Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Terms
Descriptions | Abbreviations | Mathematical Forms |
---|---|---|
AT collected by Node | NodeAT | Tnode |
AT collected by AWS | AwsAT | Taws |
SR collected by AWS | AwsSR | Raws |
Interpolated NodeAT | NodeATinterp | TInode |
Interpolated AwsAT | AwsATinterp | TIaws |
Interpolated AwsSR | AwsSRinterp | RIaws |
Shifted NodeATinterp | NodeATinterpshift | TISnode |
Shifted AwsSRinterp | AwsSRinterpshift | RISaws |
Shifted NodeAT | NodeATshift | TSnode |
Shifted AwsSR | AwsSRshift | RSaws |
Deviation between NodeATinterpshift and AwsATinterp | NodeATE | TEnode |
ATE Calculated by using ATE-SR function | CalcATE | TEcalc |
Corrected NodeAT | NodeATcorr | TCnode |
sample points of time corresponding to NodeAT | NodeATtime | ttnode |
sample points of time corresponding to AwsAT | AwsATtime | ttaws |
sample points of time corresponding to AwsSR | AwsSRtime | traws |
sample points of time corresponding to interpolated data | Interptime | tinterp |
2.3. Framework
2.4. Data Preprocessing
2.4.1. Interpolation
2.4.2. Time Shift
2.4.3. Error Calculating
2.5. Statistical Analysis
2.6. Correction
2.6.1. Time Correction
2.6.2. Error Calculation
2.6.3. Value Correction
3. Experimental Section
3.1. Experiment Foundation
3.2. Data Process and Correction
SR (MJ·m−2) | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.19 | 0.20 |
ATE (°C) | 0.01 | 0.01 | 0.12 | 0.18 | 0.31 | 0.23 | 0.39 | 0.34 | 0.40 | 0.37 | 0.37 | 0.62 | 0.42 | 0.54 | 0.53 | 0.72 | 0.35 | 0.59 | 0.79 | 0.67 |
SR (MJ·m−2) | 0.21 | 0.22 | 0.23 | 0.24 | 0.25 | 0.26 | 0.27 | 0.28 | 0.29 | 0.30 | 0.31 | 0.32 | 0.33 | 0.34 | 0.35 | 0.36 | 0.37 | 0.38 | 0.39 | 0.40 |
ATE (°C) | 0.67 | 0.65 | 0.74 | 0.86 | 0.73 | 0.92 | 0.84 | 0.87 | 1.16 | 0.99 | 0.98 | 0.72 | 0.97 | 0.81 | 0.92 | 1.15 | 1.25 | 1.10 | 1.26 | 1.18 |
SR (MJ·m−2) | 0.41 | 0.42 | 0.43 | 0.44 | 0.45 | 0.46 | 0.47 | 0.48 | 0.49 | 0.50 | 0.51 | 0.52 | 0.53 | 0.54 | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 |
ATE (°C) | 1.13 | 1.13 | 1.13 | 1.61 | 1.27 | 1.28 | 1.55 | 1.54 | 1.31 | 1.51 | 1.62 | 1.55 | 1.41 | 1.72 | 1.65 | 1.51 | 1.56 | 1.72 | 1.31 | 1.64 |
SR (MJ·m−2) | 0.61 | 0.62 | 0.63 | 0.64 | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 | 0.75 | 0.76 | 0.77 | 0.78 | 0.79 | 0.80 |
ATE (°C) | 1.63 | 1.63 | 2.21 | 1.58 | 1.72 | 1.98 | 1.93 | 1.88 | 1.85 | 1.66 | 1.74 | 1.77 | 1.74 | 2.13 | 2.05 | 2.56 | 2.02 | 2.29 | 2.25 | 2.14 |
SR (MJ·m−2) | 0.81 | 0.82 | 0.83 | 0.84 | 0.85 | 0.86 | 0.87 | 0.88 | 0.89 | 0.90 | 0.91 | 0.92 | 0.93 | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.99 | 1.00 |
ATE (°C) | 1.86 | 2.17 | 2.08 | 2.48 | 2.13 | 2.40 | 2.30 | 2.16 | 2.31 | 2.53 | 2.26 | 2.28 | 2.33 | 2.10 | 2.79 | 2.02 | 2.29 | 2.46 | 2.36 | 2.54 |
SR (MJ·m−2) | 1.01 | 1.02 | 1.03 | 1.04 | 1.05 | 1.06 | 1.07 | 1.08 | 1.09 | 1.10 | 1.11 | 1.12 | 1.13 | 1.14 | 1.15 | 1.16 | 1.17 | 1.18 | 1.19 | 1.20 |
ATE (°C) | 2.73 | 2.15 | 2.44 | 2.31 | 2.82 | 2.56 | 2.26 | 2.26 | 2.33 | 2.90 | 2.83 | 2.88 | 2.67 | 2.92 | 2.92 | 2.62 | 2.74 | 2.81 | 2.83 | 3.05 |
SR (MJ·m−2) | 1.21 | 1.22 | 1.23 | 1.24 | 1.25 | 1.26 | 1.27 | 1.28 | 1.29 | 1.30 | 1.31 | 1.32 | 1.33 | 1.34 | 1.35 | 1.36 | 1.37 | 1.38 | 1.39 | 1.40 |
ATE (°C) | 3.45 | 2.72 | 3.03 | 2.91 | 2.82 | 3.38 | 2.87 | 2.95 | 2.81 | 2.94 | 2.75 | 2.89 | 2.88 | 3.38 | 2.98 | 3.49 | 3.68 | 3.36 | 3.40 | 3.33 |
SR (MJ·m−2) | 1.41 | 1.42 | 1.43 | 1.44 | 1.45 | 1.46 | 1.47 | 1.48 | 1.49 | 1.50 | 1.51 | 1.52 | 1.53 | 1.54 | 1.55 | 1.56 | 1.57 | 1.58 | 1.59 | 1.60 |
ATE (°C) | 3.20 | 3.26 | 3.02 | 2.98 | 3.32 | 3.38 | 3.27 | 3.64 | 3.26 | 3.58 | 3.64 | 3.64 | 2.99 | 3.32 | 3.33 | 3.71 | 3.11 | 3.72 | 3.34 | 3.34 |
SR (MJ·m−2) | 1.61 | 1.62 | 1.63 | 1.64 | 1.65 | 1.66 | 1.67 | 1.68 | 1.69 | 1.70 | 1.71 | 1.72 | 1.73 | 1.74 | 1.75 | 1.76 | 1.77 | 1.78 | 1.79 | 1.80 |
ATE (°C) | 3.42 | 4.02 | 3.45 | 4.15 | 3.77 | 4.17 | 3.18 | 4.11 | 3.46 | 3.72 | 3.28 | 2.96 | 2.96 | 3.78 | 4.04 | 4.04 | 3.78 | 3.90 | 3.55 | 3.81 |
SR (MJ·m−2) | 1.81 | 1.82 | 1.83 | 1.84 | 1.85 | 1.86 | 1.87 | 1.88 | 1.89 | 1.90 | 1.91 | 1.92 | 1.93 | 1.94 | 1.95 | 1.96 | 1.97 | 1.98 | 1.99 | 2.00 |
ATE (°C) | 3.60 | 3.60 | 3.60 | 4.37 | 4.02 | 3.66 | 4.27 | 3.98 | 3.55 | 4.00 | 4.12 | 4.12 | 3.58 | 3.06 | 4.02 | 3.62 | 4.16 | 3.47 | 3.85 | 4.55 |
SR (MJ·m−2) | 2.01 | 2.02 | 2.03 | 2.04 | 2.05 | 2.06 | 2.07 | 2.08 | 2.09 | 2.10 | 2.11 | 2.12 | 2.13 | 2.14 | 2.15 | 2.16 | 2.17 | 2.18 | 2.19 | 2.20 |
ATE (°C) | 4.16 | 4.12 | 3.45 | 4.29 | 4.19 | 4.22 | 4.11 | 4.24 | 4.49 | 3.43 | 4.80 | 4.44 | 3.97 | 3.87 | 4.20 | 4.83 | 4.26 | 4.64 | 4.73 | 4.47 |
SR (MJ·m−2) | 2.21 | 2.22 | 2.23 | 2.24 | 2.25 | 2.26 | 2.27 | 2.28 | 2.29 | 2.30 | 2.31 | 2.32 | 2.33 | 2.34 | 2.35 | 2.36 | 2.37 | 2.38 | 2.39 | 2.40 |
ATE (°C) | 4.56 | 4.23 | 4.65 | 3.97 | 3.61 | 4.84 | 4.10 | 4.21 | 4.77 | 5.05 | 5.00 | 3.60 | 4.72 | 4.99 | 3.87 | 5.08 | 4.83 | 4.04 | 5.08 | 4.82 |
SR (MJ·m−2) | 2.41 | 2.42 | 2.43 | 2.44 | 2.45 | 2.46 | 2.47 | 2.48 | 2.49 | 2.50 | 2.51 | 2.52 | 2.53 | 2.54 | 2.55 | 2.56 | 2.57 | 2.58 | 2.59 | 2.60 |
ATE (°C) | 4.40 | 5.14 | 3.97 | 4.69 | 4.62 | 3.82 | 4.42 | 4.91 | 4.65 | 5.30 | 4.98 | 5.34 | 5.53 | 4.62 | 5.47 | 5.13 | 5.07 | 5.18 | 5.26 | 4.34 |
SR (MJ·m−2) | 2.61 | 2.62 | 2.63 | 2.64 | 2.65 | 2.66 | 2.67 | 2.68 | 2.69 | 2.70 | 2.71 | 2.72 | 2.73 | 2.74 | 2.75 | 2.76 | 2.77 | 2.78 | 2.79 | 2.80 |
ATE (°C) | 5.48 | 4.75 | 4.88 | 5.61 | 5.79 | 5.16 | 4.81 | 4.81 | 4.78 | 5.14 | 5.70 | 5.15 | 5.13 | 5.59 | 5.72 | 5.31 | 5.08 | 5.07 | 4.84 | 5.36 |
SR (MJ·m−2) | 2.81 | 2.82 | 2.83 | 2.84 | 2.85 | 2.86 | 2.87 | 2.88 | 2.89 | 2.90 | 2.91 | 2.92 | 2.93 | 2.94 | 2.95 | 2.96 | 2.97 | 2.98 | 2.99 | 3.00 |
ATE (°C) | 5.40 | 5.17 | 5.56 | 4.90 | 6.48 | 5.75 | 4.98 | 4.32 | 5.17 | 5.07 | 5.06 | 5.16 | 6.06 | 5.70 | 6.00 | 4.61 | 6.05 | 5.72 | 6.04 | 5.59 |
SR (MJ·m−2) | 3.01 | 3.02 | 3.03 | 3.04 | 3.05 | 3.06 | 3.07 | 3.08 | 3.09 | 3.10 | 3.11 | 3.12 | 3.13 | 3.14 | 3.15 | 3.16 | 3.17 | 3.18 | 3.19 | 3.20 |
ATE (°C) | 6.06 | 5.17 | 5.26 | 6.22 | 5.52 | 5.61 | 5.41 | 6.11 | 5.01 | 5.67 | 5.47 | 6.61 | 5.89 | 5.39 | 6.49 | 6.21 | 6.60 | 6.05 | 5.09 | 7.38 |
SR (MJ·m−2) | 3.21 | 3.22 | 3.23 | 3.24 | 3.25 | 3.26 | 3.27 | 3.28 | 3.29 | 3.30 | 3.31 | 3.32 | 3.33 | 3.34 | 3.35 | 3.36 | 3.37 | 3.38 | 3.39 | 3.40 |
ATE (°C) | 5.64 | 5.90 | 5.82 | 6.70 | 5.60 | 5.54 | 5.54 | 5.91 | 5.49 | 6.29 | 4.84 | 5.37 | 6.26 | 4.72 | 5.93 | 5.43 | 5.43 | 5.60 | 6.56 | 5.99 |
SR (MJ·m−2) | 3.41 | 3.42 | 3.43 | 3.44 | 3.45 | 3.46 | 3.47 | 3.48 | 3.49 | 3.50 | 3.51 | 3.52 | 3.53 | 3.54 | 3.55 | 3.56 | 3.57 | 3.58 | 3.59 | 3.60 |
ATE (°C) | 5.76 | 5.66 | 6.36 | 6.50 | 6.32 | 6.55 | 5.48 | 5.48 | 6.26 | 6.26 | 4.96 | 4.96 | 4.96 | 6.36 | 5.23 | 5.78 | 5.78 | 5.18 | 6.32 | //// |
3.3. Performance Evaluations
Maximal Absolute Error | ||||
---|---|---|---|---|
Date | Original Data | Time Shifted | Value Corrected | Correcting Efficiency |
4 June 2014 | 7.54 | 6.00 | 2.35 | 69% |
9 June 2014 | 8.13 | 6.76 | 2.00 | 75% |
4 July 2014 | 2.83 | 2.33 | 0.70 | 75% |
7 July 2014 | 9.04 | 7.14 | 3.32 | 63% |
8 August 2014 | 2.07 | 1.37 | 0.54 | 74% |
10 August 2014 | 7.05 | 6.40 | 2.53 | 64% |
3 September 2014 | 6.21 | 5.01 | 2.02 | 67% |
28 September 2014 | 8.45 | 7.49 | 3.16 | 63% |
2 October 2014 | 5.92 | 4.62 | 1.42 | 76% |
19 October 2014 | 8.64 | 7.07 | 3.52 | 59% |
11 November 2014 | 6.35 | 4.72 | 2.05 | 68% |
22 November 2014 | 7.96 | 6.76 | 3.77 | 53% |
7 December 2014 | 6.56 | 5.26 | 1.89 | 71% |
21 December 2014 | 5.76 | 5.16 | 2.09 | 64% |
Average | 6.61 | 5.44 | 2.24 | 66% |
Mean Absolute Error | ||||
---|---|---|---|---|
Date | Original Data | Time Shifted | Value Corrected | Correcting Efficiency |
4 June 2014 | 2.78 | 2.12 | 0.51 | 82% |
9 June 2014 | 2.81 | 2.35 | 0.42 | 85% |
4 July 2014 | 0.71 | 0.62 | 0.19 | 73% |
7 July 2014 | 2.86 | 2.42 | 0.82 | 72% |
8 August 2014 | 0.67 | 0.62 | 0.25 | 62% |
10 August 2014 | 2.08 | 1.83 | 0.54 | 74% |
3 September 2014 | 1.62 | 1.50 | 0.31 | 81% |
28 September 2014 | 2.41 | 1.99 | 0.64 | 73% |
2 October 2014 | 1.85 | 1.37 | 0.37 | 80% |
19 October 2014 | 2.16 | 1.72 | 0.59 | 73% |
11 November 2014 | 1.83 | 1.28 | 0.49 | 73% |
22 November 2014 | 1.97 | 1.55 | 0.67 | 66% |
7 December 2014 | 1.95 | 1.33 | 0.53 | 73% |
21 December 2014 | 1.80 | 1.37 | 0.60 | 67% |
Average | 1.96 | 1.58 | 0.50 | 74% |
Standard Deviation of Error | ||||
---|---|---|---|---|
Date | Original Data | Time Shifted | Value Corrected | Correcting Efficiency |
4 June 2014 | 3.05 | 2.30 | 0.66 | 78% |
9 June 2014 | 3.23 | 2.52 | 0.55 | 83% |
4 July 2014 | 0.89 | 0.66 | 0.23 | 74% |
7 July 2014 | 3.07 | 2.54 | 0.99 | 68% |
8 August 2014 | 0.50 | 0.32 | 0.18 | 63% |
10 August 2014 | 2.45 | 1.99 | 0.52 | 79% |
3 September 2014 | 1.93 | 1.52 | 0.42 | 78% |
28 September 2014 | 3.21 | 2.46 | 0.74 | 77% |
2 October 2014 | 2.08 | 1.50 | 0.42 | 80% |
19 October 2014 | 2.77 | 2.08 | 0.75 | 73% |
11 November 2014 | 2.38 | 1.66 | 0.64 | 73% |
22 November 2014 | 2.79 | 2.21 | 1.01 | 64% |
7 December 2014 | 2.66 | 1.91 | 0.76 | 71% |
21 December 2014 | 2.30 | 1.82 | 0.81 | 65% |
Average | 2.38 | 1.82 | 0.62 | 74% |
Correlation Coefficient | |||
---|---|---|---|
Date | Original Data | Time Shifted | Value Corrected |
4 June 2014 | 0.8221 | 0.9496 | 0.9870 |
9 June 2014 | 0.7518 | 0.9037 | 0.9870 |
4 July 2014 | 0.9187 | 0.9483 | 0.9910 |
7 July 2014 | 0.8227 | 0.9487 | 0.9785 |
8 August 2014 | 0.8729 | 0.9605 | 0.9784 |
10 August 2014 | 0.7828 | 0.9252 | 0.9794 |
3 September 2014 | 0.8209 | 0.9666 | 0.9531 |
28 September 2014 | 0.8033 | 0.9506 | 0.9859 |
2 October 2014 | 0.8575 | 0.9779 | 0.9879 |
19 October 2014 | 0.7837 | 0.9338 | 0.9777 |
11 November 2014 | 0.8390 | 0.9666 | 0.9871 |
22 November 2014 | 0.8303 | 0.9491 | 0.9791 |
7 December 2014 | 0.8393 | 0.9709 | 0.9860 |
21 December 2014 | 0.8663 | 0.9700 | 0.9696 |
Average | 0.8294 | 0.9515 | 0.9806 |
4. Conclusions
Acknowledgments
Conflicts of Interest
Appendix
A. Radiation and Solar Radiation
A.1. Radiation
A.2. Solar Radiation
B. Interpolation and Spline Functions
B.1. Interpolation
B.2. Spline Function
References
- Liu, H.; Wang, B.; Sun, X.; Li, T.; Liu, Q.; Guo, Y. DCSCS: A Novel Approach to Improve Data Accuracy for Low Cost Meteorological Sensor Networks. Inf. Technol. J. 2014, 13, 1640. [Google Scholar]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Yin, X. Reconstructing monthly global solar radiation from air temperature and precipitation records: A general algorithm for Canada. Ecol. Model. 1996, 88, 39–44. [Google Scholar] [CrossRef]
- Suciu, L.; Sumalan, R.; Moga, D. Integrated sensor-based monitoring system for pest and disease control in greenhouses. Commun. Agric. Appl. Biol. Sci. 2012, 77, 489–493. [Google Scholar] [PubMed]
- Li, J.; Gu, J.Z.; Mao, S.H.; Xiao, W.J.; Jin, H.M.; Zheng, Y.X.; Wang, Y.M.; Hu, J.Y. Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai. Zhonghua Liu Xing Bing Xue Za Zhi 2013, 34, 1198–202. [Google Scholar] [PubMed]
- Palacios, M.P.; Lupiola, P.; Tejedor, M.T.; Del-Nero, E.; Pardo, A.; Pita, L. Climatic effects on Salmonella survival in plant and soil irrigated with artificially inoculated wastewater: preliminary results. Water Sci. Technol. 2001, 43, 103–108. [Google Scholar] [PubMed]
- Mishra, A.K. Effect of rain gauge density over the accuracy of rainfall: A case study over Bangalore, India. Springerplus 2013, 2, 311. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, C.L.; Chen, X.G.; Chen, H.H. Characteristics of heat resource in mountainous region of northern Guangdong, South China based on three-dimensional climate observation. Ying Yong Sheng Tai Xue Bao 2013, 24, 2571–2580. [Google Scholar] [PubMed]
- Casari, P.; Castellani, A.P.; Cenedese, A.; Lora, C.; Rossi, M.; Schenato, L.; Zorzi, M. The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)” Project. Sensors 2009, 9, 4056–4082. [Google Scholar] [CrossRef] [PubMed]
- Matese, A.; Vaccari, F.P.; Tomasi, D.; Di Gennaro, S.F.; Primicerio, J.; Sabatini, F.; Guidoni, S. CrossVit: Enhancing canopy monitoring management practices in viticulture. Sensors 2013, 13, 7652–7667. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Shen, W.; Wang, X. Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors 2014, 14, 16932–16954. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tan, H.W.; Wang, J.; Wang, J.W.; Lee, S. A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks. J. Internet Technol. 2015, 16, 171–178. [Google Scholar]
- Xie, S.D.; Wang, Y.X. Construction of Tree Network with Limited Delivery Latency in Homogeneous Wireless Sensor Networks. Wirel. Pers. Commun. 2014, 78, 231–246. [Google Scholar] [CrossRef]
- Jiang, P.; Xia, H.; He, Z.; Wang, Z. Design of a Water Environment Monitoring System Based on Wireless Sensor Networks. Sensors 2009, 9, 6411–6434. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Banerjee, A.; Fang, Y.M.; Lee, B.J.; King, C.T. Design of a Multifunctional Wireless Sensor for In-Situ Monitoring of Debris Flows. IEEE Trans. Instrum. Meas. 2010, 59, 2958–2967. [Google Scholar] [CrossRef]
- Pérez, C.A.; Jiménez, M.; Soto, F.; Torres, R.; López, J.A.; Iborra, A. A system for monitoring marine environments based on Wireless Sensor Networks. In Proceedings of the 2011 IEEE-Spain OCEANS, Santander, Spain, 6–9 June 2011; pp. 1–6.
- Albaladejo, C.; Soto, F.; Torres, R.; Sanchez, P.; Lopez, J.A. A low-cost sensor buoy system for monitoring shallow marine environments. Sensors 2012, 12, 9613–9634. [Google Scholar] [CrossRef] [PubMed]
- Bayo, A.; Antolín, D.; Medrano, N.; Calvo, B.; Celma, S. Early detection and monitoring of forest fire with a wireless sensor network system. Proced. Eng. 2010, 5, 248–251. [Google Scholar] [CrossRef]
- Aslan, Y.E.; Korpeoglu, I.; Ulusoy, Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 2012, 36, 614–625. [Google Scholar]
- Zhao, G. Wireless sensor networks for industrial process monitoring and control: A survey. Netw. Proto. Algorithms 2011, 3, 46–63. [Google Scholar] [CrossRef]
- Silva, I.; Guedes, L.A.; Portugal, P.; Vasques, F. Reliability and availability evaluation of Wireless Sensor Networks for industrial applications. Sensors 2012, 12, 806–838. [Google Scholar] [CrossRef] [PubMed]
- Morais, R.; Matos, S.G.; Fernandes, M.A.; Valente, A.L.G.; Soares, S.F.S.P.; Ferreira, P.J.S.G.; Reis, M.J.C.S. Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Comput. Electron. Agric. 2008, 64, 120–132. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Ding, L. Study on precision agriculture monitoring framework based on WSN. In Proceedings of 2nd International Conference on the Anti-counterfeiting, Security and Identification, Guiyang, China, 20–23 August 2008; pp. 182–185.
- Padmavathi, G.; Shanmugapriya, D.; Kalaivani, M. A study on vehicle detection and tracking using wireless sensor networks. Wirel. Sens. Netw. 2010, 2, 173. [Google Scholar] [CrossRef]
- Qian, H.; Sun, P.; Rong, Y. Design Proposal of Self-Powered WSN Node for Battle Field Surveillance. Energy Proced. 2012, 16, 753–757. [Google Scholar] [CrossRef]
- Tubaishat, M.; Zhuang, P.; Qi, Q.; Shang, Y. Wireless sensor networks in intelligent transportation systems. Wirel. Commun. Mobile Comput. 2009, 9, 287–302. [Google Scholar] [CrossRef]
- Tacconi, D.; Miorandi, D.; Carreras, I.; Chiti, F.; Fantacci, R. Using wireless sensor networks to support intelligent transportation systems. Ad Hoc Netw. 2010, 8, 462–473. [Google Scholar] [CrossRef]
- Lee, H.; Wu, C.; Aghajan, H. Vision-based user-centric light control for smart environments. Perv. Mob. Comput. 2011, 7, 223–240. [Google Scholar] [CrossRef]
- Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 2009, 9, 3586–3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadimi, E.S.; Jørgensen, R.N.; Blanes-Vidal, V.; Christensen, S. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks. Comput. Electron. Agric. 2012, 82, 44–54. [Google Scholar] [CrossRef]
- Bahrepour, M.; Meratnia, N.; Poel, M.; Taghikhaki, Z.; Havinga, P.J.M. Distributed Event Detection in Wireless Sensor Networks for Disaster Management. In Proceedings of 2nd International Conference on the Intelligent Networking and Collaborative Systems (INCOS), Thessaloniki, Greece, 24–26 November 2010; pp. 507–512.
- Iacono, M.; Romano, E.; Marrone, S. Adaptive monitoring of marine disasters with intelligent mobile sensor networks. In Proceedings of 2010 IEEE Workshop on the Environmental Energy and Structural Monitoring Systems (EESMS), Taranto, Italy, 9 Stepember 2010; pp. 38–45.
- Sensirion. Datasheet SHT1x (SHT10, SHT11, SHT15). Available online: http://www.sensirion.com.cn/en/products/humidity-temperature/humidity-sensor-sht15/ (accessed on 4 July 2015).
- Andrews, D.G. An Introduction to Atmospheric Physics, 1st ed.; Cambridge University Press: Cambridge, UK, 2000; pp. 55–88. [Google Scholar]
- Mel’nikova, I.N.; Vasil’ev, A.V. Short-Wave Solar Radiation in the Earth’s Atmosphere : Calculation, Oberservation, Interpretation, 1st ed.; Springer: Berlin, Germany, 2005; pp. 1–73. [Google Scholar]
- Wang, Q.; Luo, Y.; Du, B.Y.; Ye, Z.X.; Duan, L. Influencing factors of mercury emission flux from forest soil at Tieshanping, Chongqing. Huan Jing Ke Xue 2014, 35, 1922–1927. [Google Scholar] [PubMed]
- Cannas da Silva, J.; Schauberger, G.; Rosario, O.M.; Segao, S.; Kumper, H.; Baumgartner, W. Does the weather influence the occurrence of abomasal displacement in dairy cows? Dtsch. Tierarztl. Wochenschr. 2004, 111, 51–57. [Google Scholar] [PubMed]
- Buzurovic, I.; Showalter, T.N.; Studenski, M.T.; Den, R.B.; Dicker, A.P.; Cao, J.; Xiao, Y.; Yu, Y.; Harrison, A. Commissioning and implementation of an implantable dosimeter for radiation therapy. J. Appl. Clin. Med. Phys. 2013, 14, 3989. [Google Scholar]
- Zhang, H.; Liu, Y.; Shi, R.; Yao, Q. Evaluation of PM10 forecasting based on the artificial neural network model and intake fraction in an urban area: A case study in Taiyuan City, China. J. Air. Waste. Manag. Assoc. 2013, 63, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Zupan, A.; Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. Individual phenolic response and peroxidase activity in peel of differently sun-exposed apples in the period favorable for sunburn occurrence. J. Plant Physiol. 2014, 171, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Li, M.F.; Fan, L.; Liu, H.B.; Guo, P.T.; Wu, W. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China. J. Atmos. Sol. Terr. Phys. 2013, 92, 145–150. [Google Scholar] [CrossRef]
- Premuda, M.; Palazzi, E.; Ravegnani, F.; Bortoli, D.; Masieri, S.; Giovanelli, G. MOCRA: A Monte Carlo code for the simulation of radiative transfer in the atmosphere. Opt. Express. 2012, 20, 7973–7993. [Google Scholar] [CrossRef] [PubMed]
- Simonot, L.; Boulenguez, P. Generalization of the geometric description of a light beam in radiometry and photometry. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 2013, 30, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M. An Introduction to Solar Radiation, 1st ed.; Academic Press: New York, NY, USA, 1983; pp. 41–354. [Google Scholar]
- Suarez, S.; Portela, R.; Hernandez-Alonso, M.D.; Sanchez, B. Development of a versatile experimental setup for the evaluation of the photocatalytic properties of construction materials under realistic outdoor conditions. Environ. Sci. Pollut. Res. Int. 2014, 21, 11208–11217. [Google Scholar] [CrossRef] [PubMed]
- Mathworks. MATLAB R2014b Documentation. Available online: http://cn.mathworks.com/help/matlab/ref/interp1.html (accessed on 4 July 2015).
- Coulson, K.L. Solar and Terrestrial Radiation : Methods and Measurements, 1st ed.; Academic Press: New York, NY, USA, 1975; pp. 1–158. [Google Scholar]
- Wikipedia. Pearson Product-Moment Correlation Coefficient. Available online: https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient (accessed on 4 July 2015).
- O’Loughlin, J.; Linke, A.M.; Witmer, F.D. Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980–2012. Proc. Natl. Acad. Sci. USA 2014, 111, 16712–16717. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.H.; Fink, K.D. Numerical Methods Using MATLAB, 4th ed.; Pearson: London, UK, 2004; pp. 199–280. [Google Scholar]
- Cheney, E.W.; Kincaid, D. Numerical Mathematics and Computing, 7th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2013; pp. 154–265. [Google Scholar]
- Cnossen, J.P.; Dulin, D.; Dekker, N.H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev. Sci. Instrum. 2014, 85, 103712. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wong, M.Y.; Lam, C.L.; Wong, C.K. Improving the mapping of condition-specific health-related quality of life onto SF-6D score. Qual. Life Res. 2014, 23, 2343–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yan, S.; Wang, B.; Xia, L.; Liu, Q.; Zhang, H. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network. Sensors 2015, 15, 18114-18139. https://doi.org/10.3390/s150818114
Sun X, Yan S, Wang B, Xia L, Liu Q, Zhang H. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network. Sensors. 2015; 15(8):18114-18139. https://doi.org/10.3390/s150818114
Chicago/Turabian StyleSun, Xingming, Shuangshuang Yan, Baowei Wang, Li Xia, Qi Liu, and Hui Zhang. 2015. "Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network" Sensors 15, no. 8: 18114-18139. https://doi.org/10.3390/s150818114
APA StyleSun, X., Yan, S., Wang, B., Xia, L., Liu, Q., & Zhang, H. (2015). Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network. Sensors, 15(8), 18114-18139. https://doi.org/10.3390/s150818114