A Hybrid Interweave–Underlay Countrywide Millimeter-Wave Spectrum Access and Reuse Technique for CR Indoor Small Cells in 5G/6G Era
Abstract
:1. Introduction
1.1. Background
1.2. Related Study
1.3. Contribution
1.4. Organization
2. System Architecture and the Proposed Technique
2.1. System Architecture
2.2. Proposed Technique
3. Problem Formulation
3.1. Three-Dimensional Cluster Formation of In-Building Small Cells in 28 GHz Millimeter-Wave
3.2. Mathematical Analysis
3.2.1. Proposed Technique
3.2.2. SLSA technique
4. Performance Evaluation
4.1. Default Parameters and Assumptions
4.2. Performance Results
4.3. Performance Comparison
5. Conclusions
Funding
Conflicts of Interest
References
- Akiyildiz, I.F.; Lee, W.Y.; Vuran, M.C.; Mohanty, S. A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 2008, 46, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Filippou, M.C.; Ropokis, G.A.; Gesbert, D.; Ratnarajah, T. Performance analysis and optimization of hybrid MIMO Cognitive Radio systems. In Proceedings of the IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 555–561. [Google Scholar]
- Hesammohseni, S.A.; Moshksar, K.; Khandani, A.K. A combined underlay and interweave strategy for cognitive radios. In Proceedings of the IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014; pp. 1396–1400. [Google Scholar]
- Chu, T.M.C.; Phan, H.; Zepernick, H. Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Trans. Commun. 2014, 62, 2183–2197. [Google Scholar] [CrossRef]
- Sharmila, A.; Dananjayan, P. Spectrum sharing techniques in cognitive radio networks—a survey. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–4. [Google Scholar]
- Khan, A.U.; Abbas, G.; Abbas, Z.H.; Tanveer, M.; Ullah, S.; Naushad, A. HBLP: A hybrid underlay-interweave mode crn for the future 5g-based internet of things. IEEE Access 2020, 8, 63403–63420. [Google Scholar] [CrossRef]
- Zuo, P.; Peng, T.; Linghu, W.; Wang, W. Optimal resource allocation for hybrid interweave-underlay cognitive SatCom uplink. In Proceedings of the IEEE WCNC, Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Hu, J.; Yang, L.L.; Hanzo, L. Optimal queue scheduling for hybrid cognitive radio maintaining maximum average service rate under delay constraints. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 1398–1403. [Google Scholar]
- Karimi, M.; Sadough, S.M.S.; Torabi, M. Robust spectrum access for hybrid interweave-underlay cognitive radio systems using probabilistic spectrum access. IET Signal Proc. 2019, 13, 806–813. [Google Scholar] [CrossRef]
- Zeng, F.; Liu, X. Performance analysis of adaptive sensing in cognitive radio networks with hybrid interweave-underlay. In Proceedings of the 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 1576–1581. [Google Scholar]
- Mehmeti, F.; Spyropoulos, T. Performance analysis, comparison, and optimization of interweave and underlay spectrum access in cognitive radio networks. IEEE Trans. Veh. Technol. 2018, 67, 7143–7157. [Google Scholar] [CrossRef]
- Jazaie, M.; Sharafat, A.R. Downlink capacity and optimal power allocation in hybrid underlay–interweave secondary networks. IEEE Trans. Wirel. Commun. 2015, 14, 2562–2570. [Google Scholar] [CrossRef]
- Sabbah, A.; Ibnkahla, M. Optimizing power allocation in mission critical cognitive radio networks. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [Google Scholar]
- Rahman, M.J. On Mutual interference analysis in hybrid interweave-underlay cognitive communications. IEEE Trans. Mob. Comput. 2019, 18, 2577–2588. [Google Scholar] [CrossRef]
- Khan, A.U.; Abbas, G.; Abbas, Z.H.; Waqas, M.; Hasan, A.K. Spectrum utilization efficiency in the cognitive radio enabled 5G-based IoT. J. Network Comput. Appl. 2020, 164, 102686. [Google Scholar] [CrossRef]
- Chu, T.M.C.; Zepernick, H. Optimal power allocation for hybrid cognitive cooperative radio networks with imperfect spectrum sensing. IEEE Access 2018, 6, 10365–10380. [Google Scholar] [CrossRef]
- Chu, T.M.C.; Zepernick, H. Performance optimization for hybrid two-way cognitive cooperative radio networks with imperfect spectrum sensing. IEEE Access 2018, 6, 70582–70596. [Google Scholar] [CrossRef]
- Saha, R.K. Modeling interference to reuse millimeter-wave spectrum to in-building small cells toward 6G. In Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 4–7 October 2020; pp. 1–7. [Google Scholar]
- Ali, A.; Hamouda, W. Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Commun. Surv. Tuts. 2017, 19, 1277–1304. [Google Scholar] [CrossRef]
- Maccartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 ghz for ultra-dense 5G wireless networks. IEEE Access 2015, 3, 2388–2424. [Google Scholar] [CrossRef]
- Propagation Data and Prediction Methods for the Planning of Indoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 450 GHz. Recommendation ITU-R P.1238–10, 08/2019. Available online: https://www.itu.int/rec/R-REC-P.1238 (accessed on 25 February 2020).
- Lu, D.; Rutledge, D. Investigation of indoor radio channels from 2.4 GHz to 24 GHz. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Columbus, OH, USA, 22–27 June 2003; pp. 134–137. [Google Scholar]
- Allan, R. Application of FSS Structures to Selectively Control the Propagation of Signals into and out of Buildings—Executive Summary. ERA Technology Ltd Cleeve Road Leatherhead Surrey KT22 7SA UK. Available online: https://www.ofcom.org.uk/__data/assets/pdf_file/0020/36155/exec_summary.pdf (accessed on 25 February 2020).
- Oh, J.; Choi, W. A hybrid cognitive radio system: A combination of underlay and overlay approaches. In Proceedings of the IEEE VTC-Fall, Ottawa, ON, Canada, 6–9 September 2010; pp. 1–5. [Google Scholar]
- Saha, R.K. A hybrid system and technique for sharing multiple spectrums of satellite plus mobile systems with indoor small cells in 5G and beyond era. IEEE Access 2019, 7, 77569–77596. [Google Scholar] [CrossRef]
- Saha, R.K.; Aswakul, C. A novel frequency reuse technique for in-building small cells in dense heterogeneous networks. IEEE Trans. Electr. Electron. Eng. 2018, 13, 98–111. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Japan Assigns 5G Spectrum to Four Operators-5G Observatory. 5G Observatory. Available online: https://5gobservatory.eu/japan-assigns-5g-spectrum-to-four-operators/ (accessed on 22 April 2020).
- Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (rf) System Scenarios. Document 3GPP TR 36.942, V.1.2.0, 3rd Generation Partnership Project. July 2007. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2592 (accessed on 15 February 2020).
- Simulation Assumptions and Parameters for Fdd Henb rf Requirements. Document TSG RAN WG4 (Radio) Meeting #51, R4-092042, 3GPP. May 2009. Available online: https://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_51/Documents/ (accessed on 13 February 2020).
- Guidelines for Evaluation of Radio Interface Technologies for IMT-2020. Report ITU-R M.2412-0 (10/2017), Geneva. 2017. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf (accessed on 13 February 2020).
- Saha, R.K.; Saengudomlert, P.; Aswakul, C. Evolution toward 5G mobile networks-a survey on enabling technologies. Eng. J. 2016, 20, 87–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Wang, C.-X.; Haider, F.; Gao, X.; You, X.-H.; Yang, Y.; Yuan, D.; Aggoune, H.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Imran, M.A.; Sabella, D.; Gonzalez, M.J.; Blume, O.; et al. How much energy is needed to run a wireless network? IEEE Wirel. Commun. 2011, 18, 40–49. [Google Scholar] [CrossRef]
State (j) | Prob | Prob | Spectrum Access | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||||||
0 | 0 | 0 | 0 | 0 | Not applicable due to the nonexistence of | |||||
1 | 0 | 0 | 0 | 1 | ||||||
2 | 0 | 0 | 1 | 0 | ||||||
3 | 0 | 0 | 1 | 1 | ||||||
4 | 0 | 1 | 0 | 0 | ||||||
5 | 0 | 1 | 0 | 1 | ||||||
6 | 0 | 1 | 1 | 0 | ||||||
7 | 0 | 1 | 1 | 1 | ||||||
8 | 1 | 0 | 0 | 0 | Interweave | |||||
9 | 1 | 0 | 0 | 1 | Underlay | |||||
10 | 1 | 0 | 1 | 0 | ||||||
11 | 1 | 0 | 1 | 1 | ||||||
12 | 1 | 1 | 0 | 0 | ||||||
13 | 1 | 1 | 0 | 1 | ||||||
14 | 1 | 1 | 1 | 0 | ||||||
15 | 1 | 1 | 1 | 1 |
Parameters and Assumptions | Value | ||
---|---|---|---|
Countrywide perspective | |||
Countrywide 28 GHz spectrum bandwidth | 200 MHz | ||
Countrywide total number of MNOs and subscribers | 4 and | ||
2 GHz spectrum per MNO | 10 MHz | ||
Number of subscribers for MNOs 1, 2, 3, and 4 respectively | 40%, 30%, 20%, and 10% of | ||
For each MNO | |||
E-UTRA simulation case1 | 3GPP case 3 | ||
Cellular layout2, inter-site distance (ISD)1,2, transmission direction | Hexagonal grid, dense urban, 3 sectors, per macrocell site, 1732 m, downlink | ||
Carrier frequency2,5 | 2 GHz non-LOS (NLOS) for macrocells and picocells, 28 GHz LOS for all small cells | ||
Number of cells | 1 macrocell, 2 picocells, 180 small cells per building | ||
Reduced transmission power factors of an SBS for the underlay spectrum access (, , and respectively) | 30%, 15%, and 10% (of the maximum transmission power of 19 dBm) | ||
Total BS transmission power1 (dBm) | 46 for macrocell1,4, 37 for picocells1, | ||
19 (when operating under interweave access) for small cells1,3,4, | |||
13.771, 10.76, and 7.943 (when operating under underlay access) for small cells | |||
Co-channel small-scale fading model1,3,5 | Frequency selective Rayleigh for 2 GHz NLOS, none for 28 GHz LOS | ||
Path loss | MBS and a UE1 | Outdoor macrocell UE | PL(dB) = 15.3 + 37.6 log10R, R is in m |
Indoor macrocell UE | PL(dB) = 15.3 + 37.6 log10R + Low, R is in m and Low = 20 dB | ||
PBS and a UE1 | PL(dB) = 140.7+36.7 log10R, R is in km | ||
SBS and a UE1,2,5 | PL(dB) = 61.38+17.97 log10R, R is in m | ||
Lognormal shadowing standard deviation (dB) | 8 for MBS2, 10 for PBS1, and 9.9 for SBS2,5 | ||
Antenna configuration | Single-input single-output for all BSs and UEs | ||
Antenna pattern (horizontal) | Directional (1200) for MBS1, omnidirectional for PBS1 and SBS1 | ||
Antenna gain plus connector loss (dBi) | 14 for MBS2, 5 for PBS1, 5 for SBS1,3 | ||
UE antenna gain2,3; Indoor macrocell UE1 | 0 dBi (for 2 GHz), 5 dBi (for 28 GHz, Biconical horn); 35% | ||
UE noise figure2,3 and UE speed1 | 9 dB (for 2 GHz) and 10 dB (for 28 GHz), 3 km/hr | ||
Picocell coverage, the total number of macrocell UEs, and macrocell UEs offloaded to all picocells1 | 40 m (radius), 30, 2/15 | ||
3D multistory building and SBS models (square- grid apartments): | Number of buildings | L | |
Number of floors per building | 10 | ||
Number of apartments per floor | 18 | ||
Number of SBSs per apartment | 1 | ||
Area of an apartment | 10 × 10 m2 | ||
Scheduler and traffic model2 | Proportional Fair and full buffer | ||
Type of SBSs | Closed Subscriber Group femtocell BSs | ||
TTI1 and scheduler time constant (tc) | 1 ms and 100 ms | ||
Total simulation run time | 8 ms |
VSR (RF) | HSR (L) to Satisfy Both Average SE and EE Requirements for 6G Mobile Systems | ||||||
---|---|---|---|---|---|---|---|
Proposed | SLSA | Proposed | SLSA | Proposed | SLSA | ||
1 | 13 | 32 | 1 | 1 | 13 | 32 | 40.62 |
6 | 3 | 3 | 9.37 | ||||
12 | 2 | 2 | 6.25 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, R.K. A Hybrid Interweave–Underlay Countrywide Millimeter-Wave Spectrum Access and Reuse Technique for CR Indoor Small Cells in 5G/6G Era. Sensors 2020, 20, 3979. https://doi.org/10.3390/s20143979
Saha RK. A Hybrid Interweave–Underlay Countrywide Millimeter-Wave Spectrum Access and Reuse Technique for CR Indoor Small Cells in 5G/6G Era. Sensors. 2020; 20(14):3979. https://doi.org/10.3390/s20143979
Chicago/Turabian StyleSaha, Rony Kumer. 2020. "A Hybrid Interweave–Underlay Countrywide Millimeter-Wave Spectrum Access and Reuse Technique for CR Indoor Small Cells in 5G/6G Era" Sensors 20, no. 14: 3979. https://doi.org/10.3390/s20143979
APA StyleSaha, R. K. (2020). A Hybrid Interweave–Underlay Countrywide Millimeter-Wave Spectrum Access and Reuse Technique for CR Indoor Small Cells in 5G/6G Era. Sensors, 20(14), 3979. https://doi.org/10.3390/s20143979