# Hysteresis Modelling and Feedforward Control of Piezoelectric Actuator Based on Simplified Interval Type-2 Fuzzy System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simplified Interval Type-2 Fuzzy System

#### 2.1. Basic Concepts

#### 2.2. Model

- The fuzzy system uses singleton fuzzifier and direct defuzzifier. Without type-reduction, the output of the fuzzy system is analytically computed via the Nie-Tan method [36]. It can reduce the computational burden without much loss of performance compared with the iterative Karnik-Mendal method [37]. Besides, it is feasible to derive the analytic gradient of the output function in (10) of the modelling parameters ${c}_{l},{\sigma}_{l1},{\sigma}_{l2},{q}_{l1},{q}_{l2},$ and ${q}_{l3}$, which gives much convenience of using gradient based optimization method. Moreover, due to the computational simplicity, the proposed IT2 fuzzy system can be practically applied to the open-loop feedforward controller for compensating the hysteresis effect.
- There are 2 variables, ${y}_{k-1}$ and ${x}_{k}$, in the consequent part of the fuzzy rule whilst only 1 variable ${y}_{k-1}$ in the antecedent part. This design is vital for obtaining the analytic inverse of the fuzzy system without ${x}_{k}$ in the antecedent part of the fuzzy rule. In fact, the proposed fuzzy rule in (7) is the same as the IT2 fuzzy rule:${\tilde{R}}^{l}:\phantom{\rule{3.33333pt}{0ex}}IF\phantom{\rule{3.33333pt}{0ex}}y(k-1)\phantom{\rule{3.33333pt}{0ex}}\mathrm{is}\phantom{\rule{3.33333pt}{0ex}}{\tilde{A}}^{l}\phantom{\rule{3.33333pt}{0ex}}\mathrm{and}\phantom{\rule{3.33333pt}{0ex}}x\left(k\right)\phantom{\rule{3.33333pt}{0ex}}\mathrm{is}\phantom{\rule{3.33333pt}{0ex}}{\tilde{A}}_{x}^{l},\phantom{\rule{3.33333pt}{0ex}}\mathrm{THEN}\phantom{\rule{3.33333pt}{0ex}}y\left(k\right)={q}_{l1}y(k-1)+{q}_{l2}x\left(k\right)+{q}_{l3}$ where ${\tilde{A}}_{x}^{l}$ is a IT2 fuzzy set whose LMF and UMF are constantly equal to 1, i.e., ${\underline{\mu}}_{{\tilde{A}}_{x}^{l}}^{l}\left({x}_{k}\right)={\overline{\mu}}_{{\tilde{A}}_{x}^{l}}^{l}\left({x}_{k}\right)=1$. This design also simplifies the identification of the modelling parameters and the computation of their partial derivative.

#### 2.3. Optimization

## 3. Experiments

#### 3.1. Experimental Platform

#### 3.2. Model Identification

#### 3.3. Model Validation

#### 3.4. Feedforward Control

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

IT2 | Interval type-2 |

MF | Membership function |

FOU | Footprint of uncertainty |

LMF | Lower membership function |

UMF | Upper membership function |

T-S | Takagi-Sugeno |

SGS | Strain gauge sensor |

RTCP | Real-time control platform |

## References

- Li, P.Z.; Wang, X.D.; Zhao, L.; Zhang, D.F.; Guo, K. Dynamic linear modeling, identification and precise control of a walking piezo-actuated stage. Mech. Syst. Signal Process.
**2019**, 128, 141–152. [Google Scholar] [CrossRef] - Zhang, D.F.; Li, P.Z.; Zhang, J.G.; Chen, H.N.; Guo, K.; Ni, M.Y. Design and Assessment of a 6-DOF Micro/Nanopositioning System. IEEE/ASME Trans. Mechatron.
**2019**, 24, 2097–2107. [Google Scholar] [CrossRef] [Green Version] - Li, P.Z.; Wang, X.D.; Sui, Y.X.; Zhang, D.F.; Wang, D.F.; Dong, L.J.; Ni, M.Y. Piezoelectric actuated phase shifter based on external laser interferometer: Design, control and experimental validation. Sensors
**2017**, 17, 838. [Google Scholar] [CrossRef] [Green Version] - Rakotondrabe, M. (Ed.) Smart Materials-Based Actuators at the Micro/Nano-Scale: Characterization, Control, and Applications; Springer: Berlin, Germany, 2013. [Google Scholar]
- Omidbeike, M.; Teo, Y.R.; Yong, Y.K.; Fleming, A.J. Tracking Control of a Monolithic Piezoelectric Nanopositioning Stage using an Integrated Sensor. IFAC Pap.
**2017**, 50, 10913–10917. [Google Scholar] [CrossRef] - Lai, L.J.; Gu, G.Y.; Li, P.Z.; Zhu, L.M. Design of a decoupled 2-DOF translational parallel micro-positioning stage. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5070–5075. [Google Scholar]
- Pons, J.; Rocon, E.; Forner-Cordero, A.; Moreno, J. Biomedical instrumentation based on piezoelectric ceramics. J. Eur. Ceram. Soc.
**2007**, 27, 4191–4194. [Google Scholar] [CrossRef] - Ma, H.; Chen, R.; Hsu, Y. Development of a piezoelectric-driven miniature pump for biomedical applications. Sens. Actuators A Phys.
**2015**, 234, 23–33. [Google Scholar] [CrossRef] - Lee, H.J.; Zhang, S.; Bar-Cohen, Y.; Sherrit, S. High Temperature, High Power Piezoelectric Composite Transducers. Sensors
**2014**, 14, 14526–14552. [Google Scholar] [CrossRef] [Green Version] - Sahu, B.; Ahuja, R.; Kumar, R.; Suman, S.; Mathuria, D.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G.; et al. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac. Nucl. Instrum. Methods Phys. Res. A
**2015**, 777, 123–130. [Google Scholar] [CrossRef] - Bezryadina, A.S.; Preece, D.C.; Chen, J.C.; Chen, Z. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers. Light. Sci. Appl.
**2016**, 5, e16158. [Google Scholar] [CrossRef] - Chen, X.; Chardin, C.; Makles, K.; Caër, C.; Chua, S.; Braive, R.; Robert-Philip, I.; Briant, T.; Cohadon, P.F.; Heidmann, A.; et al. High-finesse Fabry—Perot cavities with bidimensional Si3N4 photonic-crystal slabs. Light. Sci. Appl.
**2016**, 6, e16190. [Google Scholar] [CrossRef] [Green Version] - Zhou, Z.Y.; Li, Y.; Ding, D.S.; Zhang, W.; Shi, S.; Shi, B.S.; Guo, G.C. Orbital angular momentum photonic quantum interface. Light. Sci. Appl.
**2016**, 5, e16019. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Krejci, P.; Kuhnen, K. Inverse control of systems with hysteresis and creep. IEE Proc. Control Theory Appl.
**2001**, 148, 185–192. [Google Scholar] [CrossRef] [Green Version] - Janaideh, M.A.; Krejci, P. Inverse Rate-Dependent Prandtl-Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator. IEEE/ASME Trans. Mechatron.
**2013**, 18, 1498–1507. [Google Scholar] [CrossRef] - Rakotondrabe, M. Multivariable classical Prandtl-Ishlinskii hysteresis modeling and compensation and sensorless control of a nonlinear 2-dof piezoactuator. Nonlinear Dyn.
**2017**, 89, 481–499. [Google Scholar] [CrossRef] - Janaideh, M.A.; Rakotondrabe, M.; Al-Darabsah, I.; Aljanaideh, O. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Eng. Pract.
**2018**, 72, 29–41. [Google Scholar] [CrossRef] - Davino, D.; Visone, C.; Ambrosino, C.; Campopiano, S.; Cusano, A.; Cutolo, A. Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials. Sens. Actuators A Phys.
**2008**, 147, 127–136. [Google Scholar] [CrossRef] - Song, G.; Zhao, J.; Zhou, X.; Abreu-Garcia, J.A.D. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron.
**2005**, 10, 198–209. [Google Scholar] [CrossRef] - Oh, J.; Bernstein, D.S. Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Trans. Autom. Control
**2005**, 50, 631–645. [Google Scholar] - Li, P.Z.; Yan, F.; Ge, C.; Zhang, M.C. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model. Rev. Sci. Instrum.
**2012**, 83, 085114. [Google Scholar] [CrossRef] - Li, P.Z.; Gu, G.Y.; Lai, L.J.; Zhu, L.M. Hysteresis modeling of piezoelectric actuators using the fuzzy system. In Proceedings of the 3rd International Conference on Intelligent Robotics and Applications, LNAI, Shanghai, China, 10–12 November 2010; Volume 6424, pp. 114–124. [Google Scholar]
- Ayala, H.V.H.; Habineza, D.; Rakotondrabe, M.; Klein, C.E.; Coelho, L.S. Nonlinear Black-box System Identification through Neural Networks of a Hysteretic Piezoelectric Robotic Micromanipulator. IFAC-PapersOnLine
**2015**, 48, 409–414. [Google Scholar] [CrossRef] - De Rozario, R.; Fleming, A.J.; Oomen, T. Finite-Time Learning Control Using Frequency Response Data With Application to a Nanopositioning Stage. IEEE/ASME Trans. Mechatron.
**2019**, 24, 2085–2096. [Google Scholar] [CrossRef] - De Rozario, R.; Fleming, A.J.; Oomen, T. Iterative Control for Periodic Tasks with Robustness Considerations, Applied to a Nanopositioning Stage. IFAC-PapersOnLine
**2016**, 49, 623–628. [Google Scholar] [CrossRef] - Li, P.Z.; Yan, F.; Ge, C. Open-closed loop iterative learning control of piezoelectric actuators. Opt. Precis. Eng.
**2014**, 22, 414–419. [Google Scholar] - Li, P.Z.; Li, P.Y.; Sui, Y.X. Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application. IEEE Trans. Fuzzy Syst.
**2016**, 24, 1246–1254. [Google Scholar] [CrossRef] - Mendel, J.M. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 2nd ed.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Mendel, J.M. Comparing the Performance Potentials of Interval and General Type-2 Rule-Based Fuzzy Systems in Terms of Sculpting the State Space. IEEE Trans. Fuzzy Syst.
**2019**, 27, 58–71. [Google Scholar] [CrossRef] - Tang, X.; Deng, L.; Qu, H. Predictive Control for Networked Interval Type-2 T-S Fuzzy System via an Event-Triggered Dynamic Output Feedback Scheme. IEEE Trans. Fuzzy Syst.
**2019**, 27, 1573–1586. [Google Scholar] [CrossRef] - Wu, D.; Mendel, J.M. Designing Practical Interval Type-2 Fuzzy Logic Systems Made Simple. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, 6–11 July 2014. [Google Scholar]
- Wu, H.; Liu, Z.; Zhang, Y.; Chen, C.L.P. Adaptive Fuzzy Output Feedback Quantized Control for Uncertain Nonlinear Hysteretic Systems Using a New Feedback-Based Quantizer. IEEE Trans. Fuzzy Syst.
**2019**, 27, 1738–1752. [Google Scholar] [CrossRef] - Rubio-Solis, A.; Melin, P.; Martinez-Hernandez, U.; Panoutsos, G. General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model. IEEE Trans. Fuzzy Syst.
**2019**, 27, 333–347. [Google Scholar] [CrossRef] [Green Version] - Bayat, S.; Pishkenari, H.N.; Salarieh, H. Observer design for a nano-positioning system using neural, fuzzy and ANFIS networks. Mechatronics
**2019**, 59, 10–24. [Google Scholar] [CrossRef] - Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.
**1985**, 1, 116–132. [Google Scholar] [CrossRef] - Nie, M.; Tan, W.W. Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In Proceedings of the 2008 IEEE International Conference on Fuzzy Systems, Hong Kong, China, 1–6 June 2008. [Google Scholar]
- Mendel, J.M. On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst.
**2013**, 21, 426–446. [Google Scholar] [CrossRef]

**Figure 1.**Experimental platform: (

**top**) main hardware including piezoelectric actuator, power amplifier, strain gauge sensor signal conditioner, and real-time control platform AD5436A, (

**bottom**) signal flow.

**Figure 2.**Model Identification: (

**top**) input voltage signal, (

**bottom**) identification result and error.

**Figure 4.**Validation results of the identified hysteresis model under different input signals: (

**top**) 20 Hz sinusoidal, (

**center**) 40 Hz sinusoidal, and (

**bottom**) 25 Hz triangular.

**Figure 5.**Validation results of the identified hysteresis model under the signal which is the sum of 2 different sinusoidal profiles with 100 Hz and 50 Hz frequencies.

**Figure 7.**Tracking performance of feedforward controller: (

**top**) tracking results, (

**bottom**) hysteresis compensation result.

Rule | Antecedent Parameters | Consequent Parameters |
---|---|---|

1 | (4.3427, 17.8879, 0.0892) | (0.8943, 0.0196, 1.7504) |

2 | (2.5647, 11.5798, 8.6067) | (0.9140, 0.0129, 0.8773) |

3 | (2.1349, 19.8162, 18.7381) | (1.1882, 0.0148, −6.2312) |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, P.-Z.; Zhang, D.-F.; Hu, J.-Y.; Lennox, B.; Arvin, F.
Hysteresis Modelling and Feedforward Control of Piezoelectric Actuator Based on Simplified Interval Type-2 Fuzzy System. *Sensors* **2020**, *20*, 2587.
https://doi.org/10.3390/s20092587

**AMA Style**

Li P-Z, Zhang D-F, Hu J-Y, Lennox B, Arvin F.
Hysteresis Modelling and Feedforward Control of Piezoelectric Actuator Based on Simplified Interval Type-2 Fuzzy System. *Sensors*. 2020; 20(9):2587.
https://doi.org/10.3390/s20092587

**Chicago/Turabian Style**

Li, Peng-Zhi, De-Fu Zhang, Jun-Yan Hu, Barry Lennox, and Farshad Arvin.
2020. "Hysteresis Modelling and Feedforward Control of Piezoelectric Actuator Based on Simplified Interval Type-2 Fuzzy System" *Sensors* 20, no. 9: 2587.
https://doi.org/10.3390/s20092587