Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen
Abstract
1. Introduction
2. Preparation of the Sensing Devices
3. Sensor Experimental Setup
4. Sensor Performance Evaluation
4.1. Repeatability
4.2. The Effect of Pd-Ni Film Thickness on Sensor Performance
4.3. Sensitivity Evaluation
4.4. Long-Term Stability
4.5. Selectivity Testing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, W.; Guo, Y.; Tang, Y.; Zu, X.; Ma, J.; Wang, L.; Fu, Y.Q. Room-temperature ammonia sensor based on ZnO nanorods deposited on ST-cut quartz surface acoustic wave devices. Sensors 2017, 17, 1142. [Google Scholar] [CrossRef] [PubMed]
- Cicek, A.; Arslan, Y.; Trak, D.; Okay, F. Gas sensing through evanescent coupling of spoof surface acoustic wave. Sens. Actuators B Chem. 2019, 288, 259–265. [Google Scholar] [CrossRef]
- Li, M.; Kan, H.; Li, H.; Li, C.; Fu, C.; Quan, A.; Sun, H.; Luo, J.; Liu, X.; Wang, W.; et al. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sens. Actuators B Chem. 2019, 287, 241–249. [Google Scholar] [CrossRef]
- Li, D.; Zu, X.; Ao, D.; Tang, Q.; Fu, Y.; Guo, Y.; Bilawai, K. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol-gel CuO films. Sens. Actuators B Chem. 2019, 294, 55–61. [Google Scholar] [CrossRef]
- Mujahid, A.; Dickert, F. Surface acoustic wave (SAW) for chemical sensing application of recognition layers. Sensors 2017, 17, 2716. [Google Scholar] [CrossRef] [PubMed]
- D’amico, A. Surface acoustic wave hydrogen sensor. Sens. Actuators 1982, 3, 31–39. [Google Scholar] [CrossRef]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber composite-based ZnO/64o YX LiNbO3 SAW hydrogen gas sensor. Synth. Met. 2008, 158, 29–32. [Google Scholar] [CrossRef]
- Huang, F.C.; Chen, Y.Y.; Tu, T.T. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology. 2009, 20, 065501. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zhang, S.; Fan, L.; Shui, X. Characteristics of SAW hydrogen sensors based on InOx/128o YX LiNbO3 structures at room temperature. Sens. Actuators B Chem. 2012, 173, 710–715. [Google Scholar] [CrossRef]
- Jakubik, W.P.; Urbanczyk, M.W.; Kochowski, S.; Bodzenta, J. Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sens. Actuators B Chem. 2002, 82, 265–271. [Google Scholar] [CrossRef]
- Al-Mashat, L.; Kaner, R.B.; Tran, H.D.; Kalantar-zadeh, K.; Wlodarski, W. Layered surface acoustic wave hydrogen sensor based on polyethylaniline nanofibers. Procedia Chem. 2009, 1, 220–223. [Google Scholar] [CrossRef][Green Version]
- Mashat, L.A.; Tran, H.D.; Wlodarski, W.; Kaner, R.B.; Kalantar-zadeh, K. Polypyrrole nanofiber surface acoustic wave gas sensors. Sens. Actuators B Chem. 2008, 134, 826–831. [Google Scholar] [CrossRef]
- Jakubik, W.P.; Urbanczyk, M.W. SAW hydrogen sensor with a bilayer structure based on interaction speed. Sens. Actuators B Chem. 2005, 106, 602–608. [Google Scholar]
- Phan, D.T.; Chung, G.S. Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens. Actuators B Chem. 2012, 161, 341–348. [Google Scholar] [CrossRef]
- Ippolito, S.J. Layered SAW hydrogen sensor with modified tungsten tri-oxide selective layer. Sens. Actuators B Chem. 2005, 108, 553–557. [Google Scholar] [CrossRef]
- Yang, F.; Taggart, D.K.; Penner, R.M. Joule heating a palladium nanowire sensor for accelerated response and revovery to hydrogen gas. Small 2010, 6, 1422–1429. [Google Scholar]
- Viespe, C.; Grigoriu, C. SAW sensor based on highly sensitive nanoporous palladium thin film for hydrogen detection. Microelectron. Eng. 2013, 108, 218–221. [Google Scholar] [CrossRef]
- Jakubik, W.; Powroznik, P.; Wrotniak, J.; Krzywiecki, M. Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures. Sens. Actuators B Chem. 2016, 236, 1069–1074. [Google Scholar] [CrossRef]
- Yang, D.; Carpena-Nunz, J.; Fonseca, L.F. Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors. Sci. Rep. 2014, 4, 3773. [Google Scholar] [CrossRef]
- Perez-cortes, L.; Hernandez-Rodriguez, C.; Mazingue, T.; Lomello-Tafin, M. Functionality of surface acoustic wave (SAW) transducer for palladium-platinum-based hydrogen sensor. Sens. Actuators A Phys. 2016, 251, 35–41. [Google Scholar] [CrossRef]
- Vanotti, M.; Patissier, V.B.; Moutarlier, V.; Ballandras, S. Analysis of palladium and yttrium-palladium alloy layers used for hydrogen detection with SAW device. Sens. Actuators B Chem. 2015, 217, 30–35. [Google Scholar] [CrossRef]
- Jakubik, W. Bi-layer nanostructures of CuPc and Pd for resistance-type and SAW-type hydrogen gas sensors. Sens. Actuators B Chem. 2012, 175, 255–262. [Google Scholar] [CrossRef]
- Tsuji, T.; Mihara, R.; Saito, T.; Hagihara, S.; Oizumi, T.; Takeda, N. Highly sensitive ball surface acoustic wave hydrogen sensor with porous Pd-alloy film. Mater. Trans. 2014, 55, 1040–1044. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Mei, S.; Jia, Y.; Liu, M.; Xue, X.; Yang, D. Development of A Pd/Cu Nanowires Coated SAW Hydrogen Gas Sensor with Fast Response and Recovery. Sens. Actuators B Chem. 2019, 287, 157–164. [Google Scholar] [CrossRef]
- Singh, K.J.; Nakaso, N.; Sim, D.; Fukiura, T.; Tsuji, T.; Yamanaka, K. Frequency-dependent surface acoustic wave behavior of hydrogen-sensitive nanoscale PdNi thin-films. Nanotechnology 2007, 18, 435502. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sens. Actuators B Chem. 2007, 125, 422–427. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, X.; Mei, S.; Liu, M.; Lu, C.; Lu, M. Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors 2019, 19, 3560. https://doi.org/10.3390/s19163560
Wang W, Liu X, Mei S, Liu M, Lu C, Lu M. Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors. 2019; 19(16):3560. https://doi.org/10.3390/s19163560
Chicago/Turabian StyleWang, Wen, Xueli Liu, Shengchao Mei, Mengwei Liu, Chao Lu, and Minghui Lu. 2019. "Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen" Sensors 19, no. 16: 3560. https://doi.org/10.3390/s19163560
APA StyleWang, W., Liu, X., Mei, S., Liu, M., Lu, C., & Lu, M. (2019). Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors, 19(16), 3560. https://doi.org/10.3390/s19163560