Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen
Abstract
:1. Introduction
2. Preparation of the Sensing Devices
3. Sensor Experimental Setup
4. Sensor Performance Evaluation
4.1. Repeatability
4.2. The Effect of Pd-Ni Film Thickness on Sensor Performance
4.3. Sensitivity Evaluation
4.4. Long-Term Stability
4.5. Selectivity Testing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, W.; Guo, Y.; Tang, Y.; Zu, X.; Ma, J.; Wang, L.; Fu, Y.Q. Room-temperature ammonia sensor based on ZnO nanorods deposited on ST-cut quartz surface acoustic wave devices. Sensors 2017, 17, 1142. [Google Scholar] [CrossRef] [PubMed]
- Cicek, A.; Arslan, Y.; Trak, D.; Okay, F. Gas sensing through evanescent coupling of spoof surface acoustic wave. Sens. Actuators B Chem. 2019, 288, 259–265. [Google Scholar] [CrossRef]
- Li, M.; Kan, H.; Li, H.; Li, C.; Fu, C.; Quan, A.; Sun, H.; Luo, J.; Liu, X.; Wang, W.; et al. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sens. Actuators B Chem. 2019, 287, 241–249. [Google Scholar] [CrossRef]
- Li, D.; Zu, X.; Ao, D.; Tang, Q.; Fu, Y.; Guo, Y.; Bilawai, K. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol-gel CuO films. Sens. Actuators B Chem. 2019, 294, 55–61. [Google Scholar] [CrossRef]
- Mujahid, A.; Dickert, F. Surface acoustic wave (SAW) for chemical sensing application of recognition layers. Sensors 2017, 17, 2716. [Google Scholar] [CrossRef] [PubMed]
- D’amico, A. Surface acoustic wave hydrogen sensor. Sens. Actuators 1982, 3, 31–39. [Google Scholar] [CrossRef]
- Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber composite-based ZnO/64o YX LiNbO3 SAW hydrogen gas sensor. Synth. Met. 2008, 158, 29–32. [Google Scholar] [CrossRef]
- Huang, F.C.; Chen, Y.Y.; Tu, T.T. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology. 2009, 20, 065501. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Zhang, S.; Fan, L.; Shui, X. Characteristics of SAW hydrogen sensors based on InOx/128o YX LiNbO3 structures at room temperature. Sens. Actuators B Chem. 2012, 173, 710–715. [Google Scholar] [CrossRef]
- Jakubik, W.P.; Urbanczyk, M.W.; Kochowski, S.; Bodzenta, J. Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sens. Actuators B Chem. 2002, 82, 265–271. [Google Scholar] [CrossRef]
- Al-Mashat, L.; Kaner, R.B.; Tran, H.D.; Kalantar-zadeh, K.; Wlodarski, W. Layered surface acoustic wave hydrogen sensor based on polyethylaniline nanofibers. Procedia Chem. 2009, 1, 220–223. [Google Scholar] [CrossRef]
- Mashat, L.A.; Tran, H.D.; Wlodarski, W.; Kaner, R.B.; Kalantar-zadeh, K. Polypyrrole nanofiber surface acoustic wave gas sensors. Sens. Actuators B Chem. 2008, 134, 826–831. [Google Scholar] [CrossRef]
- Jakubik, W.P.; Urbanczyk, M.W. SAW hydrogen sensor with a bilayer structure based on interaction speed. Sens. Actuators B Chem. 2005, 106, 602–608. [Google Scholar]
- Phan, D.T.; Chung, G.S. Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens. Actuators B Chem. 2012, 161, 341–348. [Google Scholar] [CrossRef]
- Ippolito, S.J. Layered SAW hydrogen sensor with modified tungsten tri-oxide selective layer. Sens. Actuators B Chem. 2005, 108, 553–557. [Google Scholar] [CrossRef]
- Yang, F.; Taggart, D.K.; Penner, R.M. Joule heating a palladium nanowire sensor for accelerated response and revovery to hydrogen gas. Small 2010, 6, 1422–1429. [Google Scholar]
- Viespe, C.; Grigoriu, C. SAW sensor based on highly sensitive nanoporous palladium thin film for hydrogen detection. Microelectron. Eng. 2013, 108, 218–221. [Google Scholar] [CrossRef]
- Jakubik, W.; Powroznik, P.; Wrotniak, J.; Krzywiecki, M. Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures. Sens. Actuators B Chem. 2016, 236, 1069–1074. [Google Scholar] [CrossRef]
- Yang, D.; Carpena-Nunz, J.; Fonseca, L.F. Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors. Sci. Rep. 2014, 4, 3773. [Google Scholar] [CrossRef] [Green Version]
- Perez-cortes, L.; Hernandez-Rodriguez, C.; Mazingue, T.; Lomello-Tafin, M. Functionality of surface acoustic wave (SAW) transducer for palladium-platinum-based hydrogen sensor. Sens. Actuators A Phys. 2016, 251, 35–41. [Google Scholar] [CrossRef]
- Vanotti, M.; Patissier, V.B.; Moutarlier, V.; Ballandras, S. Analysis of palladium and yttrium-palladium alloy layers used for hydrogen detection with SAW device. Sens. Actuators B Chem. 2015, 217, 30–35. [Google Scholar] [CrossRef]
- Jakubik, W. Bi-layer nanostructures of CuPc and Pd for resistance-type and SAW-type hydrogen gas sensors. Sens. Actuators B Chem. 2012, 175, 255–262. [Google Scholar] [CrossRef]
- Tsuji, T.; Mihara, R.; Saito, T.; Hagihara, S.; Oizumi, T.; Takeda, N. Highly sensitive ball surface acoustic wave hydrogen sensor with porous Pd-alloy film. Mater. Trans. 2014, 55, 1040–1044. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Mei, S.; Jia, Y.; Liu, M.; Xue, X.; Yang, D. Development of A Pd/Cu Nanowires Coated SAW Hydrogen Gas Sensor with Fast Response and Recovery. Sens. Actuators B Chem. 2019, 287, 157–164. [Google Scholar] [CrossRef]
- Singh, K.J.; Nakaso, N.; Sim, D.; Fukiura, T.; Tsuji, T.; Yamanaka, K. Frequency-dependent surface acoustic wave behavior of hydrogen-sensitive nanoscale PdNi thin-films. Nanotechnology 2007, 18, 435502. [Google Scholar] [CrossRef]
- Wang, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sens. Actuators B Chem. 2007, 125, 422–427. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, X.; Mei, S.; Liu, M.; Lu, C.; Lu, M. Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors 2019, 19, 3560. https://doi.org/10.3390/s19163560
Wang W, Liu X, Mei S, Liu M, Lu C, Lu M. Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors. 2019; 19(16):3560. https://doi.org/10.3390/s19163560
Chicago/Turabian StyleWang, Wen, Xueli Liu, Shengchao Mei, Mengwei Liu, Chao Lu, and Minghui Lu. 2019. "Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen" Sensors 19, no. 16: 3560. https://doi.org/10.3390/s19163560
APA StyleWang, W., Liu, X., Mei, S., Liu, M., Lu, C., & Lu, M. (2019). Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen. Sensors, 19(16), 3560. https://doi.org/10.3390/s19163560