Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz
Abstract
:1. Introduction
2. Related Work
3. Methods and Tools
3.1. Selected Variables and KPIs
3.2. Propagation Model
3.3. Improvements on the TOSSIM Simulator
4. 915 MHz/2400 MHz Bands’ Performance in SG-oriented IoTs
4.1. Scenario 1: Presence of 2400 MHz Co-Existing Devices
4.2. Scenario 2: Absence of 2400 MHz Co-Existing Devices
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yun, M.; Yuxin, B. Research on the architecture and key technology of Internet of Things (IoT) applied on smart grid. In Proceedings of the International Conference on Advances in Energy Engineering, Beijing, China, 19–20 June 2010; pp. 69–72.
- Blumsack, S.; Fernandez, A. Ready or not, here comes the smart grid! Energy 2012, 37, 61–68. [Google Scholar] [CrossRef]
- Martinez-Sandoval, R.; Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Garcia-Haro, J.; Flynn, D. A comprehensive WSN-based approach to efficiently manage a smart grid. Sensors 2014, 14, 18748–18783. [Google Scholar] [CrossRef] [PubMed]
- Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. Convergence of MANET and WSN in IoT urban scenarios. IEEE Sens. J. 2013, 13, 3558–3567. [Google Scholar] [CrossRef]
- Hossen, M.; Jang, B.J. Extension of wireless sensor network by employing RoF-based 4G network. In Proceedings of the 11th International Conference on Advanced Communication Technology, Phoenix Park Gangwon-Do, Korea, 15–18 February 2009; Volume 1, pp. 275–278.
- Eddabbah, M.; Moussaoui, M.; Laaziz, Y. A flexible 3G WebService based gateway for wireless sensor networks in support of remote patient monitoring systems. In Proceedings of the 2014 Mediterranean Microwave Symposium (MMS2014), Marrakech, Morocco, 12–14 December 2014; pp. 1–5.
- Akyildiz, I.F.; Lee, W.-Y.; Vuran, M.C.; Mohanty, S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput. Netw. 2006, 50, 2127–2159. [Google Scholar] [CrossRef]
- Akan, O.B.; Karli, O.B.; Ergul, O. Cognitive radio sensor networks. IEEE Netw. 2009, 23, 34–40. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, Z.; Jin, C. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid. Sensors 2016, 16, 464. [Google Scholar] [CrossRef] [PubMed]
- Gharghan, S.K.; Nordin, R.; Ismail, M. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring. Sensors 2014, 14, 15573–15592. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Iturri, P.; Aguirre, E.; Azpilicueta, L.; Astrain, J.J.; Villadangos, J.; Falcone, F. Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues. Sensors 2016, 16, 1247. [Google Scholar] [CrossRef] [PubMed]
- Tuwanut, P.; Kraijak, S. A survey on IoT architectures, protocols, applications, security, privacy, real-world implementation and future trends. In Proceedings of the 16th International Conference on Communication Technology, Hangzhou, China, 18–20 October 2015; pp. 26–31.
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Parikh, P.P.; Kanabar, M.G.; Sidhu, T.S. Opportunities and challenges of wireless communication technologies for smart grid applications. In Proceedings of the 2010 IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–7.
- Ma, R.; Chen, H.H.; Huang, Y.R.; Meng, W. Smart grid communication: Its challenges and opportunities. IEEE Trans. Smart Grid 2013, 4, 36–46. [Google Scholar] [CrossRef]
- Fadel, E.; Gungor, V.C.; Nassef, L.; Akkari, N.; Maik, M.G.A.; Almasri, S.; Akyildiz, I.F. A survey on wireless sensor networks for smart grid. Comput. Commun. 2015, 71, 22–33. [Google Scholar] [CrossRef]
- Kilic, N.; Gungor, V.C. Analysis of low power wireless links in smart grid environments. Comput. Netw. 2013, 57, 1192–1203. [Google Scholar] [CrossRef]
- Palattella, M.R.; Accettura, N.; Grieco, L.A.; Boggia, G.; Dohler, M.; Engel, T. On Optimal Scheduling in Duty-Cycled Industrial IoT Applications Using IEEE802.15.4e TSCH. IEEE Sens. J. 2013, 13, 3655–3666. [Google Scholar] [CrossRef]
- Molisch, A.F.; Balakrishnan, K.; Chong, C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H.; Schuster, U.; Siwiak, K. IEEE 802.15.4a Channel Model. Available online: http://www.ieee802.org/15/pub/2004/15-04-0662-00-004a-channel-model-final-report-r1.pdf (accessed on 29 December 2016).
- Subramanian, A.P.; Gupta, H.; Das, S.R.; Cao, J. Minimum Interference Channel Assignment in Multiradio Wireless Mesh Networks. IEEE Trans. Mobile Comput. 2008, 7, 1459–1473. [Google Scholar] [CrossRef]
- Wu, D.; Bao, L.; Liu, C.H. Scalable Channel Allocation and Access Scheduling for Wireless Internet-of-Things. IEEE Sens. J. 2013, 13, 3596–3604. [Google Scholar] [CrossRef]
- Kim, H. Low power routing and channel allocation method of wireless video sensor networks for Internet of Things (IoT). In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 446–451.
- Güzelgöz, S.; Arslan, H.; Islam, A.; Domijan, A. A Review of Wireless and PLC Propagation Channel Characteristics for Smart Grid Environments. J. Electr. Comput. Eng. 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- Levis, P.; Lee, N.; Welsh, M.; Culler, D. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; ACM: New York, NY, USA; pp. 126–137.
- Sandoval, R.M.; Garcia-Sanchez, A.-J.; Garcia-Sanchez, F.; Garcia-Haro, J. Propagation Model and Tools. Available online: http://labit501.upct.es/~rmartinez/915vs2400/ (accessed on 30 December 2016).
- Instruments, N. National Instruments—Coherence Bandwidth. Available online: http://www.ni.com/white-paper/14910/en/ (accessed on 16 December 2016).
- Karnouskos, S. The cooperative internet of things enabled smart grid. In Proceedings of the 14th IEEE international symposium on consumer electronics (ISCE2010), Braunschweig, Germany, 7–10 June 2010; pp. 7–10.
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; ACM: New York, NY, USA; pp. 13–16.
- Kusy, B.; Richter, C.; Hu, W.; Afanasyev, M.; Jurdak, R.; Brunig, M.; Abbott, D.; Huynh, C.; Ostry, D. Radio diversity for reliable communication in WSNs. In Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, Chicago, IL, USA, 12–14 April 2011; pp. 270–281.
- Hrovat, A.; Javornik, T. Radio channel models for wireless sensor networks in smart city applications. In Proceedings of the 2013 International Conference on Electronics, Signal Processing and Communication Systems, Gold Coast, Australia, 16–18 December 2013; pp. 95–99.
- Ferrer Coll, J.; Dolz Martin de Ojeda, J.; Stenumgaard, P.; Marzal Romeu, S.; Chilo, J. Industrial indoor environment characterization—Propagation models. In Proceedings of the 10th International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 26–30 August 2011; pp. 245–249.
- Rao, T.R.; Balachander, D.; Nishesh, T.; Prasad, M. Near ground path gain measurements at 433/868/915/2400 MHz in indoor corridor for wireless sensor networks. Telecommun. Syst. 2014, 56, 347–355. [Google Scholar]
- Tanenbaum, A.S. Computer Networks. In Computer Networks; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Tanghe, E.; Joseph, W.; Bruyne, J.D.; Verloock, L.; Martens, L. The industrial indoor channel: Statistical analysis of the power delay profile. AEU Int. J. Electron. Commun. 2010, 64, 806–812. [Google Scholar] [CrossRef]
- Rappaport, T.S. Characterization of UHF multipath radio channels in factory buildings. IEEE Trans. Antennas Propag. 1989, 37, 1058–1069. [Google Scholar] [CrossRef]
- Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Latsoudas, G.; Sidiropoulos, N.D. A Fast and Effective Multidimensional Scaling Approach for Node Localization in Wireless Sensor Networks. IEEE Trans. Signal Process. 2007, 55, 5121–5127. [Google Scholar] [CrossRef]
- Garg, R.; Varna, A.L.; Wu, M. An Efficient Gradient Descent Approach to Secure Localization in Resource Constrained Wireless Sensor Networks. IEEE Trans. Inf. Forensics Secur. 2012, 7, 717–730. [Google Scholar] [CrossRef]
- Yao, L.; Sheng, Q.Z.; Ngu, A.H.H.; Ashman, H.; Li, X. Exploring Recommendations in Internet of Things. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 6–11 July 2014; ACM: New York, NY, USA; pp. 855–858.
- Shapoury, A.; Kezunovic, M. Noise Profile of Wireless Channels in High Voltage Substations. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, 24–28 June 2007; pp. 1–8.
- Sallabi, F.M.; Gaouda, A.M.; El-Hag, A.H.; Salama, M.M.A. Evaluation of ZigBee Wireless Sensor Networks Under High Power Disturbances. IEEE Trans. Power Deliv. 2014, 29, 13–20. [Google Scholar] [CrossRef]
- PSEG–High Voltage Protection Action. Available online: https://www.pseg.com/business/local_government/safety/pdf/HighVoltageProximityActGov.pdf (accessed on 19 December 2016).
- IEEE Houston Section—High Voltage Substation Application Design. Available online: http://sites.ieee.org/houston/files/2016/04/2012-10-02-HV-Substation-Application-Design-Oct-2-3.pdf (accessed on 19 December 2016).
- Vuran, M.C.; Akyildiz, I.F. Error Control in Wireless Sensor Networks: A Cross Layer Analysis. IEEE/ACM Trans. Netw. 2009, 17, 1186–1199. [Google Scholar] [CrossRef]
Scenario | LNSPL Model |
---|---|
915 MHz – LOS | |
915 MHz – OLOS | |
915 MHz – NLOS | |
2400 MHz – LOS | |
2400 MHz – OLOS | |
2400 MHz – NLOS |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval, R.M.; Garcia-Sanchez, A.-J.; Garcia-Sanchez, F.; Garcia-Haro, J. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz. Sensors 2017, 17, 76. https://doi.org/10.3390/s17010076
Sandoval RM, Garcia-Sanchez A-J, Garcia-Sanchez F, Garcia-Haro J. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz. Sensors. 2017; 17(1):76. https://doi.org/10.3390/s17010076
Chicago/Turabian StyleSandoval, Ruben M., Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, and Joan Garcia-Haro. 2017. "Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz" Sensors 17, no. 1: 76. https://doi.org/10.3390/s17010076