Impact of Visual Biofeedback of Trunk Sway Smoothness on Motor Learning during Unipedal Stance
Abstract
1. Introduction
2. Methods
2.1. Subjects
2.2. Procedures
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Experiment 1: Reliability of Jerk Measurement
3.2. Experiment 2: Performance and Motor Learning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance: A Situation-Based Learning Approach; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Gruber, M.; Gollhofer, A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008, 193, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Amiridis, I.G.; Hatzitaki, V.; Arabatzi, F. Age-induced modifications of static postural control in humans. Neurosci. Lett. 2003, 350, 137–140. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Carrasco, J.J.; Guzman-Gonzalez, B.; Soto-Arellano, V.; Calatayud, J.; Chimeno-Hernández, A.; Querol, F.; Pérez-Alenda, S. Effects of performing dual tasks on postural sway and postural control complexity in people with haemophilic arthropathy. Haemophilia 2020. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Montecinos, C.; De la Fuente, C.; Rivera-Lillo, G.; Morales-Castillo, S.; Soto-Arellano, V.; Querol, F.; Pérez-Alenda, S. Sensory strategies of postural sway during quiet stance in patients with haemophilic arthropathy. Haemophilia 2017, 23, e419–e426. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J.; Denegar, C.R.; Buckley, W.E. The effects of fatigue and chronic ankle instability on dynamic postural control. J. Athl. Train. 2004, 39, 321–329. [Google Scholar]
- Huisinga, J.M.; Yentes, J.M.; Filipi, M.L.; Stergiou, N. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 2012, 524, 124–128. [Google Scholar] [CrossRef]
- Termoz, N.; Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The control of upright stance in young, elderly and persons with Parkinson’s disease. Gait Posture 2008, 27, 463–470. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Sakamoto, K.; Nakamura, T.; Hagino, H.; Endo, N.; Mori, S.; Muto, Y.; Harada, A.; Nakano, T.; Itoi, E.; Yoshimura, M. Effects of unipedal standing balance exercise on the prevention of falls and hip fracture among clinically defined high-risk elderly individuals: A randomized controlled trial. J. Orthop. Sci. 2006, 11, 467–472. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Alekhina, M.I.; Masani, K.; Vette, A.; Obata, H.; Popovic, M.; Nakazawa, K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord 2010, 48, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, D.; Howell, D.R.; Micheli, L.J.; Meehan, W.P., III. Single-leg postural stability deficits following anterior cruciate ligament reconstruction in pediatric and adolescent athletes. J. Pediatr. Orthop. B 2016, 25, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Thiele, R.A.R.; Barnes, C.L.; Bolognesi, M.P.; Queen, R.M. Unipedal balance is affected by lower extremity joint arthroplasty procedure 1 year following surgery. J. Arthroplast. 2015, 30, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.; Paschen, L.; Baumeister, J. Single-leg assessment of postural stability after anterior cruciate ligament injury: A systematic review and meta-analysis. Sports Med. Open 2017, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noe, F.; Riviere, T.; Marion, V.; Montoya, R.; Dupui, P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J. Athl. Train. 2006, 41, 172–176. [Google Scholar]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef]
- Troester, J.C.; Jasmin, J.G.; Duffield, R. Reliability of single-leg balance and landing tests in rugby union; prospect of using postural control to monitor fatigue. J. Sports Sci. Med. 2018, 17, 174–180. [Google Scholar]
- Hsu, W.-L.; Scholz, J.P.; Schoner, G.; Jeka, J.J.; Kiemel, T. Control and estimation of posture during quiet stance depends on multijoint coordination. J. Neurophysiol. 2007, 97, 3024–3035. [Google Scholar] [CrossRef]
- Noe, F.; Garcia-Masso, X.; Paillard, T. Inter-joint coordination of posture on a seesaw device. J. Electromyogr. Kinesiol. 2017, 34, 72–79. [Google Scholar] [CrossRef]
- Taube, W.; Leukel, C.; Gollhofer, A. Influence of enhanced visual feedback on postural control and spinal reflex modulation during stance. Exp. Brain Res. 2008, 188, 353–361. [Google Scholar] [CrossRef]
- van Dieen, J.H.; van Leeuwen, M.; Faber, G.S. Learning to balance on one leg: Motor strategy and sensory weighting. J. Neurophysiol. 2015, 114, 2967–2982. [Google Scholar] [CrossRef]
- Wong, J.D.; Kistemaker, D.A.; Chin, A.; Gribble, P.L. Can proprioceptive training improve motor learning? J. Neurophysiol. 2012, 108, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- Giggins, O.M.; Persson, U.M.; Caulfield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Z.H.; Wong, D.W.C.; Lam, W.K.; Wan, A.H.P.; Lee, W.C.C. Balance improvement effects of biofeedback systems with state-of-the-art wearable sensors: A systematic review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef]
- Freitas, S.M.; Duarte, M. Joint coordination in young and older adults during quiet stance: Effect of visual feedback of the center of pressure. Gait Posture 2012, 35, 83–87. [Google Scholar] [CrossRef]
- Halicka, Z.; Lobotkova, J.; Buckova, K.; Hlavacka, F. Effectiveness of different visual biofeedback signals for human balance improvement. Gait Posture 2014, 39, 410–414. [Google Scholar] [CrossRef]
- Kennedy, M.W.; Crowell, C.R.; Striegel, A.D.; Villano, M.; Schmiedeler, J.P. Relative efficacy of various strategies for visual feedback in standing balance activities. Exp. Brain Res. 2013, 230, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, A.; Mancini, M.; Chiari, L.; Zijlstra, W. Biofeedback for training balance and mobility tasks in older populations: A systematic review. J. Neuroeng. Rehabil. 2010, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Matallaoui, A.; Koivisto, J.; Hamari, J.; Zarnekow, R. How Effective is “Exergamification”? A systematic Review on the Effectiveness of Gamification Features in Exergames. Presented at the 50th Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Cofre Lizama, L.E.; Pijnappels, M.; Reeves, N.P.; Verschueren, S.M.; van Dieen, J.H. Centre of pressure or centre of mass feedback in mediolateral balance assessment. J. Biomech. 2015, 48, 539–543. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable inertial sensors to assess standing balance: A systematic review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Kamen, G.; Patten, C.; Du, C.D.; Sison, S. An accelerometry-based system for the assessment of balance and postural sway. Gerontology 1998, 44, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Mendez, R.; Sekine, M.; Tamura, T. Postural sway parameters using a triaxial accelerometer: Comparing elderly and young healthy adults. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R.; Helbostad, J.L. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 2002, 16, 60–68. [Google Scholar] [CrossRef]
- Similä, H.; Immonen, M.; Ermes, M. Accelerometry-based assessment and detection of early signs of balance deficits. Comput. Biol. Med. 2017, 85, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-L.; Tsai, Y.-J.; Lin, C.-H.; Hou, Y.-R.; Sung, W.-H. Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability. Comput. Methods Programs Biomed. 2017, 139, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Mobile Romberg test assessment (mRomberg). BMC Res. Notes 2014, 7, 640. [Google Scholar] [CrossRef]
- Kosse, N.M.; Caljouw, S.; Vervoort, D.; Vuillerme, N.; Lamoth, C.J. Validity and reliability of gait and postural control analysis using the tri-axial accelerometer of the iPod touch. Ann. Biomed. Eng. 2015, 43, 1935–1946. [Google Scholar] [CrossRef]
- Hsieh, K.L.; Roach, K.L.; Wajda, D.A.; Sosnoff, J.J. Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait Posture 2019, 67, 160–165. [Google Scholar] [CrossRef]
- Roeing, K.L.; Hsieh, K.L.; Sosnoff, J.J. A systematic review of balance and fall risk assessments with mobile phone technology. Arch. Gerontol. Geriatr. 2017, 73, 222–226. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.P.; Zhang, W.P.; Cobo, M.J.P.; Herrera-Viedma, E.P.; Kaber, D.B.P. Smartphone-based systems for physical rehabilitation applications: A systematic review. Assist. Technol. 2019, 1–14. [Google Scholar] [CrossRef]
- Mancini, M.; Carlson-Kuhta, P.; Zampieri, C.; Nutt, J.G.; Chiari, L.; Horak, F.B. Postural sway as a marker of progression in Parkinson’s disease: A pilot longitudinal study. Gait Posture 2012, 36, 471–476. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Chiari, L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.J.; Jacobs, J.V.; Lomond, K.V.; Henry, S.M. Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: A case–control study. J. Neuroeng. Rehabil. 2015, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias-Escudero, F.; Rivera-Lillo, G.; Torres-Castro, R.; Varas-Díaz, G. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury. J. Spinal Cord Med. 2019, 42, 57–64. [Google Scholar] [CrossRef] [PubMed]
- James, E.G. Short-term differential training decreases postural sway. Gait Posture 2014, 39, 172–176. [Google Scholar] [CrossRef]
- Johnston, W.; O’Reilly, M.; Argent, R.; Caulfield, B. Reliability, validity and utility of inertial sensor systems for postural control assessment in sport science and medicine applications: A systematic review. Sports Med. 2019, 49, 783–818. [Google Scholar] [CrossRef]
- Burghart, M.; Craig, J.; Radel, J.; Huisinga, J. Reliability and validity of a mobile device application for use in sports-related concussion balance assessment. Curr. Res. Concussion 2017, 4, e1–e6. [Google Scholar] [CrossRef]
- Patterson, J.A.; Amick, R.Z.; Thummar, T.; Rogers, M.E. Validation of measures from the smartphone sway balance application: A pilot study. Int. J. Sports Phys. Ther. 2014, 9, 135–139. [Google Scholar]
- Caramiaux, B.; Bevilacqua, F.; Wanderley, M.M.; Palmer, C. Dissociable effects of practice variability on learning motor and timing skills. PLoS ONE 2018, 13, e0193580. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Rivera-Lillo, G.; Burgos, P.; Torres-Elgueta, J.; Pérez-Alenda, S.; Querol, F. Joint damage and motor learning during unipedal stance in haemophilia arthropathy: Report of two cases. Haemophilia 2016, 22, e487–e490. [Google Scholar] [CrossRef] [PubMed]
- Heathcote, A.; Brown, S.; Mewhort, D.J. The power law repealed: The case for an exponential law of practice. Psychon. Bull. Rev. 2000, 7, 185–207. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.A.; Nguyen, K.P.; Joiner, W.M. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning. PLoS Comput. Biol. 2017, 13, e1005492. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.M.; Mayer-Kress, G.; Hong, S.L.; Liu, Y.T. Adaptation and learning: Characteristic time scales of performance dynamics. Hum. Mov. Sci. 2009, 28, 655–687. [Google Scholar] [CrossRef]
- Prasertsakul, T.; Kaimuk, P.; Chinjenpradit, W.; Limroongreungrat, W.; Charoensuk, W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: A randomized preliminary study. Biomed. Eng. Online 2018, 17, 124. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Bustillo-Casero, P.; Cebrian-Bou, S.; Cruz-Montecinos, C.; Pardo, A.; Garcia-Masso, X. Effects of a dual-task intervention in postural control and cognitive performance in adolescents. J. Mot. Behav. 2020, 52, 187–195. [Google Scholar] [CrossRef]
- Hasegawa, N.; Takeda, K.; Sakuma, M.; Mani, H.; Maejima, H.; Asaka, T. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training. Gait Posture 2017, 58, 188–193. [Google Scholar] [CrossRef]
- Marco-Ahulló, A.; Sánchez-Tormo, A.; García-Pérez, J.A.; Villarrasa-Sapiña, I.; González, L.M.; García-Massó, X. Effect of concurrent visual feedback frequency on postural control learning in adolescents. J. Mot. Behav. 2019, 51, 193–198. [Google Scholar] [CrossRef]
- Ma, C.; Wan, A.; Wong, D.; Zheng, Y.-P.; Lee, W. A vibrotactile and plantar force measurement-based biofeedback system: Paving the way towards wearable balance-improving devices. Sensors 2015, 15, 31709–31722. [Google Scholar] [CrossRef]
- Lesinski, M.; Hortobagyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Dose-response relationships of balance training in healthy young adults: A systematic review and meta-analysis. Sports Med. 2015, 45, 557–576. [Google Scholar] [CrossRef] [PubMed]
- Era, P.; Sainio, P.; Koskinen, S.; Haavisto, P.; Vaara, M.; Aromaa, A. Postural balance in a random sample of 7979 subjects aged 30 years and over. Gerontology 2006, 52, 204–213. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Montecinos, C.; Cuesta-Vargas, A.; Muñoz, C.; Flores, D.; Ellsworth, J.; De la Fuente, C.; Calatayud, J.; Rivera-Lillo, G.; Soto-Arellano, V.; Tapia, C.; et al. Impact of Visual Biofeedback of Trunk Sway Smoothness on Motor Learning during Unipedal Stance. Sensors 2020, 20, 2585. https://doi.org/10.3390/s20092585
Cruz-Montecinos C, Cuesta-Vargas A, Muñoz C, Flores D, Ellsworth J, De la Fuente C, Calatayud J, Rivera-Lillo G, Soto-Arellano V, Tapia C, et al. Impact of Visual Biofeedback of Trunk Sway Smoothness on Motor Learning during Unipedal Stance. Sensors. 2020; 20(9):2585. https://doi.org/10.3390/s20092585
Chicago/Turabian StyleCruz-Montecinos, Carlos, Antonio Cuesta-Vargas, Cristian Muñoz, Dante Flores, Joseph Ellsworth, Carlos De la Fuente, Joaquín Calatayud, Gonzalo Rivera-Lillo, Verónica Soto-Arellano, Claudio Tapia, and et al. 2020. "Impact of Visual Biofeedback of Trunk Sway Smoothness on Motor Learning during Unipedal Stance" Sensors 20, no. 9: 2585. https://doi.org/10.3390/s20092585
APA StyleCruz-Montecinos, C., Cuesta-Vargas, A., Muñoz, C., Flores, D., Ellsworth, J., De la Fuente, C., Calatayud, J., Rivera-Lillo, G., Soto-Arellano, V., Tapia, C., & García-Massó, X. (2020). Impact of Visual Biofeedback of Trunk Sway Smoothness on Motor Learning during Unipedal Stance. Sensors, 20(9), 2585. https://doi.org/10.3390/s20092585