# A Compact Dual Band MIMO Dielectric Resonator Antenna with Improved Performance for mm-Wave Applications

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed Configuration

#### 2.1. Rectangular DRA

#### 2.2. MIMO Configuration

#### 2.3. Surface Currents

## 3. Results and Discussion

#### 3.1. Performance of Single and MIMO DRAs

#### 3.2. Experimental Verification

## 4. Performance of the MIMO Antenna

#### 4.1. Envelope Correlation Coefficient

#### 4.2. Analysis of Diversity Gain

#### 4.3. Channel Capacity Loss (CCL)

#### 4.4. Total Active Reflection Coefficient

#### 4.5. The Mean Effective Gain

#### 4.6. Multiplexing Efficiency

#### 4.7. Comparison with Published MIMO DRA Designs

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Mongia, R.K.; Ittipiboon, A. Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Trans. Antennas Propag.
**1997**, 45, 1348–1356. [Google Scholar] [CrossRef] - Gong, K.; Hu, X.H. Low-Profile Substrate Integrated Dielectric Resonator Antenna Implemented With PCB Process. IEEE Antennas Wirel. Propag. Lett.
**2014**, 13, 1023–1026. [Google Scholar] [CrossRef] - Nadeem, I.; Choi, D.Y. Study on mutual coupling reduction technique for MIMO antennas. IEEE Access
**2018**, 7, 563–586. [Google Scholar] [CrossRef] - Kuhn, V. Wireless Communications over MIMO Channels: Applications to CDMA and Multiple Antenna Systems; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wani, Z.; Abegaonkar, M.P.; Koul, S.K. A 28-GHz antenna for 5G MIMO applications. Prog. Electromagn. Res. Lett.
**2018**, 78, 73–79. [Google Scholar] [CrossRef] [Green Version] - Hussain, N.; Jeong, M.J.; Park, J.; Kim, N. A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access
**2019**, 7, 42897–42907. [Google Scholar] [CrossRef] - Khalid, M.; Iffat Naqvi, S.; Hussain, N.; Rahman, M.; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics
**2020**, 9, 71. [Google Scholar] [CrossRef] [Green Version] - Jilani, S.F.; Alomainy, A. Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves Antennas Propag.
**2018**, 12, 672–677. [Google Scholar] [CrossRef] - Sharma, A.; Sarkar, A.; Adhikary, M.; Biswas, A.; Akhtar, M.J. SIW fed MIMO DRA for future 5G applications. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017. [Google Scholar]
- Zhang, Y.; Deng, J.Y.; Li, M.J.; Sun, D.; Guo, L.X. A MIMO Dielectric Resonator Antenna With Improved Isolation for 5G mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 747–751. [Google Scholar] [CrossRef] - Sharma, A.; Biswas, A. Wideband multiple-input–multiple-output dielectric resonator antenna. IET Microwaves Antennas Propag.
**2017**, 11, 496–502. [Google Scholar] [CrossRef] - Das, G.; Sharma, A.; Gangwar, R.K.; Sharawi, M.S. Compact back-to-back DRA-based four-port MIMO antenna system with bi-directional diversity. Electron. Lett.
**2018**, 54, 884–886. [Google Scholar] [CrossRef] - Sharawi, M.S.; Podilchak, S.K.; Hussain, M.T.; Antar, Y.M. Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves Antennas Propag.
**2017**, 11, 287–293. [Google Scholar] [CrossRef] [Green Version] - Mu’Ath, J.; Denidni, T.A.; Sebak, A.R. Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans. Antennas Propag.
**2014**, 63, 823–828. [Google Scholar] - Karimian, R.; Kesavan, A.; Nedil, M.; Denidni, T.A. Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall. IEEE Antennas Wirel. Propag. Lett.
**2016**, 16, 373–376. [Google Scholar] [CrossRef] - Alanazi, M.D.; Khamas, S.K. On-Chip Multiband MIMO Dielectric Resonator Antenna for MillimeterWave Applications. In Proceedings of the 2021 30th Wireless and Optical Communications Conference (WOCC), Taipei, Taiwan, 7–8 October 2021; pp. 174–177. [Google Scholar]
- Dadgarpour, A.; Zarghooni, B.; Virdee, B.S.; Denidni, T.A.; Kishk, A.A. Mutual Coupling Reduction in Dielectric Resonator Antennas Using Metasurface Shield for 60-GHz MIMO Systems. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 477–480. [Google Scholar] [CrossRef] [Green Version] - Farahani, M.; Pourahmadazar, J.; Akbari, M.; Nedil, M.; Sebak, A.R.; Denidni, T.A. Mutual Coupling Reduction in Millimeter-Wave MIMO Antenna Array Using a Metamaterial Polarization-Rotator Wall. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 2324–2327. [Google Scholar] [CrossRef] - Das, G.; Sharma, A.; Gangwar, R.K.; Sharawi, M.S. Performance improvement of multiband MIMO dielectric resonator antenna system with a partially reflecting surface. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 2105–2109. [Google Scholar] [CrossRef] - Das, G.; Sahu, N.K.; Sharma, A.; Gangwar, R.K.; Sharawi, M.S. FSS-based spatially decoupled back-to-back four-port MIMO DRA with multidirectional pattern diversity. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 1552–1556. [Google Scholar] [CrossRef] - Pan, Y.M.; Qin, X.; Sun, Y.X.; Zheng, S.Y. A Simple Decoupling Method for 5G Millimeter-Wave MIMO Dielectric Resonator Antennas. IEEE Trans. Antennas Propag.
**2019**, 67, 2224–2234. [Google Scholar] [CrossRef] - Sharma, A.; Das, G.; Gangwar, R.K. Dual polarized triple band hybrid MIMO cylindrical dielectric resonator antenna for LTE2500/WLAN/WiMAX applications. Int. J. RF Microw. Comput. Eng.
**2016**, 26, 763–772. [Google Scholar] [CrossRef] - Sharma, A.; Das, G.; Gangwar, R.K. Design and analysis of tri-band dual-port dielectric resonator based hybrid antenna for WLAN/WiMAX applications. IET Microwaves Antennas Propag.
**2018**, 12, 986–992. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Hindia, M.N.; Daho, A.; Hanafi, E. Path loss model for outdoor parking environments at 28 GHz and 38 GHz for 5G wireless networks. Symmetry
**2018**, 10, 672. [Google Scholar] [CrossRef] [Green Version] - Bani-Bakr, A.; Dimyati, K.; Hindia, M.N.; Wong, W.R.; Imran, M.A. Feasibility study of 28 GHz and 38 GHz millimeter-wave technologies for fog radio access networks using multi-slope path loss model. Phys. Commun.
**2021**, 47, 101401. [Google Scholar] [CrossRef] - Patnaik, A.; Kartikeyan, M.V. Compact dual and triple band antennas for 5G-IOT applications. Int. J. Microw. Wirel. Technol.
**2022**, 14, 115–122. [Google Scholar] - Zou, M.; Pan, J. Investigation of a cross-slot-coupled dual-band circularly polarized hybrid dielectric resonator antenna. Prog. Electromagn. Res.
**2014**, 95, 53–187. [Google Scholar] [CrossRef] [Green Version] - Shao, R.; Chen, X.; Wang, J.; Wang, X. Design and Analysis of an Eight-Port Dual-Polarized High-Efficiency Shared-Radiator MIMO Antenna for 5G Mobile Devices. Electronics
**2022**, 11, 1628. [Google Scholar] [CrossRef] - UKRI National Millimetre Wave Facility. Available online: https://www.sheffield.ac.uk/mm-wave/ (accessed on 25 May 2022).
- Gregson, S.; McCormick, J.; Parini, C. Principles of Planar Near-Field Antenna Measurements; The Institution of Engineering and Technology: Stevenage, UK, 2007; Volume 53. [Google Scholar]
- Kim, S.H.; Chung, J.Y. Analysis of the envelope correlation coefficient of MIMO antennas connected with suspended lines. J. Electromagn. Eng. Sci.
**2020**, 20, 83–90. [Google Scholar] [CrossRef] - SSharda, P.; Bhatnagar, M.R. Diversity-multiplexing tradeoff for MIMO-FSO system under different transmission scenarios with limited quantized feedback. IEEE Access
**2020**, 8, 114266–114286. [Google Scholar] - Pandit, S.; Mohan, A.; Ray, P. A compact four-element MIMO antenna for WLAN applications. Microw. Opt. Technol. Lett.
**2018**, 60, 289–295. [Google Scholar] [CrossRef] - Hussain, R.; Abou-Khousa, M.; Iqbal, N.; Algarni, A.; Alhuwaimel, S.I.; Zerguine, A.; Sharawi, M.S. A Multiband Shared Aperture MIMO Antenna for Millimeter-Wave and Sub-6GHz 5G Applications. Sensors
**2022**, 22, 1808. [Google Scholar] [CrossRef] [PubMed] - Morsy, M. 4-Port Planar MIMO Antenna Using Open-Slot Radiators for 5G New Radio (NR) Frequency Bands n38 (2570 to 2620 MHz) and n41 (2496 MHz–2690 MHz) Applications. Prog. Electromagn. Res. Lett.
**2022**, 104, 87–94. [Google Scholar] [CrossRef] - Yin, W.; Chen, S.; Chang, J.; Li, C.; Khamas, S.K. CPW fed compact UWB 4-element MIMO antenna with high isolation. Sensors
**2021**, 21, 2688. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**Fields distribution of the excited modes $T{E}_{111}$ at 28 $\mathrm{GHz}$ and $T{E}_{311}$ at 38 $\mathrm{GHz}$ (

**a**) $xy$ plane; (

**b**) $xz$ plane.

**Figure 3.**The MIMO RDRA configurations (

**a**) Initial design with parallel CPW feeding lines (

**b**) Intermediate design with collinear CPW feeding line (

**c**) Final design with DRAs at opposite sides of the Rogers substrate and collinear CPW feeding lines.

**Figure 4.**Surface current of the proposed MIMO antenna (

**a**) Initial design with parallel CPW feeding lines (

**b**) Intermediate design with collinear CPW feeding line (

**c**) Final design with DRAs at opposite sides of the Rogers substrate and collinear CPW feeding lines.

**Figure 5.**Effects of the cross-slot dimensions on the reflection coefficient (

**a**) ${L}_{c}$ (

**b**) ${w}_{c}$.

**Figure 6.**Effects of the square slot’s dimensions on the reflection coefficient (

**a**) ${L}_{r}$ (

**b**) ${w}_{r}$.

**Figure 7.**Simulated transmission coefficients for the configurations presented in Figure 3.

**Figure 8.**Simulated and measured S-parameters of the configurations in Figure 3b,c losses.

**Figure 9.**Radiation patterns of proposed MIMO configuration (

**a**) E-plane (

**b**) H-plane at 28 GHz and 38 GHz.

w | d | h | x | y | ${w}_{c}$ |

4 | 4 | 1 | 25 | 15 | 0.5 |

s | t | ${l}_{s}$ | ${w}_{r}$ | ${l}_{r}$ | ${l}_{c}$ |

0.28 | 0.06 | 0.1 | 0.06 | 2.3 | 2.4 |

Ref. | Number of Elements | Height (mm) | Operating Bands (GHz) | Average Reduction in ${\mathit{S}}_{21}$ (dB) | ECC | DG | CLL |
---|---|---|---|---|---|---|---|

[9] | 4 | 0.15 ${\lambda}_{0}$ | 28 | 14 | 0.0005 | - | 0.6 |

[10] | 2 | 0.24 ${\lambda}_{0}$ | 28 | 12 | 0.013 | 9.9 | - |

[15] | 2 | 0.24 ${\lambda}_{0}$ | 60 | 19 | <5 × 10${}^{-6}$ | - | - |

[17] | 2 | 0.2 ${\lambda}_{0}$ | 60 | 22 | - | - | - |

[18] | 2 | 0.25 ${\lambda}_{0}$ | 60 | 16 | <0.1 × 10${}^{-6}$ | - | - |

[21] | 2 | 0.13 ${\lambda}_{0}$ | 28 | 22.7 | - | - | - |

This work | 2 | 0.09/0.12 ${\lambda}_{0}$ | 28/38 | 25/27 | 0.007/0.003 | 9.98/9.99 | 0.06/0.09 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alanazi, M.D.; Khamas, S.K.
A Compact Dual Band MIMO Dielectric Resonator Antenna with Improved Performance for mm-Wave Applications. *Sensors* **2022**, *22*, 5056.
https://doi.org/10.3390/s22135056

**AMA Style**

Alanazi MD, Khamas SK.
A Compact Dual Band MIMO Dielectric Resonator Antenna with Improved Performance for mm-Wave Applications. *Sensors*. 2022; 22(13):5056.
https://doi.org/10.3390/s22135056

**Chicago/Turabian Style**

Alanazi, Meshari D., and Salam K. Khamas.
2022. "A Compact Dual Band MIMO Dielectric Resonator Antenna with Improved Performance for mm-Wave Applications" *Sensors* 22, no. 13: 5056.
https://doi.org/10.3390/s22135056