High-Order Wave-Damage Interaction Coefficients (WDIC) Extracted through Modal Decomposition
Abstract
:1. Introduction
2. WDIC Extraction of High Order Modes through Modal Decomposition
2.1. The Use of WDIC in HGL Analysis
2.2. Modal Decomposition
3. Case Studies
3.1. Local Finite Element Model
3.2. Dispersion Curves of 6-mm Thick Aluminum Plate
3.3. WDIC of Through-Thickness Hole in a 6-mm Thick Aluminum Plate
3.3.1. WDIC Verification
3.3.2. WDIC Extraction of High-Order Modes
3.4. WDIC of Sub-Surface Crack in a 6-mm Thick Aluminum Plate
4. Summary, Conclusions and Future Work
4.1. Summary
4.2. Conclusions
4.3. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Mei, H.; Haider, M.F.; Joseph, R.; Migot, A.; Giurgiutiu, V. Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications. Sensors 2019, 19, 383. [Google Scholar] [CrossRef] [Green Version]
- Goossens, S.; Berghmans, F.; Khodaei, Z.S.; Lambinet, F.; Karachalios, E.; Saenz-Castillo, D.; Geernaert, T. Practicalities of BVID detection on aerospace-grade CFRP materials with optical fibre sensors. Compos. Struct. 2021, 259, 113243. [Google Scholar] [CrossRef]
- Mei, H.; Giurgiutiu, V. Guided wave excitation and propagation in damped composite plates. Struct. Health Monit. 2019, 18, 690–714. [Google Scholar] [CrossRef]
- Harb, M.S.; Yuan, F.G. Barely visible impact damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 2017, 16, 663–673. [Google Scholar] [CrossRef]
- Yuan, S.; Ren, Y.; Qiu, L.; Mei, H. A Multi-Response-Based Wireless Impact Monitoring Network for Aircraft Composite Structures. IEEE Trans. Ind. Electron. 2016, 63, 7712–7722. [Google Scholar] [CrossRef]
- Shen, Y.; Giurgiutiu, V. Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 2013, 25, 506–520. [Google Scholar] [CrossRef]
- Norris, A.N.; Vemula, C. Scattering of flexural waves on thin plates. J. Sound Vib. 1995, 181, 115–125. [Google Scholar] [CrossRef]
- Fromme, P.; Sayir, M.B. Measurement of the scattering of a Lamb wave by a through hole in a plate. J. Acoust. Soc. Am. 2002, 111, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- McKeon, J.C.P.; Hinders, M.K. Lamb wave scattering from a through hole. J. Sound Vib. 1999, 224, 843–862. [Google Scholar] [CrossRef]
- Vemula, C.; Norris, A.N. Flexural wave propagation and scattering on thin plates using Mindlin theory. Wave Motion 1997, 26, 1–12. [Google Scholar] [CrossRef]
- Grahn, T. Lamb wave scattering from a circular partly through-thickness hole in a plate. Wave Motion 2003, 37, 63–80. [Google Scholar] [CrossRef]
- Wang, C.H.; Chang, F.-K. Scattering of plate waves by a cylindrical inhomogeneity. J. Sound Vib. 2005, 282, 429–451. [Google Scholar] [CrossRef]
- Cegla, F.B.; Rohde, A.; Veidt, M. Analytical prediction and experimental measurement for mode conversion and scattering of plate waves at non-symmetric circular blind holes in isotropic plates. Wave Motion 2008, 45, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Moreau, L.; Caleap, M.; Velichko, A.; Wilcox, P.D. Scattering of guided waves by flat-bottomed cavities with irregular shapes. Wave Motion 2012, 49, 375–387. [Google Scholar] [CrossRef]
- Velichko, A.; Wilcox, P.D. A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions. J. Acoust. Soc. Am. 2010, 128, 1004. [Google Scholar] [CrossRef] [PubMed]
- Fromme, P. Guided wave sensitivity prediction for part and through-thickness crack-like defects. Struct. Health Monit. 2019, 19, 953–963. [Google Scholar] [CrossRef]
- Veidt, M.; Ng, C.T. Influence of stacking sequence on scattering characteristics of the fundamental anti-symmetric Lamb wave at through-thickness holes in composite laminates. J. Acoust. Soc. Am. 2011, 129, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.T.; Veidt, M. Scattering of the fundamental anti-symmetric Lamb wave at delaminations in composite laminates. J. Acoust. Soc. Am. 2011, 129, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.-T.; Veidt, M.; Rose, L.R.F.; Wang, C.H. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J. Sound Vib. 2012, 331, 4870–4883. [Google Scholar] [CrossRef] [Green Version]
- Murat, B.I.S.; Khalili, P.; Fromme, P. Scattering of guided waves at delaminations in composite plates. J. Acoust. Soc. Am. 2016, 139, 3044–3052. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Giurgiutiu, V. Combined analytical FEM approach for efficient simulation of Lamb wave damage detection. Ultrasonics 2016, 69, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, M.Y.; Shen, Y.; Giurgiutiu, V. Guided wave-based crack detection in the rivet hole using global analytical with local FEM approach. Materials 2016, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yu, L. Lamb wave frequency–wavenumber analysis and decomposition. J. Intell. Mater. Syst. Struct. 2014, 25, 1107–1123. [Google Scholar] [CrossRef]
- Bochud, N.; Laurent, J.; Bruno, F.; Royer, D.; Prada, C. Towards real-time assessment of anisotropic plate properties using elastic guided waves. J. Acoust. Soc. Am. 2018, 143, 1138–1147. [Google Scholar] [CrossRef] [Green Version]
- Dubuc, B.; Ebrahimkhanlou, A.; Salamone, S. Higher order longitudinal guided wave modes in axially stressed seven-wire strands. Ultrasonics 2018, 84, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zuo, P.; Xiao, J.; Fan, Z. Detection of damage in welded joints using high order feature guided ultrasonic waves. Mech. Syst. Signal Process. 2019, 126, 176–192. [Google Scholar] [CrossRef]
- Bélanger, P. High order shear horizontal modes for minimum remnant thickness. Ultrasonics 2014, 54, 1078–1087. [Google Scholar] [CrossRef]
- Satyarnarayan, L.; Chandrasekaran, J.; Maxfield, B.; Balasubramaniam, K. Circumferential higher order guided wave modes for the detection and sizing of cracks and pinholes in pipe support regions. NDT E Int. 2008, 41, 32–43. [Google Scholar] [CrossRef]
- Masserey, B.; Fromme, P. In-situ monitoring of fatigue crack growth using high frequency guided waves. NDT E Int. 2015, 71, 1–7. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Malinowski, P.; Wandowski, T. Damage localisation in plate-like structures based on PZT sensors. Mech. Syst. Signal Process. 2009, 23, 1805–1829. [Google Scholar] [CrossRef]
- Chang, Z.; Mal, A.K. A global-local method for wave propagation across a lap joint. In Numerical Methods in Structural Mechanics; Ju, J.W., Ed.; American Society of Mechanical Engineers, Applied Mechanics Division: Los Angeles, CA, USA, 30 June 1995; Volume 204, pp. 1–11. [Google Scholar]
- Srivastava, A. Quantitative Structural Health Monitoring Using Ultrasonic Guided Waves. Ph.D. Thesis, University of California, San Diego, CA, USA, 2009. [Google Scholar]
- Shen, Y.; Giurgiutiu, V. WaveFormRevealer: An analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct. Heal. Monit. 2014, 13, 491–511. [Google Scholar] [CrossRef]
- Shen, Y.; Giurgiutiu, V. Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 2015, 58, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Moser, F.; Jacobs, L.J.; Qu, J. Modeling elastic wave propagation in waveguides with the finite element method. NDT E Int. 1999, 32, 225–234. [Google Scholar] [CrossRef]
- Mei, H.; Giurgiutiu, V. Wave damage interaction in metals and composites. In Proceedings of the SPIE Smart Structures + Nondestructive Evaluation, Denver, CO, USA, 3–7 March 2019. [Google Scholar] [CrossRef]
Young’s Modulus (E) | Poisson’s Ratio (ν) | Density (ρ) |
---|---|---|
73.1 GPa | 0.33 | 2780 kg/m3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, H.; Giurgiutiu, V. High-Order Wave-Damage Interaction Coefficients (WDIC) Extracted through Modal Decomposition. Sensors 2021, 21, 2749. https://doi.org/10.3390/s21082749
Mei H, Giurgiutiu V. High-Order Wave-Damage Interaction Coefficients (WDIC) Extracted through Modal Decomposition. Sensors. 2021; 21(8):2749. https://doi.org/10.3390/s21082749
Chicago/Turabian StyleMei, Hanfei, and Victor Giurgiutiu. 2021. "High-Order Wave-Damage Interaction Coefficients (WDIC) Extracted through Modal Decomposition" Sensors 21, no. 8: 2749. https://doi.org/10.3390/s21082749
APA StyleMei, H., & Giurgiutiu, V. (2021). High-Order Wave-Damage Interaction Coefficients (WDIC) Extracted through Modal Decomposition. Sensors, 21(8), 2749. https://doi.org/10.3390/s21082749