20 | 36 | 45 | 30 | 0.29 | Failure |
226 | 17.6 | 10 | 16 | 21.8 | 9 | 0.4 | Stable |
227 | 31.3 | 68.6 | 37 | 47 | 270 | 0.25 | Failure |
228 | 23.4 | 15 | 38.5 | 30.3 | 45.2 | 0.28 | Failure |
229 | 16.472 | 11.55385 | 0 | 29.998 | 3.6 | 0 | Failure |
230 | 23.47 | 0 | 32 | 37 | 214 | 0.25 | Failure |
231 | 24.86 | 45.6 | 39.8 | 36.31 | 386.08 | 0.21 | Stable |
232 | 17.2 | 10 | 24.25 | 17.07 | 38 | 0.4 | Stable |
233 | 14.8 | 0 | 17 | 20 | 50 | 0 | Failure |
234 | 17.86 | 0 | 24.38 | 22.44 | 8.23 | 0.39 | Stable |
235 | 18.82 | 25 | 14.6 | 20.32 | 50 | 0.4 | Failure |
236 | 18.8292 | 10.35345 | 21.285 | 34.026 | 37 | 0.3 | Failure |
237 | 18.84 | 57.46 | 20 | 20 | 30.5 | 0.25 | Stable |
238 | 31.3 | 68.6 | 37 | 47 | 305 | 0.25 | Stable |
239 | 28.01 | 9.5 | 37.36 | 41.86 | 538.1 | 0.23 | Stable |
240 | 25 | 63 | 32 | 44.5 | 239 | 0.25 | Stable |
241 | 18.6 | 0 | 32 | 21.8 | 46 | 0.25 | Stable |
242 | 25.8 | 38.2 | 33 | 27 | 40 | 0 | Stable |
243 | 31.3 | 68 | 37 | 49 | 200.5 | 0.29 | Failure |
244 | 16 | 70 | 20 | 40 | 115 | 0.25 | Failure |
245 | 22 | 0 | 40 | 33 | 8 | 0.393 | Stable |
246 | 25 | 46 | 35 | 50 | 284 | 0.25 | Stable |
247 | 20.6 | 27.8 | 27 | 35 | 70 | 0 | Failure |
248 | 22 | 40 | 30 | 30 | 196 | 0 | Stable |
249 | 18.9712 | 30.01 | 35.01 | 34.98 | 11 | 0.2 | Stable |
250 | 26.2 | 43.8 | 38 | 35 | 68 | 0 | Stable |
251 | 17.9772 | 4.95165 | 30.015 | 19.981 | 8 | 0.3 | Stable |
252 | 22.4 | 28.9 | 24 | 28 | 35 | 0 | Failure |
253 | 25.6 | 39.8 | 36 | 30 | 32 | 0 | Stable |
254 | 19.36 | 19.8 | 38.49 | 43.41 | 48.88 | 0.43 | Failure |
255 | 20.41 | 24.9 | 13 | 22 | 10.7 | 0.35 | Stable |
256 | 23.5 | 10 | 27 | 26 | 190 | 0 | Failure |
257 | 17.4 | 20 | 24 | 18.43 | 51 | 0.4 | Failure |
258 | 17.6 | 10 | 8 | 21.8 | 9 | 0.4 | Stable |
259 | 22.3792 | 10.05335 | 35.01 | 29.998 | 10 | 0 | Stable |
260 | 21.7828 | 8.55285 | 31.995 | 27.984 | 12.8 | 0.49 | Failure |
261 | 19.63 | 11.97 | 20 | 22 | 12.19 | 0.405 | Failure |
262 | 25 | 48 | 40 | 45 | 330 | 0.25 | Stable |
263 | 25.8 | 39.4 | 33 | 25 | 45 | 0 | Stable |
264 | 27 | 40 | 35 | 47.1 | 292 | 0.25 | Failure |
265 | 12 | 0 | 30 | 35 | 8 | 0.25 | Failure |
266 | 22.3792 | 99.9333 | 45 | 44.997 | 15 | 0.25 | Stable |
267 | 16.5 | 11.49 | 0 | 30 | 3.66 | 0.25 | Failure |
268 | 25.8 | 34.7 | 33 | 30 | 50 | 0 | Stable |
269 | 26.62 | 0 | 31.78 | 42.72 | 51.48 | 0.4 | Failure |
270 | 24 | 0 | 40 | 33 | 8 | 0.3 | Stable |
271 | 18.84 | 0 | 20 | 20 | 7.62 | 0 | Failure |
272 | 18.7724 | 25.05835 | 19.98 | 29.998 | 50 | 0.2 | Failure |
273 | 22 | 21 | 23 | 30 | 257 | 0 | Failure |
274 | 23.2 | 9.5 | 39.69 | 39.34 | 10.49 | 0.44 | Failure |
275 | 21.78 | 0 | 34.2 | 35 | 7.13 | 0.32 | Stable |
276 | 14.8 | 0 | 17 | 20 | 50 | 0.25 | Failure |
277 | 31.3 | 68 | 37 | 47 | 213 | 0 | Failure |
278 | 21.8 | 32.7 | 27 | 50 | 50 | 0 | Failure |
279 | 21.8 | 28.8 | 26 | 35 | 99 | 0 | Failure |
280 | 26.2 | 42.8 | 37 | 30 | 37 | 0 | Stable |
281 | 22 | 10 | 35 | 30 | 10 | 0.29 | Stable |
282 | 19.6 | 21.8 | 29.5 | 37.8 | 40.3 | 0.25 | Stable |
283 | 18.6 | 0 | 32 | 26.5 | 46 | 0.25 | Stable |
284 | 27.3 | 10 | 39 | 41 | 511 | 0.29 | Stable |
285 | 28.07 | 35 | 38.93 | 44.54 | 361.51 | 0.24 | Stable |
286 | 19.63 | 11.97 | 20 | 22 | 12.2 | 0.41 | Failure |
287 | 27 | 50 | 40 | 42 | 407 | 0.29 | Stable |
288 | 21.73 | 9.21 | 30.6 | 33.06 | 19.78 | 0.29 | Stable |
289 | 27.3 | 14 | 31 | 41 | 110 | 0.29 | Stable |
290 | 26.69 | 50 | 26.6 | 50 | 170 | 0.25 | Stable |
291 | 26.5 | 35.4 | 32 | 30 | 21 | 0 | Stable |
292 | 26.5 | 41.8 | 36 | 42 | 54 | 0 | Stable |
293 | 18.7724 | 19.95665 | 9.99 | 25.016 | 50 | 0.3 | Failure |
294 | 29.7 | 38.09 | 32.92 | 45.48 | 410.4 | 0.26 | Stable |
295 | 26.2 | 42.3 | 36 | 23 | 36 | 0 | Stable |
296 | 20.6 | 16.28 | 26.5 | 30 | 40 | 0.25 | Failure |
297 | 20.9592 | 19.95665 | 40.005 | 40.015 | 12 | 0 | Stable |
298 | 20.6 | 28.5 | 27 | 40 | 65 | 0 | Failure |
299 | 17.29 | 0 | 37.22 | 44.55 | 42.3 | 0.28 | Failure |
300 | 12.34 | 0 | 25.92 | 46.82 | 8.08 | 0.43 | Failure |
301 | 27 | 37.5 | 35 | 37.8 | 320 | 0.29 | Stable |
302 | 24.9636 | 120.04 | 45 | 53 | 120 | 0 | Stable |
303 | 22.1 | 45.8 | 49.5 | 45.8 | 49.5 | 0.21 | Stable |
304 | 11.94 | 0 | 31.75 | 32.49 | 3.92 | 0.11 | Stable |
305 | 17.9772 | 45.015 | 25.02 | 25.016 | 14 | 0.3 | Stable |
306 | 20.6 | 32.4 | 26 | 30 | 42 | 0 | Failure |
307 | 18.8 | 8 | 26 | 21.8 | 40 | 0.4 | Failure |
308 | 31.3 | 68 | 37 | 47 | 360.5 | 0.25 | Failure |
309 | 26.83 | 13.98 | 35.46 | 43.5 | 96.14 | 0.23 | Stable |
310 | 21.2 | 0 | 35 | 23.75 | 150 | 0.25 | Stable |
311 | 22 | 0 | 36 | 45 | 50 | 0 | Failure |
312 | 17.9772 | 24.008 | 30.15 | 44.997 | 20 | 0.12 | Failure |
313 | 20 | 20 | 36 | 45 | 30 | 0.503 | Failure |
314 | 24.57 | 9.98 | 41.31 | 35.46 | 526.13 | 0.27 | Stable |
315 | 21.5 | 29.8 | 26 | 40 | 70 | 0 | Failure |
316 | 27.1 | 22 | 18.6 | 25.6 | 100 | 0.19 | Failure |
317 | 22 | 10 | 36 | 45 | 50 | 0.29 | Failure |
318 | 21.6 | 6.5 | 19 | 40 | 50 | 0 | Failure |
319 | 20.97 | 21.8 | 31.81 | 38.09 | 57.75 | 0.24 | Failure |
320 | 26.8 | 37.5 | 32 | 30 | 26 | 0 | Stable |
321 | 25.9576 | 150.05 | 45 | 49.979 | 200 | 0 | Stable |
322 | 19.9652 | 10.05335 | 28.98 | 34.026 | 6 | 0.3 | Stable |
323 | 22.54 | 29.4 | 20 | 24 | 210 | 0 | Stable |
324 | 26 | 42.4 | 37 | 38 | 55 | 0 | Stable |
325 | 20.41 | 24.9 | 13 | 22 | 10.67 | 0 | Stable |
326 | 21 | 20 | 24 | 21 | 565 | 0 | Stable |
327 | 31.3 | 68 | 37 | 49 | 200.5 | 0.25 | Failure |
328 | 20.6 | 32.4 | 26 | 35 | 55 | 0 | Failure |
329 | 16.05 | 11.49 | 0 | 30 | 3.66 | 0 | Failure |
330 | 25 | 46 | 36 | 44.5 | 299 | 0 | Stable |
331 | 19.43 | 11.16 | 0 | 32.34 | 5.35 | 0.36 | Failure |
332 | 20 | 30.3 | 25 | 45 | 53 | 0 | Failure |
333 | 21.9816 | 19.95665 | 36 | 44.997 | 50 | 0 | Failure |
334 | 27.3 | 31.5 | 29.703 | 41 | 135 | 0.293 | Stable |
335 | 21.5 | 15 | 29 | 41.5 | 123.6 | 0.36 | Stable |
336 | 20.8 | 14.8 | 21 | 30 | 40 | 0 | Failure |
337 | 25.8 | 43.3 | 37 | 30 | 33 | 0 | Stable |
338 | 20.41 | 33.52 | 11 | 16 | 45.72 | 0 | Failure |
339 | 27 | 40 | 35 | 47.1 | 292 | 0 | Failure |
340 | 24 | 40.8 | 35 | 35 | 50 | 0 | Stable |
341 | 22.4 | 100 | 45 | 45 | 15 | 0.25 | Failure |
342 | 25 | 63 | 32 | 46 | 300 | 0.25 | Stable |
343 | 18 | 24 | 30.2 | 45 | 20 | 0.12 | Failure |
344 | 26.81 | 60 | 28.8 | 59 | 108 | 0.25 | Stable |
345 | 28.35 | 44.97 | 33.49 | 43.16 | 413.42 | 0.25 | Failure |
346 | 19.0848 | 10.05335 | 9.99 | 25.016 | 50 | 0.4 | Failure |
347 | 27 | 27.3 | 29.1 | 35 | 150 | 0.26 | Failure |
348 | 31.3 | 68 | 37 | 8 | 305.5 | 0.25 | Failure |
349 | 25 | 48 | 40 | 49 | 330 | 0 | Stable |
350 | 18.8008 | 57.46915 | 19.98 | 19.981 | 30.6 | 0 | Stable |
351 | 27 | 32 | 33 | 42 | 301 | 0.25 | Failure |
352 | 25 | 46 | 35 | 46 | 393 | 0 | Stable |
353 | 18.84 | 0 | 20 | 20 | 7.6 | 0.45 | Failure |
354 | 20.3912 | 24.9083 | 13.005 | 21.995 | 10.6 | 0.35 | Stable |
355 | 26 | 15 | 45 | 50 | 200 | 0 | Stable |
356 | 31.3 | 58.8 | 35.5 | 47.5 | 438.5 | 0.25 | Failure |
357 | 18.6588 | 26.4088 | 14.985 | 34.98 | 8.2 | 0 | Failure |
358 | 21.1 | 10 | 30.34 | 30 | 20 | 0 | Stable |
359 | 25.8 | 41.2 | 35 | 30 | 40 | 0 | Stable |
360 | 21.4704 | 6.9023 | 30.015 | 31.005 | 76.8 | 0.38 | Failure |
361 | 23.47 | 0 | 32 | 37 | 214 | 0 | Failure |
362 | 20 | 0 | 20 | 20 | 8 | 0.35 | Stable |
363 | 23 | 20 | 20.3 | 46.2 | 40.3 | 0.25 | Stable |
364 | 31.3 | 58.8 | 35.5 | 47.5 | 502.7 | 0.25 | Failure |
365 | 26 | 39.4 | 36 | 25 | 30 | 0 | Stable |
366 | 27.3 | 10 | 39 | 40 | 480 | 0 | Stable |
367 | 21.8 | 27.6 | 25 | 35 | 60 | 0 | Failure |
368 | 21.4 | 28.8 | 20 | 50 | 52 | 0 | Failure |
369 | 19.9652 | 40.06335 | 30.015 | 29.998 | 15 | 0.3 | Stable |
370 | 20 | 8 | 20 | 10 | 10 | 0 | Failure |
371 | 23.8 | 31 | 38.7 | 47.5 | 23.5 | 0.31 | Stable |
372 | 26.6 | 42.4 | 37 | 25 | 52 | 0 | Stable |
373 | 28.4 | 39.16305 | 37.98 | 34.98 | 100 | 0 | Stable |
374 | 21.51 | 17.82 | 31.75 | 47.03 | 49.92 | 0.52 | Failure |
375 | 22 | 0 | 40 | 33 | 8 | 0.35 | Failure |
376 | 23 | 0 | 20 | 20 | 100 | 0.3 | Failure |
377 | 21.43 | 0 | 20 | 20 | 61 | 0 | Failure |
378 | 26.6 | 40.7 | 35 | 35 | 60 | 0 | Stable |
379 | 27.83 | 45.01 | 35.95 | 47.83 | 456.38 | 0.25 | Stable |
380 | 25 | 46 | 35 | 44 | 435 | 0.29 | Stable |
381 | 18.71 | 4.75 | 28.12 | 18.81 | 8.62 | 0.31 | Stable |
382 | 26.6 | 44.1 | 38 | 35 | 42 | 0 | Stable |
383 | 28.4 | 29.4098 | 35.01 | 34.98 | 100 | 0 | Stable |
384 | 19.028 | 11.7039 | 27.99 | 34.98 | 21 | 0.11 | Failure |
385 | 18.45 | 0 | 18.58 | 17.82 | 7.55 | 0.43 | Failure |
386 | 27 | 35 | 35 | 42 | 359 | 0.29 | Stable |
387 | 31.3 | 68.6 | 37 | 47.5 | 262.5 | 0.25 | Failure |
388 | 31.3 | 68 | 37 | 46 | 366 | 0.25 | Failure |
389 | 27 | 43 | 35 | 43 | 420 | 0.29 | Failure |
390 | 12 | 0 | 30 | 35 | 4 | 0.25 | Stable |
391 | 26.18 | 159 | 44.93 | 31.5 | 172.98 | 0.1 | Failure |
392 | 19.32 | 0 | 19.44 | 20.2 | 68.48 | 0.45 | Failure |
393 | 30 | 27.38 | 34.57 | 43.46 | 319.21 | 0.27 | Failure |
394 | 12 | 0 | 30 | 45 | 8 | 0 | Failure |
395 | 28.51 | 42.34 | 32.2 | 43.25 | 453.6 | 0.25 | Stable |
396 | 11.82 | 0 | 33.7 | 31.26 | 3.91 | 0.42 | Stable |
397 | 18.84 | 15.32 | 30 | 25 | 10.67 | 0 | Stable |
398 | 27 | 35.8 | 32 | 30 | 69 | 0 | Stable |
399 | 18 | 21 | 21.33 | 21.8 | 40 | 0.4 | Failure |
400 | 17.8 | 21.2 | 13.92 | 18.43 | 51 | 0.4 | Stable |
401 | 27.3 | 16.2 | 28 | 50 | 90.5 | 0.29 | Stable |
402 | 22.3 | 20.1 | 31 | 40.2 | 88 | 0.19 | Stable |
403 | 22.5 | 20 | 16 | 25 | 220 | 0 | Stable |
404 | 13.9728 | 12.004 | 26.01 | 29.998 | 88 | 0 | Failure |
405 | 25 | 46 | 35 | 46 | 432 | 0.29 | Stable |
406 | 20 | 30 | 36 | 45 | 50 | 0.29 | Failure |
407 | 23.2 | 31.2 | 23 | 30 | 33 | 0 | Failure |
408 | 25.4 | 33 | 33 | 20 | 35 | 0 | Failure |
409 | 26 | 150.05 | 45 | 50 | 200 | 0.25 | Stable |
410 | 19.9652 | 40.06335 | 40.005 | 40.015 | 10 | 0.2 | Stable |
411 | 20.3912 | 33.46115 | 10.98 | 16.006 | 45.8 | 0.2 | Failure |
412 | 28.44 | 39.23 | 38 | 35 | 100 | 0.25 | Stable |
413 | 21 | 10 | 30.343 | 30 | 30 | 0.29 | Stable |
414 | 22 | 29 | 15 | 18 | 400 | 0 | Failure |
415 | 27.8 | 27.8 | 27 | 41 | 236 | 0.1 | Stable |
416 | 26.5 | 42.9 | 38 | 34 | 36 | 0 | Stable |
417 | 18.8292 | 24.75825 | 21.285 | 29.203 | 37 | 0.5 | Failure |
418 | 21.9816 | 19.95665 | 22.005 | 19.981 | 180 | 0 | Failure |
419 | 18.8008 | 15.3051 | 30.015 | 25.016 | 10.6 | 0.38 | Stable |
420 | 21.83 | 8.62 | 32 | 28 | 12.8 | 0 | Failure |
421 | 22.85 | 8.46 | 38.12 | 25.67 | 11.34 | 0.56 | Stable |
422 | 18.5 | 25 | 0 | 30 | 6.003 | 0.29 | Failure |
423 | 27 | 38.4 | 33 | 25 | 22 | 0 | Stable |
424 | 24 | 41.5 | 36 | 30 | 51 | 0 | Stable |
425 | 21.43 | 0 | 20 | 20 | 61 | 0.5 | Failure |
426 | 26 | 150 | 45 | 30 | 230 | 0.29 | Stable |
427 | 18.5 | 12 | 0 | 30 | 6.003 | 0.29 | Failure |
428 | 22.3792 | 10.05335 | 35.01 | 44.997 | 10 | 0.4 | Failure |
429 | 20.5616 | 16.2054 | 26.505 | 29.998 | 40 | 0 | Failure |
430 | 31 | 68 | 37 | 46 | 366 | 0.25 | Failure |
431 | 21.3568 | 10.05335 | 30.33 | 29.998 | 20 | 0 | Stable |
432 | 25 | 46 | 35 | 50 | 284 | 0 | Stable |
433 | 27 | 32 | 33 | 42.2 | 239 | 0.29 | Stable |
434 | 25.6 | 36.8 | 34 | 35 | 60 | 0 | Stable |
435 | 20 | 0 | 36 | 45 | 50 | 0.5 | Failure |
436 | 19.0848 | 10.05335 | 19.98 | 29.998 | 50 | 0.4 | Failure |
437 | 33.16 | 68.54 | 41.11 | 51.98 | 188.15 | 0.44 | Failure |
438 | 21.2 | 0 | 35 | 18.43 | 73 | 0.25 | Stable |
439 | 20.6 | 26.31 | 22 | 25 | 35 | 0 | Failure |
440 | 18.46 | 25.05835 | 0 | 29.998 | 6 | 0 | Failure |
441 | 22.3 | 0 | 40 | 26.5 | 78 | 0.25 | Stable |
442 | 12 | 0 | 30 | 35 | 4 | 0.29 | Stable |
443 | 18.12 | 10.57 | 30.84 | 32.45 | 21.77 | 0.11 | Failure |
444 | 19.6 | 29.6 | 23 | 40 | 58 | 0 | Failure |
445 | 27 | 27.3 | 29.1 | 37 | 184 | 0.22 | Failure |
446 | 25 | 55 | 36 | 45 | 299 | 0.25 | Stable |
447 | 22.5 | 18 | 20 | 20 | 290 | 0 | Stable |
448 | 18.8008 | 14.4048 | 25.02 | 19.981 | 30.6 | 0.45 | Failure |
449 | 12 | 0 | 30 | 45 | 4 | 0 | Stable |
450 | 23.47 | 0 | 32 | 37 | 214 | 0 | Stable |
451 | 20.41 | 33.52 | 11 | 16 | 10.67 | 0.35 | Stable |
452 | 25.4 | 33 | 33 | 20 | 35 | 0 | Stable |
453 | 27.3 | 31.5 | 30 | 41 | 135 | 0.25 | Stable |
454 | 21.4 | 10 | 30 | 30 | 20 | 0.25 | Stable |
455 | 18.66 | 8.8 | 15 | 35 | 8.2 | 0 | Failure |
456 | 28.4 | 9.8 | 35 | 35 | 100 | 0 | Stable |
457 | 25.96 | 50 | 45 | 50 | 200 | 0 | Stable |
458 | 18.46 | 8.35 | 0 | 30 | 6 | 0 | Failure |
459 | 21.36 | 3.35 | 30 | 30 | 20 | 0 | Stable |
460 | 15.99 | 23.35 | 20 | 40 | 115 | 0 | Failure |
461 | 20.39 | 8.3 | 13 | 22 | 10.6 | 0.35 | Stable |
462 | 19.6 | 4 | 20 | 22 | 12.2 | 0.41 | Failure |
463 | 20.39 | 11.15 | 11 | 16 | 45.8 | 0.2 | Failure |
464 | 19.03 | 3.9 | 28 | 35 | 21 | 0.11 | Failure |
465 | 17.98 | 1.65 | 30 | 20 | 8 | 0.3 | Stable |
466 | 20.96 | 6.65 | 40 | 40 | 12 | 0 | Stable |
467 | 20.96 | 11.65 | 28 | 40 | 12 | 0.5 | Stable |
468 | 19.97 | 3.35 | 29 | 34 | 6 | 0.3 | Stable |
469 | 18.77 | 10 | 10 | 25 | 50 | 0.1 | Stable |
470 | 18.77 | 10 | 20 | 30 | 50 | 0.1 | Stable |
471 | 18.77 | 8.35 | 20 | 30 | 50 | 0.2 | Failure |
472 | 20.56 | 5.4 | 27 | 30 | 40 | 0 | Failure |
473 | 16.47 | 3.85 | 0 | 30 | 3.6 | 0 | Failure |
474 | 18.8 | 4.8 | 25 | 20 | 30.6 | 0 | Stable |
475 | 18.8 | 19.15 | 20 | 20 | 30.6 | 0 | Stable |
476 | 28.4 | 13.05 | 38 | 35 | 100 | 0 | Stable |
477 | 24.96 | 40 | 45 | 53 | 120 | 0 | Stable |
478 | 18.46 | 4 | 0 | 30 | 6 | 0 | Failure |
479 | 22.38 | 3.35 | 35 | 30 | 10 | 0 | Stable |
480 | 21.98 | 6.65 | 36 | 45 | 50 | 0 | Failure |
481 | 18.8 | 5.1 | 30 | 25 | 10.6 | 0.38 | Stable |
482 | 18.8 | 4.8 | 25 | 31 | 76.8 | 0.38 | Failure |
483 | 21.47 | 2.3 | 30 | 30 | 88 | 0.45 | Failure |
484 | 13.97 | 4 | 26 | 45 | 20 | 0.12 | Failure |
485 | 17.98 | 8 | 30 | 45 | 15 | 0.25 | Failure |
486 | 22.38 | 33.3 | 45 | 45 | 10 | 0.4 | Stable |
487 | 22.38 | 3.35 | 35 | 45 | 50 | 0.25 | Failure |
488 | 19.97 | 6.65 | 36 | 45 | 50 | 0.25 | Failure |
489 | 19.97 | 6.65 | 36 | 45 | 50 | 0.5 | Failure |
490 | 20.96 | 15 | 25 | 49 | 12 | 0.3 | Stable |
491 | 20.96 | 10 | 35 | 40 | 12 | 0.4 | Stable |
492 | 19.97 | 13.35 | 30 | 30 | 15 | 0.3 | Stable |
493 | 17.98 | 15 | 25 | 25 | 14 | 0.3 | Stable |
494 | 18.97 | 10 | 35 | 35 | 11 | 0.2 | Stable |
495 | 19.97 | 13.35 | 40 | 40 | 10 | 0.2 | Stable |
496 | 18.83 | 8.25 | 21 | 21 | 37 | 0.5 | Stable |
497 | 18.83 | 3.45 | 21 | 34 | 37 | 0.3 | Failure |
498 | 18.77 | 8.35 | 10 | 25 | 50 | 0.2 | Failure |
499 | 18.77 | 6.65 | 10 | 25 | 50 | 0.3 | Failure |
500 | 19.08 | 3.35 | 10 | 25 | 50 | 0.4 | Failure |
501 | 18.77 | 6.65 | 20 | 30 | 50 | 0.3 | Failure |
502 | 19.08 | 3.35 | 20 | 30 | 50 | 0.4 | Failure |
503 | 21.98 | 6.65 | 22 | 20 | 180 | 0 | Failure |
504 | 21.98 | 6.65 | 22 | 20 | 180 | 0.1 | Failure |
505 | 20 | 20 | 36 | 45 | 50 | 0 | Failure |
506 | 27 | 27.3 | 29.1 | 21 | 565 | 0.26 | Failure |
507 | 27 | 27.3 | 29.1 | 35 | 150 | 0.22 | Failure |
508 | 27 | 27.3 | 29.1 | 37 | 184 | 0.3 | Failure |
509 | 0.657 | 0.176 | 0.333 | 0.66 | 0.041 | 0 | Failure |
510 | 1 | 0.196 | 0.778 | 0.66 | 0.5 | 0 | Stable |
511 | 0.914 | 1 | 1 | 0.943 | 1 | 0 | Stable |
512 | 0.65 | 0.167 | 0 | 0.566 | 0.03 | 0 | Failure |
513 | 0.752 | 0.067 | 0.674 | 0.566 | 0.1 | 0 | Stable |
514 | 0.563 | 0.467 | 0.444 | 0.755 | 0.575 | 0 | Failure |
515 | 0.718 | 0.166 | 0.289 | 0.415 | 0.053 | 0.7 | Stable |
516 | 0.69 | 0.08 | 0.444 | 0.415 | 0.061 | 0.81 | Failure |
517 | 0.767 | 0.057 | 0.711 | 0.528 | 0.064 | 0.98 | Failure |
518 | 0.718 | 0.223 | 0.244 | 0.302 | 0.229 | 0.4 | Failure |
519 | 0.67 | 0.078 | 0.622 | 0.66 | 0.105 | 0.22 | Failure |
520 | 0.633 | 0.033 | 0.667 | 0.377 | 0.04 | 0.6 | Stable |
521 | 0.738 | 0.133 | 0.889 | 0.755 | 0.06 | 0 | Stable |
522 | 0.738 | 0.233 | 0.622 | 0.755 | 0.06 | 1 | Stable |
523 | 0.703 | 0.067 | 0.644 | 0.642 | 0.03 | 0.6 | Stable |
524 | 0.661 | 0.2 | 0.222 | 0.472 | 0.25 | 0.2 | Stable |
525 | 0.661 | 0.2 | 0.444 | 0.566 | 0.25 | 0.2 | Stable |
526 | 0.661 | 0.167 | 0.444 | 0.566 | 0.25 | 0.4 | Failure |
527 | 0.724 | 0.108 | 0.589 | 0.566 | 0.2 | 0 | Failure |
528 | 0.58 | 0.077 | 0 | 0.566 | 0.018 | 0 | Failure |
529 | 0.662 | 0.096 | 0.556 | 0.377 | 0.153 | 0 | Stable |
530 | 0.662 | 0.383 | 0.444 | 0.377 | 0.153 | 0 | Stable |
531 | 1 | 0.261 | 0.844 | 0.66 | 0.5 | 0 | Stable |
532 | 0.492 | 0.08 | 0.578 | 0.566 | 0.44 | 0 | Failure |
533 | 0.879 | 0.8 | 1 | 1 | 0.6 | 0 | Stable |
534 | 0.65 | 0.08 | 0 | 0.566 | 0.03 | 0 | Failure |
535 | 0.788 | 0.067 | 0.778 | 0.566 | 0.05 | 0 | Stable |
536 | 0.774 | 0.133 | 0.8 | 0.849 | 0.25 | 0 | Failure |
537 | 0.662 | 0.102 | 0.667 | 0.472 | 0.053 | 0.76 | Stable |
538 | 0.662 | 0.096 | 0.556 | 0.377 | 0.153 | 0.9 | Failure |
539 | 0.756 | 0.046 | 0.667 | 0.585 | 0.384 | 0.76 | Failure |
540 | 0.492 | 0.08 | 0.578 | 0.566 | 0.44 | 0.9 | Failure |
541 | 0.633 | 0.16 | 0.67 | 0.849 | 0.1 | 0.24 | Failure |
542 | 0.788 | 0.666 | 1 | 0.849 | 0.075 | 0.5 | Stable |
543 | 0.788 | 0.067 | 0.778 | 0.849 | 0.05 | 0.8 | Failure |
544 | 0.703 | 0.133 | 0.8 | 0.849 | 0.25 | 0.5 | Failure |
545 | 0.703 | 0.133 | 0.8 | 0.849 | 0.25 | 1 | Failure |
546 | 0.738 | 0.3 | 0.556 | 0.925 | 0.06 | 0.6 | Stable |
547 | 0.738 | 0.2 | 0.778 | 0.755 | 0.06 | 0.8 | Stable |
548 | 0.703 | 0.267 | 0.667 | 0.566 | 0.075 | 0.6 | Stable |
549 | 0.633 | 0.3 | 0.556 | 0.472 | 0.07 | 0.6 | Stable |
550 | 0.668 | 0.2 | 0.778 | 0.66 | 0.055 | 0.4 | Stable |
551 | 0.703 | 0.267 | 0.889 | 0.755 | 0.05 | 0.4 | Stable |
552 | 0.633 | 0.165 | 0.473 | 0.551 | 0.185 | 1 | Failure |
553 | 0.633 | 0.069 | 0.473 | 0.642 | 0.185 | 0.6 | Failure |
554 | 0.661 | 0.167 | 0.222 | 0.472 | 0.25 | 0.4 | Failure |
555 | 0.661 | 0.133 | 0.222 | 0.472 | 0.25 | 0.6 | Failure |
556 | 0.672 | 0.067 | 0.222 | 0.472 | 0.25 | 0.8 | Failure |
557 | 0.661 | 0.133 | 0.444 | 0.566 | 0.25 | 0.6 | Failure |
558 | 0.672 | 0.067 | 0.444 | 0.566 | 0.25 | 0.8 | Failure |
559 | 0.774 | 0.133 | 0.489 | 0.377 | 0.9 | 0 | Failure |
560 | 0.774 | 0.133 | 0.489 | 0.377 | 0.9 | 0.2 | Failure |
561 | 17.6 | 39.5 | 30.2 | 50 | 38 | 0.04 | Stable |
562 | 17.3 | 39 | 30 | 50 | 35 | 0.04 | Stable |
563 | 17.8 | 38.7 | 30.5 | 60 | 26 | 0 | Stable |
564 | 17.9 | 39 | 31.2 | 55 | 25 | 0.15 | Stable |
565 | 17.3 | 39 | 30 | 50 | 26 | 0.2 | Stable |
566 | 17.3 | 37.9 | 30 | 45 | 29 | 0.37 | Stable |
567 | 17.5 | 38.5 | 29 | 50 | 33 | 0.2 | Stable |
568 | 17.5 | 39.2 | 29.7 | 55 | 31 | 0 | Stable |
569 | 17.8 | 39.8 | 31.3 | 45 | 32 | 0.34 | Stable |
570 | 17.3 | 39 | 30 | 48 | 30 | 0.03 | Stable |
571 | 18.3 | 57.2 | 38.6 | 38 | 31 | 0.64 | Stable |
572 | 17.4 | 5 | 43.5 | 58 | 29 | 0.05 | Failure |
573 | 17.8 | 14 | 44.2 | 65 | 31 | 0.07 | Failure |
574 | 17.4 | 0 | 43.7 | 60 | 26 | 0.4 | Failure |
575 | 19.8 | 57.5 | 41.3 | 62 | 23 | 0.19 | Stable |
576 | 20.5 | 6.5 | 12.5 | 42 | 70 | 0 | Failure |
577 | 21.4 | 7.1 | 16.7 | 44 | 70 | 1 | Failure |
578 | 21.5 | 9.5 | 11.5 | 40 | 75 | 0 | Failure |
579 | 20.6 | 6.7 | 9.4 | 45 | 30 | 0 | Failure |
580 | 20.9 | 9.7 | 18.5 | 39 | 38 | 1 | Failure |
581 | 21.4 | 9.4 | 21.8 | 30 | 106 | 1 | Failure |
582 | 19.9 | 6.8 | 19.4 | 30 | 80 | 1 | Failure |
583 | 20.2 | 14.9 | 18.5 | 40 | 70 | 1 | Failure |
584 | 19 | 9 | 15.2 | 45 | 27 | 0 | Failure |
585 | 19.7 | 16.4 | 21.4 | 30 | 55 | 1 | Failure |
586 | 21.2 | 7.8 | 22.4 | 45 | 25 | 1 | Failure |
587 | 19.9 | 7.4 | 15.6 | 44 | 30 | 1 | Failure |
588 | 19.9 | 7.1 | 21.2 | 30 | 55 | 0 | Failure |
589 | 22.2 | 10.7 | 25.2 | 35 | 45 | 1 | Failure |
590 | 21.8 | 7.2 | 17.8 | 40 | 34 | 1 | Failure |
591 | 21.8 | 7.2 | 17.8 | 42 | 41 | 1 | Failure |
592 | 21.96 | 34.77 | 14.15 | 28 | 60 | 0 | Stable |
593 | 21.96 | 34.77 | 14.15 | 24 | 115 | 0 | Stable |
594 | 22.93 | 32.33 | 19.73 | 30 | 50 | 1 | Stable |
595 | 22.15 | 19.47 | 13.29 | 28 | 110 | 1 | Stable |
596 | 23.4 | 20 | 9 | 36.5 | 50 | 0 | Stable |
597 | 21.8 | 18.05 | 9.72 | 30 | 40 | 0 | Failure |
598 | 23.98 | 32.77 | 17.28 | 40 | 100 | 0 | Failure |
599 | 20.57 | 24.8 | 15.53 | 40 | 50 | 1 | Stable |
600 | 21.2 | 24.88 | 17.29 | 44 | 52 | 0 | Failure |
601 | 22.15 | 5 | 19 | 45 | 40 | 1 | Failure |
602 | 21.8 | 18.05 | 9.72 | 35 | 40 | 0 | Failure |
603 | 23.75 | 36.78 | 22.63 | 42 | 43 | 1 | Failure |
604 | 20.98 | 23.59 | 20 | 45 | 65 | 0 | Failure |
605 | 22.6 | 24.06 | 14.04 | 26 | 190 | 1 | Stable |
606 | 22.29 | 27.54 | 10.1 | 40 | 70 | 0 | Stable |
607 | 22.1 | 24.67 | 16.2 | 40 | 70 | 1 | Stable |
608 | 20.25 | 32.4 | 11.99 | 45 | 36 | 1 | Failure |
609 | 20.8 | 15.57 | 8.74 | 29.7 | 35 | 1 | Failure |
610 | 21.17 | 15.44 | 16 | 33 | 32 | 1 | Failure |
611 | 22.94 | 33.77 | 23.29 | 27 | 170 | 1 | Stable |
612 | 22.95 | 46.49 | 25.11 | 30 | 42 | 1 | Stable |
613 | 21.92 | 19.4 | 15.5 | 35 | 80 | 1 | Failure |
614 | 21.42 | 28.9 | 16.2 | 40 | 30 | 1 | Stable |
615 | 20.8 | 40.25 | 19.39 | 45 | 123 | 1 | Failure |
616 | 20.1 | 34.61 | 24.69 | 22 | 94 | 0 | Stable |
617 | 19.19 | 19.69 | 17.68 | 34 | 43 | 1 | Failure |
618 | 19.18 | 12.8 | 9.45 | 45 | 20 | 0 | Failure |
619 | 17.8 | 22.2 | 6.05 | 40 | 51.6 | 1 | Failure |
620 | 19.6 | 15.53 | 15.88 | 35 | 97 | 1 | Failure |
621 | 19.81 | 33.75 | 19.46 | 20 | 120 | 1 | Stable |
622 | 19.81 | 19.97 | 11.08 | 35 | 35 | 0 | Failure |
623 | 19.7 | 17 | 9.38 | 45 | 20 | 1 | Failure |
624 | 20.2 | 21.2 | 19.89 | 35 | 62 | 1 | Failure |
625 | 17.96 | 24.01 | 28 | 40 | 60 | 1 | Failure |
626 | 25 | 55 | 36 | 44.5 | 299 | 0.25 | Stable |
627 | 21.98 | 19.96 | 22.01 | 19.98 | 180 | 0.01 | Failure |
References
- Méheux, K.; Dominey-Howes, D.; Lloyd, K. Natural hazard impacts in small island developing states: A review of current knowledge and future research needs. Nat. Hazards 2007, 40, 429–446. [Google Scholar] [CrossRef]
- Iai, S. Geotechnics and Earthquake Geotechnics towards Global Sustainability; Springer: Dordrecht, The Netherlands, 2011; Volume 15. [Google Scholar]
- Ma, J.W.; Liu, X.; Niu, X.X.; Wang, Y.K.; Wen, T.; Zhang, J.R.; Zou, Z.X. Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique. Int. J. Environ. Res. Public Health 2020, 17, 4788. [Google Scholar] [CrossRef]
- Niu, X.X.; Ma, J.W.; Wang, Y.K.; Zhang, J.R.; Chen, H.J.; Tang, H.M. A novel decomposition-ensemble learning model based on ensemble empirical mode decomposition and recurrent neural network for landslide displacement prediction. Appl. Sci. 2021, 11, 4684. [Google Scholar] [CrossRef]
- Ouyang, C.J.; Zhou, K.Q.; Xu, Q.; Yin, J.H.; Peng, D.L.; Wang, D.P.; Li, W.L. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 2017, 14, 705–718. [Google Scholar] [CrossRef]
- Duncan, J.M. Soil Slope Stability Analysis. In Landslides: Investigation and Mitigation, Transportation Research Board Special Report 247; National Academy Press: Washington, DC, USA, 1996; pp. 337–371. [Google Scholar]
- Duncan, J.M.; Wright, S.G. The accuracy of equilibrium methods of slope stability analysis. Eng. Geol. 1980, 16, 5–17. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Lee, C.F.; Jiang, H.D. Generalised framework of limit equilibrium methods for slope stability analysis. Géotechnique 2003, 53, 377–395. [Google Scholar] [CrossRef]
- Liu, S.Y.; Shao, L.T.; Li, H.J. Slope stability analysis using the limit equilibrium method and two finite element methods. Comput. Geotech. 2015, 63, 291–298. [Google Scholar] [CrossRef]
- Li, A.J.; Merifield, R.S.; Lyamin, A.V. Limit analysis solutions for three dimensional undrained slopes. Comput. Geotech. 2009, 36, 1330–1351. [Google Scholar] [CrossRef]
- Pham, K.; Kim, D.; Park, S.; Choi, H. Ensemble learning-based classification models for slope stability analysis. Catena 2021, 196, 104886. [Google Scholar] [CrossRef]
- Lin, S.; Zheng, H.; Han, B.; Li, Y.; Han, C.; Li, W. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction. Acta Geotech. 2022, 17, 1477–1502. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Shen, S.-L. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Wang, H.B.; Xu, W.Y.; Xu, R.C. Slope stability evaluation using Back Propagation Neural Networks. Eng. Geol. 2005, 80, 302–315. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Wang, N.; Sun, P.; Yu, S.; Li, S.; Du, X. Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode. Eng. Geol. 2016, 209, 70–81. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput. Ind. Eng. 2018, 118, 112–122. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X. A hybrid ensemble method for improved prediction of slope stability. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1823–1839. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Ma, J.; Xia, D.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z.; Guo, H. A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction. Eng. Appl. Artif. Intell. 2022, 114, 105150. [Google Scholar] [CrossRef]
- Ma, J.; Xia, D.; Guo, H.; Wang, Y.; Niu, X.; Liu, Z.; Jiang, S. Metaheuristic-based support vector regression for landslide displacement prediction: A comparative study. Landslides 2022, 19, 2489–2511. [Google Scholar] [CrossRef]
- Feng, X.-T. Introduction of Intelligent Rock Mechanics; Science Press: Beijing, China, 2000. [Google Scholar]
- Lu, P.; Rosenbaum, M.S. Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Xue, X.; Yang, X.; Chen, X. Application of a support vector machine for prediction of slope stability. Sci. China Technol. Sci. 2014, 57, 2379–2386. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Pham, A.-D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Syst. Appl. 2016, 46, 60–68. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Tien Bui, D. Chapter 18—Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares Support Vector Machines, and Extreme Learning Machine Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares Support Vector Machines, and Extreme Learning Machine. In Handbook of Neural Computation; Samui, P., Sekhar, S., Balas, V.E., Eds.; Academic Press: Washington, DC, USA, 2017; pp. 333–344. [Google Scholar] [CrossRef]
- Feng, X.; Li, S.; Yuan, C.; Zeng, P.; Sun, Y. Prediction of Slope Stability using Naive Bayes Classifier. KSCE J. Civ. Eng. 2018, 22, 941–950. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, K.; Li, J. Prediction of Slope Stability Using Four Supervised Learning Methods. IEEE Access 2018, 6, 31169–31179. [Google Scholar] [CrossRef]
- Amirkiyaei, V.; Ghasemi, E. Stability assessment of slopes subjected to circular-type failure using tree-based models. Int. J. Geotech. Eng. 2020, 16, 301–311. [Google Scholar] [CrossRef]
- Haghshenas, S.S.; Haghshenas, S.S.; Geem, Z.W.; Kim, T.-H.; Mikaeil, R.; Pugliese, L.; Troncone, A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land 2021, 10, 1250. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, S.; Zhang, X.; Han, L.; Zhang, Z. Slope stability prediction method based on the margin distance minimization selective ensemble. CATENA 2022, 212, 106055. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Fan, Z.; Tang, H.; Zou, M.; Hu, X.; Xiong, C.; Ma, J. Suitability of data preprocessing methods for landslide displacement forecasting. Stoch. Environ. Res. Risk Assess. 2020, 34, 1105–1119. [Google Scholar] [CrossRef]
- Ma, J.W.; Wang, Y.K.; Niu, X.X.; Jiang, S.; Liu, Z.Y. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stoch. Environ. Res. Risk Assess. 2022, 36, 3109–3129. [Google Scholar] [CrossRef]
- Wang, Y.K.; Tang, H.M.; Huang, J.S.; Wen, T.; Ma, J.W.; Zhang, J.R. A comparative study of different machine learning methods for reservoir landslide displacement prediction. Eng. Geol. 2022, 298, 106544. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, W.; Liu, Z.; Tan, J. TBM performance prediction with Bayesian optimization and automated machine learning. Tunn. Undergr. Space Technol. 2020, 103, 103493. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Shen, Y.; Huang, Z.; Xie, X. Auto machine learning-based modelling and prediction of excavation-induced tunnel displacement. J. Rock Mech. Geotech. Eng. 2022, 14, 1100–1114. [Google Scholar] [CrossRef]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W.H.; Ma, X.; et al. A review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, J.W.; Liu, Z.Y.; Guo, H.X. Scientometric Analysis of Artificial Intelligence (AI) for Geohazard Research. Sensors 2022, 22, 7814. [Google Scholar] [CrossRef]
- Fallatah, O.; Ahmed, M.; Gyawali, B.; Alhawsawi, A. Factors controlling groundwater radioactivity in arid environments: An automated machine learning approach. Sci. Total Environ. 2022, 830, 154707. [Google Scholar] [CrossRef]
- Quan, S.Q.; Feng, J.H.; Xia, H. Automated Machine Learning in Action. Manning Publications, Co.: New York, NY, USA, 2022. [Google Scholar]
- Mahjoubi, S.; Barhemat, R.; Guo, P.; Meng, W.; Bao, Y. Prediction and multi-objective optimization of mechanical, economical, and environmental properties for strain-hardening cementitious composites (SHCC) based on automated machine learning and metaheuristic algorithms. J. Clean. Prod. 2021, 329, 129665. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L. An automated machine learning approach for earthquake casualty rate and economic loss prediction. Reliab. Eng. Syst. Saf. 2022, 225, 108645. [Google Scholar] [CrossRef]
- Erzin, Y.; Cetin, T. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput. Geosci. 2013, 51, 305–313. [Google Scholar] [CrossRef]
- Sakellariou, M.G.; Ferentinou, M.D. A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 2005, 23, 419–445. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Bui, D.T. Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: A case study in Vietnam. Nat. Hazards 2018, 92, 1871–1887. [Google Scholar] [CrossRef]
- Ferreira, L.; Pilastri, A.; Martins, C.M.; Pires, P.M.; Cortez, P. A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE Total Water Storage Through Automated Machine Learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Cook, D. Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Laakso, T.; Kokkonen, T.; Mellin, I.; Vahala, R. Sewer Condition Prediction and Analysis of Explanatory Factors. Water 2018, 10, 1239. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, M.; Yuan, P.; Chada, G.; Nguyen, H.V. Physician-Friendly Machine Learning: A Case Study with Cardiovascular Disease Risk Prediction. J. Clin. Med. 2019, 8, 1050. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.; Liu, J.; Qian, Y.; Chong, W.; Liu, D.; He, X.; Zhang, X.; Duan, C.-Z. Automated Machine Learning Model Development for Intracranial Aneurysm Treatment Outcome Prediction: A Feasibility Study. Front. Neurol. 2021, 12, 735142. [Google Scholar] [CrossRef]
Reference | Data Size (Stable/Failure) | Input Features | Data Preprocessing | ML Algorithm Selection | Hyperparameter Tuning | Final Model and Performance |
---|---|---|---|---|---|---|
[21] | 82 (38/44) | , , , , , | / | BP | Trial and error GA | GA-optimized BP was selected as the final model, with an AUC of 0.455 for the testing dataset. |
[22] | 32 (14/18) | , , , , , | / | ANN | Trial and error | The ANN achieved an ACC of 1.00 for the testing dataset in two cases. |
[23] | 46 (17/29) | , , , , , | Data normalization | SVM | PSO | PSO-SVM achieved an ACC of 0.8125 for the testing dataset. |
[24] | 168 (84/84) | , , , , , | Data normalization | LSSVM | FA | The FA-optimized LSSVM achieved an AUC of 0.86 for the testing dataset. |
[25] | 168 (84/84) | , , , , , | Data normalization | RBF LSSVM ELM | Orthogonal least squares GA Trial and error | The GA-ELM was selected as the final model, with an AUC of 0.8706 for the testing dataset. |
[26] | 82 (49/33) | , , , , , | / | NB | / | NB achieved an ACC of 0.846 for the testing dataset. |
[27] | 107 (48/59) | , , , , , | / | RF SVM Bayes GSA | Ten-fold CV | The GSA was selected as the final model, with an AUC of 0.889 for the testing dataset. |
[17] | 168 (84/84) | , , , , , | Data normalization | GP QDA SVM ADB-DT ANN KNN Classifier ensemble | GA | The optimum ensemble classifier was selected as the final model, with an AUC of 0.943 for the testing dataset. |
[16] | 148 (78/70) | , , , , , | Data normalization | LR DT RF GBM SVM BP | FA GS | The FA-optimized SVM was selected as the final model, with an AUC of 0.967 for the testing dataset. |
[18] | 221 (115/106) | , , , , , | Data normalization | ANN SVM RF GBM | Five-fold CV | The GBM-based model was selected as the final model, with an AUC of 0.900 for the testing dataset. |
[28] | 87 (42/45) | , , , , , | / | J48 | Trial and error | J48 achieved an ACC of 0.9231 for the testing dataset. |
[13] | 257 (123/134) | , , , , , | / | XGB RF LR SVM BC LDA KNN DT MLP GNB XRT Stacked ensemble | ABC PSO | The stacked ensemble was selected as the final model, with an AUC of 0.904 for the testing dataset. |
[11] | 153 (83/70) | , , , , , | Data normalization and outlier removing | KNN SVM SGD GP QDA GNB DT ANN Bagging ensemble Heterogeneous ensemble | GS | An ensemble classifier based on extreme gradient boosting was selected as the final model, with an AUC of 0.914 for the testing dataset. |
[29] | 19 (13/6) | , , , , , | Data normalization | K-means cluster | HS | K-means clustering optimized by HS achieved an ACC of 0.89 for all datasets. |
[12] | 444 (224/220) | , , , , , | Data normalization | AdaBoost GBM Bagging XRT RF HGB Voting Stacked | GS | A stacked model was selected as the final model, with an AUC of 0.9452 for the testing dataset. |
[30] | 422 (226/196) | , , , , , | Data normalization | MDMSE | GS | The MDMSE model achieved an AUC of 0.8810 for the testing dataset. |
Input Feature | Notation | Range | Median | Mean | Std. |
---|---|---|---|---|---|
Unit weight (kN/m3) | 0.492–33.160 | 20.959 | 20.185 | 7.044 | |
Cohesion (kPa) | 0–300.00 | 19.690 | 25.600 | 31.036 | |
Friction angle (°) | 0–49.500 | 28.800 | 25.308 | 12.331 | |
Slope angle (°) | 0.302–65.000 | 34.980 | 32.605 | 13.711 | |
Slope height (m) | 0.018–565.000 | 45.800 | 90.289 | 120.140 | |
Pore pressure ratio | 0–1.000 | 0.250 | 0.254 | 0.260 |
Predicted | Stable | Failure | ||
---|---|---|---|---|
Actual | ||||
Stable | True positive (TP) | False negative (FN) | Sensitivity: (The ideal value is 1, whereas the worst is zero.) | |
Failure | False positive (FP) | True negative (TN) | Specificity (The ideal value is 1, whereas the worst is zero.) | |
Positive predictive value (PPV) (The ideal value is 1, whereas the worst is zero.) | Negative predictive value (NPV) (The ideal value is 1, whereas the worst is zero.) | Accuracy (The ideal value is 1, whereas the worst is zero.) Matthews correlation coefficient (The ideal value is 1.) |
Algorithm | Parameter | Searchable values |
---|---|---|
DNN | Adaptive learning rate time smoothing factor (epsilon) | |
Hidden layer size (hidden) | Grid search 1: {20}, {50}, {100} | |
Grid search 2: {20, 20}, {50, 50}, {100, 100} | ||
Grid search 3: {20, 20, 20}, {50, 50, 50}, {100, 100, 100} | ||
Hidden_dropout_ratio | Grid search 1: {0.1}, {0.2}, {0.3}, {0.4}, {0.5} | |
Grid search 2: {0.1, 0.1}, {0.2, 0.2}, {0.3, 0.3}, {0.4, 0.4}, {0.5, 0.5} | ||
Grid search 3: {0.1, 0.1, 0.1}, {0.2, 0.2, 0.2} {0.3, 0.3, 0.3}, {0.4, 0.4, 0.4}, {0.5, 0.5, 0.5} | ||
Input_dropout_ratio | {0.0, 0.05, 0.1, 0.15, 0.2} | |
Adaptive learning rate time decay factor (rho) | {0.9, 0.95, 0.99} | |
GLM | Regularization distribution between L1 and L2 (alpha) | {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} |
GBM | Column sampling rate (col_sample_rate) | {0.4, 0.7, 1.0} |
Column sample rate per tree (col_sample_rate_per_tree) | {0.4, 0.7, 1.0} | |
Maximum tree depth (max_depth) | {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17} | |
Minimum number of observations for a leaf (min_rows) | {1, 5, 10, 15, 30, 100} | |
Minimum relative improvement in squared error reduction (min_split_improvement) | ||
Row sampling rate (sample_rate) | {0.50, 0.60, 0.70, 0.80, 0.90, 1.00} |
Model ID | Model Type | Hyperparameters | AUC | Confusion Matrix | Performance Measures | |||
---|---|---|---|---|---|---|---|---|
H2O1 | Stacked ensemble | The base models are the top-1000 trained models, and the metalearner is a GLM. A logit transformation is used for the predicted probabilities. | 0.970 | Predicted | Stable | Failure | SEN = 0.968 SPE = 0.841 PPV = 0.857 NPV = 0.964 ACC = 0.904 MCC = 0.815 | |
Actual | ||||||||
Stable | 60 | 2 | ||||||
Failure | 10 | 53 | ||||||
H2O2 | GBM | score_tree_interval = 5; ntrees = 105; max_depth = 7; stopping_metric = logloss; stopping_tolerance = 0.045; learn_rate = 0.1; learn_rate_annealing = 1; sample_rate = 1; col_sample_rate = 0.4; col_sample_rate_change_per_level = 1; col_sample_rate_per_tree = 0.7 | 0.968 | Predicted | Stable | Failure | SEN = 0.903 SPE = 0.937 PPV = 0.933 NPV = 0.908 ACC = 0.920 MCC = 0.840 | |
Actual | ||||||||
Stable | 56 | 6 | ||||||
Failure | 4 | 59 | ||||||
H2O3 | DRF | Ntrees = 50; max_depth = 20 | 0.963 | Predicted | Stable | Failure | SEN = 0.839 SPE = 0.968 PPV = 0.963 NPV = 0.859 ACC = 0.904 MCC = 0.815 | |
Actual | ||||||||
Stable | 52 | 10 | ||||||
Failure | 2 | 61 | ||||||
H2O4 | XR | score_tree_interval = 5; max_after_balance_size = 5; max_confusion_matrix_size = 20; ntrees = 50; max_depth = 20; stopping_metric = logloss; stopping_tolerance = 0.045; sample_rate = 0.632 | 0.963 | Predicted | Stable | Failure | SEN = 0.871 SPE = 0.937 PPV = 0.931 NPV = 0.881 ACC = 0.904 MCC = 0.810 | |
Actual | ||||||||
Stable | 54 | 8 | ||||||
Failure | 4 | 59 | ||||||
H2O5 | GBM | score_tree_interval = 5; ntrees = 97; max_depth = 7; stopping_metric = logloss; stopping_tolerance = 0.045; learn_rate = 0.1; learn_rate_annealing = 1; sample_rate = 0.8; col_sample_rate = 0.8; col_sample_rate_change_per_level = 1; col_sample_rate_per_tree = 0.8 | 0.960 | Predicted | Stable | Failure | SEN = 0.968 SPE = 0.810 PPV = 0.833 NPV = 0.962 ACC = 0.888 MCC = 0.786 | |
Actual | ||||||||
Stable | 60 | 2 | ||||||
Failure | 12 | 51 |
Reference | Model | AUC | ACC | Reference | Model | AUC | ACC |
---|---|---|---|---|---|---|---|
[24] | BDA LM-ANN SCG-ANN RMV SVM RBP-ANN MO-LSSVM | 0.75 0.79 0.81 0.83 0.83 0.84 0.86 | / | [25] | RBF LSSVM ELM | / | 0.81 0.8706 0.8400 |
[17] | GA-GP GA-QDA GA-SVM GA-ANN GA-ADB-DT GA-KNN GA-OEC | 0.893 0.798 0.908 0.877 0.936 0.908 0.943 | / | [27] | RF SVM NB GSA | 0.833 0.556 0.667 0.886 | / |
[16] | FA-LR FA-DT FA-MLP FA-RF FA-GBM FA-SVM | 0.822 0.854 0.864 0.957 0.962 0.967 | / | [18] | ANN SVM RF GBM | 0.888 0.889 0.897 0.900 | / |
[13] | XGB RF LR SVM BC LDA KNN DT MLP GNB XRT Stacked ensemble | 0.77 0.79 0.83 081 0.71 0.80 0.78 0.72 0.83 0.7. 0.74 0.90 | / | [11] | KNN SVM SGD GP QDA GNB DT ANN B-KNN B-SVM B-ANN RF AB GBM XGB Heterogeneous ensemble | 0.931 0.796 0.688 0.933 0.817 0.775 0.829 0.817 0.938 0.892 0.933 0.904 0.910 0.929 0.950 0.950 | 0.839 0.806 0.710 0.839 0.774 0.806 0.774 0.806 0.871 0.871 0.839 0.806 0.839 0.774 0.903 0.806 |
[12] | GBM Bagging Adaboost XRT RF HGB Voting Stacked | 0.9199 0.9291 0.9199 0.9519 0.9268 0.8970 0.9588 0.9382 | / | [30] | SVM DT LR NB Boosting MDMSE | / | 0.8452 0.8333 <0.75 <0.75 0.8214 0.8810 |
Current study | H2O1 (Stacked Ensemble_Best1000) | 0.970 | 0.904 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Jiang, S.; Liu, Z.; Ren, Z.; Lei, D.; Tan, C.; Guo, H. Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach. Sensors 2022, 22, 9166. https://doi.org/10.3390/s22239166
Ma J, Jiang S, Liu Z, Ren Z, Lei D, Tan C, Guo H. Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach. Sensors. 2022; 22(23):9166. https://doi.org/10.3390/s22239166
Chicago/Turabian StyleMa, Junwei, Sheng Jiang, Zhiyang Liu, Zhiyuan Ren, Dongze Lei, Chunhai Tan, and Haixiang Guo. 2022. "Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach" Sensors 22, no. 23: 9166. https://doi.org/10.3390/s22239166
APA StyleMa, J., Jiang, S., Liu, Z., Ren, Z., Lei, D., Tan, C., & Guo, H. (2022). Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach. Sensors, 22(23), 9166. https://doi.org/10.3390/s22239166