Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Development of Fermented Bean-Based Beverages
2.3. Optical Analysis
2.3.1. Color Analysis
2.3.2. Stability Analysis
2.3.3. Particle Size Analysis
2.4. Rheological Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optical Analysis
3.1.1. Color Analysis
3.1.2. Stability and PSD Analysis
3.2. Rheological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tabilo-Munizaga, G.; Barbosa-Canovas, G.V. Rheology for the food industry. J. Food Eng. 2004, 67, 147–156. [Google Scholar] [CrossRef]
- Kotsanopoulos, K.V.; Arvanitoyannis, I.S. The Role of Auditing, Food Safety, and Food Quality Standards in the Food Industry: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 760–775. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Beers, R.V.; Saeys, W.; Li, C.; Cen, H. Measurement of optical properties of fruits and vegetables: A review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Lu, L.; Li, M.; Xu, J.; Deng, H. Turbiscan Lab® Expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers. J. Hazard. Mater. 2011, 190, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; McClements, D.J. Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Struct. 2014, 1, 106–126. [Google Scholar] [CrossRef]
- Zhong, Q.; Daubert, C.R. Food Rheology. In Handbook of Farm, Dairy and Food Machinery Engineering, 2nd ed.; Kutz, M., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 403–426. [Google Scholar] [CrossRef]
- Marcotte, M.; Hoshahili, A.R.; Ramaswamy, H.S. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res. Int. 2001, 34, 695–703. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Craig, W.J.; Fresán, U. International Analysis of the Nutritional Content and a Review of Health Benefits of Non-Dairy Plant-Based Beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef] [PubMed]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J.; Mangels, R. Nutritional Content and Health Profile of Single-Serve Non-Dairy Plant-Based Beverages. Nutrients 2021, 14, 162. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernat, N.; Chafer, M.; Rodríguez-García, J.; Chiralt, A.; Gonzalez-Martínez, C. Effect of high pressure homogenisation and heat treatment on physical properties and stability of almond and hazelnut milks. LWT 2015, 62, 488–496. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkinen, O.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant Based Milk Substitutes and Fermented Dairy Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Silva, A.; Silva, M.; Ribeiro, B. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Bernat, N.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Vegetable milks and their fermented derivative products. Int. J. Food Stud. 2014, 3, 93–124. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow Milk versus Plant-Based Milk Substitutes: A Comparison of Product Image and Motivational Structure of Consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef]
- Lopes, M.; Pierrepont, C.; Duarte, C.M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020, 9, 1458. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 36, 1–39. [Google Scholar] [CrossRef]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, W.S.; Pouvreau, L.; Curran, J.; Velde, D.; Kok, P.M. Flavor Aspects of Pulse Ingredients. Cereal Chem. 2016, 94, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrahar-Murugka, D.; Bajpai-Dixit, P.; Kotwaliwale, N. Rheological, nutritional, functional and sensory properties of millets and sprouted legume based beverages. J. Food Sci. Technol. 2020, 57, 1671–1679. [Google Scholar] [CrossRef]
- Fisher, E.; Cayot, N.; Cachon, R. Potential of Microorganisms to Decrease the “Beany” Off-Flavor: A Review. J. Agric. Food Chem. 2022, 70, 4493–4508. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Review on potential non-dairy synbiotic beverages: A preliminary approach using legumes. J. Food Sci. Technol. 2020, 56, 2068–2077. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.; Frutos, M. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020, 8, 1348. [Google Scholar] [CrossRef]
- Lee, C.C.; Tomas, M.; Jafari, S.M. Optical analysis of nanoencapsulated food ingredients by color measurement. In Nanoencapsulation in the Food Industry, 1st ed.; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 4, pp. 505–528. [Google Scholar] [CrossRef]
- Sliburyte, L.; Skeryte, I. What We Know about Consumers’ Color Perception. Procedia Soc. Behav. Sci. 2014, 156, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Sant’Anna, V.; Gurak, P.D.; Marczak, L.D.; Tessaro, I. Tracking bioactive compounds with colour changesin foods—A review. Dyes Pigments 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Patil, S.B.; Khan, K. Some cooking properties of germinated brown rice of Indian varieties. Agric. Eng. Int. CIGR J. 2012, 14, 156–162. [Google Scholar]
- Beaulieu, J.C.; Reed, S.S.; Obando-Ulloa, J.M.; McClung, A.M. Green processing protocol for germinating and wet milling brown rice for beverage formulations: Sprouting, milling and gelatinization effects. Food Sci. Nutr. 2020, 8, 2445–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofi, S.A.; Singh, J.; Muzaffar, K.; Mir, S.A.; Dar, B.N. Effect of germination time on physico-chemical, functional, pasting, rheology and electrophoretic characteristics of chickpea flour. J. Food Meas. Charact. 2020, 14, 2380–2392. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Bagnasco, L.; Perego, P.; Leardi, R.; Casale, M. UV-VIS spectroscopy for monitoring yogurt stability during storage time. Anal. Methods 2016, 8, 5962. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jiang, J.; Xiong, L. High pressure homogenization combined with pH shift treatment: A process to produce physically and oxidatively stable hemp milk. Food Res. Int. 2018, 106, 487–494. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yang, X.; Zhang, Q. TURBISCAN: History, development, application to colloids and dispersions. Adv. Mater. Res. 2014, 936, 1592–1596. [Google Scholar] [CrossRef]
- Formulaction Application Note, Using the Turbiscan Stability Index to Determine the Stability Diagram of a Liquid Dispersion. Available online: http://www.formulaction.com (accessed on 28 September 2022).
- Onyango, C.; Luvitaa, S.K.; Unbehend, G.; Haase, N. Nutrient composition, sensory attributes and starch digestibility of cassava porridge modified with hydrothermally-treated finger millet. J. Agric. Food Res. 2020, 2, 100021. [Google Scholar] [CrossRef]
- Fernández-Ávila, C.; Escriu, R.; Trujillo, A.J. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res. Int. 2015, 75, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Hebishy, E.; Buffa, M.; Guamis, B.; Blasco-Moreno, A.; Trujillo, A.J. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innov. Food Sci. Emerg. Technol. 2015, 32, 79–90. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.; Liu, J.; Zhu, Y.; Zhang, X.; Jiang, L.; Qi, B.; Zhang, X.; Wang, Z.; Teng, F. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization. Nanomaterials 2018, 8, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Cabrejas, M.A.; Ariza, N.; Esteban, R.; Mollá, E.; Waldron, K.; López-Andréu, F.J. Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). J. Agric. Food Chem. 2003, 51, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, J.; Xiong, Y.L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. J. Agric. Food Chem. 2009, 57, 7576–7583. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.; Sramek, M.; Nöbel, S.; Hinrichs, J. Post-processing of concentrated fermented milk: Influence of temperature and holding time on the formation of particle clusters. Dairy Sci. Technol. 2011, 92, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Poliseli-Scopel, F.H.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT 2012, 46, 42–48. [Google Scholar] [CrossRef]
- Ferragut, V.; Hernández-Herrero, M.; Veciana-Nogués, M.T.; Borras-Suarez, M.; González-Linares, J.; Vidal-Carou, M.C.; Guamis, B. Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: Physicochemical, microbiological, nutritional and toxicological characteristics. J. Sci. Food Agric. 2014, 95, 953–961. [Google Scholar] [CrossRef]
- Moelants, K.R.; Cardinaels, R.; Van Buggenhout, S.; Van Loey, A.M.; Moldenaers, P.; Hendrickx, M.E. A Review on the Relationships between Processing, Food Structure, and Rheological Properties of Plant-Tissue-Based Food Suspensions. Compr. Rev. Food Sci. Food Saf. 2014, 13, 241–260. [Google Scholar] [CrossRef]
- Zheng, E.; Rudman, M.; Kuang, S.; Chryss, A. Turbulent coarse-particle suspension flow: Measurement and modelling. Powder Technol. 2020, 373, 647–659. [Google Scholar] [CrossRef]
- McClements, D.J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef] [PubMed]
- Genovese, D.B.; Lozano, J.E.; Rao, M.A. The Rheology of Colloidal and Noncolloidal Food Dispersions. J. Food Sci. 2007, 72, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ewoldt, R.H.; Winter, P.; Maxey, J.; McKinley, G.H. Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol. Acta 2009, 49, 191–212. [Google Scholar] [CrossRef]
- Tiziani, S.; Vodovotz, Y. Rheological effects of soy protein addition to tomato juice. Food Hydrocoll. 2005, 19, 45–52. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, M.; Gilbert, R.G.; Yin, J.; Huang, X.; Xiong, T.; Xie, M. Colloid chemistry approach to understand the storage stability of fermented carrot juice. Food Hydrocoll. 2019, 89, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Domian, E.; Marzec, A.; Kowalska, H. Assessing the effectiveness of colloidal microcrystalline cellulose as a suspending agent for black and white liquid dyes. Int. J. Food Sci. Technol. 2020, 56, 2504–2515. [Google Scholar] [CrossRef]
- Xu, J.; Bietz, J.A.; Carriere, C.J. Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem. 2007, 101, 1025–1030. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Y.; Shi, C.; Ye, Y.; Abid, M.; Jabbar, S.; Wnag, P.; Zeng, X.; Wu, T. Rheological properties of an amorphous cellulose suspension. Food Hydrocoll. 2014, 39, 27–33. [Google Scholar] [CrossRef]
Sample Code | Beans Germination | Fermentation/Starter Culture | Storage at 6 °C |
---|---|---|---|
B0 | - | - | 1 day |
B100 | - | Beaugel Soja 1 | 1 day |
B101 | - | YO-MIX 207 | 1 day |
B102 | - | ABY-3 | 1 day |
B0s | - | - | 21 days |
B100s | - | Beaugel Soja 1 | 21 days |
B101s | - | YO-MIX 207 | 21 days |
B102s | - | ABY-3 | 21 days |
BG0 | + | - | 1 day |
BG100 | + | Beaugel Soja 1 | 1 day |
BG101 | + | YO-MIX 207 | 1 day |
BG102 | + | ABY-3 | 1 day |
BG0s | + | - | 21 days |
BG100s | + | Beaugel Soja 1 | 21 days |
BG101s | + | YO-MIX 207 | 21 days |
BG102s | + | ABY-3 | 21 days |
Sample Code 1 | pH | Dry Mater Content (g/100 g) | Water Activity (–) |
---|---|---|---|
B0 | 5.86 | 9.41 | 0.998 |
B100 | 5.86 | 8.74 | 0.997 |
B101 | 4.46 | 8.61 | 0.992 |
B102 | 4.14 | 8.25 | 0.994 |
BG0 | 6.46 | 7.33 | 0.996 |
BG100 | 4.41 | 6.66 | 0.995 |
BG101 | 4.27 | 6.89 | 0.995 |
BG102 | 4.13 | 7.13 | 0.996 |
Sample Code 1 | Color Parameters | Turbiscan Stability | ||||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h* | ∆E | TSI | Category 2 | |
B0 | 70.49 ± 0.01 c | 2.66 ± 0.02 c | 20.28 ± 0.03 e | 20.46 ± 0.02 e | 81.44 ± 0.00 b | - | 0.65 ± 0.10 a | A |
B100 | 69.81 ± 0.01 a | 2.79 ± 0.02 cd | 19.97 ± 0.02 c | 20.16 ± 0.03 c | 81.43 ± 0.00 ab | 0.77 ± 0.02 b | 0.75 ± 0.10 a | A |
B101 | 70.18 ± 0.01 b | 2.84 ± 0.00 d | 20.11 ± 0.01 d | 20.31 ± 0.01 d | 81.43 ± 0.00 a | 0.41 ± 0.03 a | 0.85 ± 0.20 a | A |
B102 | 70.22 ± 0.01 b | 2.84 ± 0.02 d | 20.18 ± 0.01 de | 20.45 ± 0.01 e | 81.44 ± 0.00 b | 0.35 ± 0.02 a | 0.90 ± 0.10 a | A |
BG0 | 71.70 ± 0.07 d | 1.25 ± 0.17 a | 17.03 ± 0.11 b | 17.04 ± 0.12 b | 81.50 ± 0.01 d | - | 1.40 ± 0.30 ab | B |
BG100 | 72.50 ± 0.04 e | 1.93 ± 0.01 b | 16.89 ± 0.03 ab | 16.99 ± 0.02 ab | 81.46 ± 0.00 c | 1.07 ± 0.16 bc | 1.45 ± 0.10 ab | B |
BG101 | 72.69 ± 0.02 f | 1.91 ± 0.01 b | 16.78 ± 0.01 a | 16.88 ± 0.01 a | 81.46 ± 0.00 c | 1.22 ± 0.14 c | 2.00 ± 0.20 b | B |
BG102 | 72.65 ± 0.04 f | 1.94 ± 0.02 b | 16.89 ± 0.06 ab | 16.97 ± 0.07 ab | 81.46 ± 0.00 c | 1.18 ± 0.17 c | 1.30 ± 0.10 ab | B |
Statistics ANOVA, η2 [-] | ||||||||
G | 0.933 | 0.945 | 0.998 | 0.999 | 0.777 | 0.813 | 0.701 | - |
C | ns | 0.688 | 0.661 | 0.568 | 0.604 | ns | ns | - |
Sample Code 1 | Span (-) | k (Pa·sn) | n (–) | ղ at 25 s−1 (Pa·s) | ղ at 50 s−1 (Pa·s) | ղ at 75 s−1 (Pa·s) | ||
---|---|---|---|---|---|---|---|---|
B0 | 43.0 ± 0.1 ab | 84.3 ± 0.5 ab | 2.00 ± 0.04 a | 36.9 ± 1.4 d | 0.08 ± 0.01 abc | 1.94 ± 0.01 d | 1.03 ± 0.02 e | 0.71 ± 0.01 e |
B100 | 38.2 ± 0.2 a | 74.1 ± 0.5 a | 1.94 ± 0.01 a | 33.0 ± 2.1 cd | 0.08 ± 0.01 ab | 1.70 ± 0.06 c | 0.89 ± 0.03 d | 0.62 ± 0.02 d |
B101 | 44.9 ± 0.3 ab | 87.4 ± 0.5 b | 1.96 ± 0.01 a | 50.0 ± 2.8 ef | 0.07 ± 0.01 a | 2.50 ± 0.09 gh | 1.31 ± 0.04 ghi | 0.90 ± 0.03 gh |
B102 | 47.0 ± 0.1 b | 92.0 ± 0.4 b | 1.98 ± 0.01 a | 49.6 ± 2.1 ef | 0.08 ± 0.01 ab | 2.56 ± 0.04 gh | 1.35 ± 0.02 hi | 0.93 ± 0.01 hi |
B0s | 46.6 ± 0.3 b | 90.1 ± 0.1 b | 1.92 ± 0.03 a | 45.1 ± 1.2 e | 0.08 ± 0.00 ab | 2.34 ± 0.05 f | 1.24 ± 0.03 g | 0.85 ± 0.02 g |
B100s | 41.6 ± 0.1 ab | 81.2 ± 0.1 ab | 1.97 ± 0.01 a | 36.9 ± 0.9 d | 0.07 ± 0.00 a | 1.86 ± 0.03 d | 0.98 ± 0.01 e | 0.67 ± 0.01 de |
B101s | 45.0 ± 0.1 ab | 86.4 ± 0.1 ab | 1.90 ± 0.02 a | 47.1 ± 1.0 ef | 0.08 ± 0.01 ab | 2.43 ± 0.04 fg | 1.28 ± 0.02 gh | 0.88 ± 0.02 gh |
B102s | 46.2 ± 0.2 b | 89.2 ± 0.4 b | 1.91 ± 0.01 a | 51.9 ± 0.3 ef | 0.07 ± 0.00 ab | 2.63 ± 0.02 h | 1.38 ± 0.01 i | 0.95 ± 0.01 i |
BG0 | 81.5 ± 1.6 c | 169.8 ± 5.5 d | 2.35 ± 0.06 b | 25.7 ± 2.3 ab | 0.12 ± 0.01 c | 1.48 ± 0.10 e | 1.12 ± 0.05 f | 0.56 ± 0.04 f |
BG100 | 76.8 ± 0.2 c | 156.8 ± 0.6 c | 2.25 ± 0.01 b | 22.4 ± 0.8 a | 0.10 ± 0.00 bc | 1.25 ± 0.05 a | 0.67 ± 0.02 abc | 0.53 ± 0.02 abc |
BG101 | 78.3 ± 1.2 c | 160.8 ± 3.1 cd | 2.27 ± 0.01 b | 25.9 ± 1.0 ab | 0.08 ± 0.01 ab | 1.33 ± 0.05 ab | 0.70 ± 0.03 bc | 0.48 ± 0.02 bc |
BG102 | 82.9 ± 0.1 cd | 171.3 ± 1.7 d | 2.29 ± 0.04 b | 28.2 ± 1.9 bc | 0.07 ± 0.01 a | 1.42 ± 0.06 b | 0.75 ± 0.03 c | 0.51 ± 0.02 c |
BG0s | 79.3 ± 0.2 c | 161.9 ± 0.1 cd | 2.25 ± 0.01 b | 21.9 ± 0.3 a | 0.10 ± 0.00 bc | 1.23 ± 0.01 a | 0.66 ± 0.01 ab | 0.46 ± 0.00 ab |
BG100s | 80.1 ± 0.1 c | 163.5 ± 0.4 cd | 2.24 ± 0.01 b | 24.3 ± 0.6 ab | 0.08 ± 0.00 ab | 1.27 ± 0.02 ab | 0.67 ± 0.01 abc | 0.46 ± 0.00 abc |
BG101s | 84.2 ± 0.1 d | 173.9 ± 0.1 cd | 2.28 ± 0.01 b | 23.2 ± 0.8 a | 0.09 ± 0.01 abc | 1.25 ± 0.02 a | 0.66 ± 0.01 ab | 0.46 ± 0.01 ab |
BG102s | 82.9 ± 0.6 cd | 169.1 ± 1.4 d | 2.23 ± 0.01 b | 24.2 ± 0.5 ab | 0.07 ± 0.00 a | 1.20 ± 0.05 a | 0.63 ± 0.00 a | 0.43 ± 0.00 a |
Statistics ANOVA, η2 (-) | ||||||||
G | 0.983 | 0.989 | 0.960 | 0.876 | 0.217 | 0.739 | 0.733 | 0.729 |
C | 0.446 | 0.469 | ns | 0.500 | 0.347 | 0.307 | 0.302 | 0.299 |
S | 0.177 | ns | 0.279 | ns | ns | ns | ns | ns |
Sample Code 1 | LVR | Frequency Sweep. Values at 1 Hz | log(ղ*) = a + blog(Hz) at f < 10 Hz | ||||||
---|---|---|---|---|---|---|---|---|---|
G′ Plateau (Pa) | γ (%) | G′ (Pa) | G″ (Pa) | |ղ*| (Pa·s) | tan(δ) (–) | a | b | r2 | |
B0 | 193 ± 25 cde | 2.3 ± 0.4 ab | 203 ± 15 abcd | 24 ± 1 ab | 33 ± 2 abcd | 0.120 ± 0.004 a | 1.52 ± 0.03 bc | −0.888 ± 0.004 abc | 1.000 ± 0.000 a |
B100 | 183 ± 11 cde | 2.1 ± 0.2 ab | 159 ± 43 abcd | 20 ± 4 ab | 26 ± 6 abcd | 0.126 ± 0.007 abc | 1.42 ± 0.11 abc | −0.889 ± 0.009 abc | 0.998 ± 0.003 a |
B101 | 205 ± 10 def | 2.8 ± 0.3 ab | 198 ± 16 abcd | 24 ± 2 ab | 32 ± 3 abcd | 0.120 ± 0.001 a | 1.52 ± 0.03 bc | −0.897 ± 0.006 bc | 0.998 ± 0.002 a |
B102 | 261 ± 20 g | 2.5 ± 0.3 ab | 229 ± 37 bcd | 26 ± 3 ab | 37 ± 6 bcd | 0.113 ± 0.004 a | 1.58 ± 0.07 d | −0.898 ± 0.005 bc | 0.999 ± 0.002 a |
B0s | 191 ± 16 cde | 2.0 ± 0.1 a | 193 ± 45 abcd | 24 ± 4 ab | 31 ± 6 abcd | 0.124 ± 0.006 ab | 1.50 ± 0.09 bc | −0.902 ± 0.009 c | 0.996 ± 0.004 a |
B100s | 176 ± 5 cd | 2.0 ± 0.1 a | 159 ± 7 abcd | 20 ± 1 ab | 25 ± 1 abcd | 0.125 ± 0.001 ab | 1.42 ± 0.02 abc | −0.873 ± 0.004 abc | 0.999 ± 0.000 a |
B101s | 231 ± 14 efg | 2.3 ± 0.1 ab | 260 ± 32 d | 29 ± 3 b | 42 ± 6 d | 0.112 ± 0.002 a | 1.63 ± 0.05 d | −0.895 ± 0.007 bc | 1.000 ± 0.000 a |
B102s | 250 ± 27 fg | 2.3 ± 0.2 ab | 246 ± 51 cd | 28 ± 5 b | 39 ± 7 cd | 0.116 ± 0.003 a | 1.60 ± 0.08 d | −0.889 ± 0.001 abc | 1.000 ± 0.000 a |
BG0 | 163 ± 17 bcd | 2.9 ± 0.2 ab | 178 ± 25 abcd | 22 ± 5 ab | 29 ± 7 abcd | 0.126 ± 0.005 abc | 1.56 ± 0.09 bc | −0.889 ± 0.001 bc | 1.000 ± 0.000 a |
BG100 | 98 ± 22 a | 3.0 ± 0.1 b | 147 ± 37 abc | 19 ± 4 ab | 24 ± 8 abc | 0.137 ± 0.013 bcd | 1.24 ± 0.06 a | −0.850 ± 0.005 a | 0.998 ± 0.001 a |
BG101 | 112 ± 18 ab | 2.5 ± 0.1 ab | 113 ± 23 a | 16 ± 3 ab | 18 ± 4 a | 0.144 ± 0.004 d | 1.27 ± 0.09 a | −0.875 ± 0.005 abc | 0.997 ± 0.002 a |
BG102 | 138 ± 10 abc | 2.7 ± 0.5 ab | 135 ± 27 ab | 19 ± 3 ab | 22 ± 4 ab | 0.143 ± 0.003 cd | 1.34 ± 0.09 ab | −0.876 ± 0.009 abc | 0.999 ± 0.000 a |
BG0s | 86 ± 3 a | 2.8 ± 0.5 ab | 108 ± 20 a | 16 ± 3 a | 17 ± 3 a | 0.145 ± 0.005 d | 1.26 ± 0.07 a | −0.851 ± 0.008 ab | 0.998 ± 0.001 a |
BG100s | 109 ± 7 ab | 2.7 ± 0.1 ab | 111 ± 7 a | 16 ± 1 a | 18 ± 1 a | 0.142 ± 0.002 cd | 1.28 ± 0.03 a | −0.853 ± 0.004 abc | 0.998 ± 0.000 a |
BG101s | 110 ± 10 ab | 2.5 ± 0.5 ab | 105 ± 24 a | 15 ± 4 a | 17 ± 5 a | 0.149 ± 0.011 d | 1.25 ± 0.09 a | −0.857 ± 0.008 abc | 0.996 ± 0.003 a |
BG102s | 108 ± 10 a | 2.8 ± 0.2 ab | 108 ± 8 a | 16 ± 1 a | 17 ± 1 a | 0.145 ± 0.005 d | 1.27 ± 0.01 a | −0.847 ± 0.003 a | 0.998 ± 0.000 a |
Statistics ANOVA, η2 [-] | |||||||||
G | 0.792 | 0.350 | 0.509 | 0.425 | 0.508 | 0.715 | 0.714 | 0.456 | ns |
C | 0.328 | ns | ns | ns | ns | ns | ns | ns | ns |
S | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichońska, P.; Domian, E.; Ziarno, M. Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages. Sensors 2022, 22, 8348. https://doi.org/10.3390/s22218348
Cichońska P, Domian E, Ziarno M. Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages. Sensors. 2022; 22(21):8348. https://doi.org/10.3390/s22218348
Chicago/Turabian StyleCichońska, Patrycja, Ewa Domian, and Małgorzata Ziarno. 2022. "Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages" Sensors 22, no. 21: 8348. https://doi.org/10.3390/s22218348
APA StyleCichońska, P., Domian, E., & Ziarno, M. (2022). Application of Optical and Rheological Techniques in Quality and Storage Assessment of the Newly Developed Colloidal-Suspension Products: Yogurt-Type Bean-Based Beverages. Sensors, 22(21), 8348. https://doi.org/10.3390/s22218348