Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies
Abstract
:1. Introduction
2. Experimental Section
Solution | Acid Normality | Chelator Molarity | Copper mg/L | Silver g/L | pH | Temperature °C |
---|---|---|---|---|---|---|
SterlingTM Predip | 0.2–0.3 N | 0.01–0.02 M | <1000 | N/A | <1.8 | 38 |
SterlingTM Silver | 0.4–0.6 N | 0.02–0.04 M | <3000 | 0.6–0.9 | <1.8 | 52 |
3. Results and Discussion
3.1. Surface Characteristics
3.2. Characterization of Electrode Stability
3.3. Electrode Performance for pH Sensing
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Focke, M.; Kosse, D.; Muller, C.; Reinecke, H.; Zengerle, R.; von Stetten, F. Lab-on-a-foil: Microfluidics on thin and flexible films. Lab Chip 2010, 10, 1365–1386. [Google Scholar] [CrossRef] [PubMed]
- Klemm, R.; Hlawatsch, N.; Gärtner, C.; Jung, M.; Höth, J.; O'Sullivan, C.; Becker, H. A sample-in result-out lab-on-a-chip device: From prototype to mass fabrication. Proc. SPIE 2011, 7929. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Toumazou, C.; Shepherd, L.M.; Reed, S.C.; Chen, G.I.; Patel, A.; Garner, D.M.; Wang, C.-J.A.; Ou, C.-P.; Amin-Desai, K.; Athanasiou, P.; et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 2013, 10, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Sollier, E.; Murray, C.; Maoddi, P.; di Carlo, D. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 2011, 11, 3752–3765. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2009, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Moschou, D.; Vourdas, N.; Filippidou, M.; Tsouti, V.; Kokkoris, G.; Tsekenis, G.; Zergioti, I.; Chatzandroulis, S.; Tserepi, A. Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors. Proc. SPIE 2013, 8765. [Google Scholar] [CrossRef]
- Moschou, D.; Vourdas, N.; Kokkoris, G.; Papadakis, G.; Parthenios, J.; Chatzandroulis, S.; Tserepi, A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens. Actuators B Chem. 2014, 199, 470–478. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Kefala, I.; Kaprou, G.; Kokkoris, G.; Moschou, D.; Papadakis, G.; Gizeli, E.; Tserepi, A. A passive micromixer for enzymatic digestion of DNA. Microelectron. Eng. 2014, 124, 42–46. [Google Scholar] [CrossRef]
- Aracil, C.; Perdigones, F.; Moreno, J.M.; Luque, A.; Quero, J.M. Portable lab-on-PCB platform for autonomous micromixing. Microelectron. Eng. 2014, 131, 13–18. [Google Scholar] [CrossRef]
- Guo, J.; Li, H.; Chen, Y.; Kang, Y. A microfluidic impedance cytometer on printed circuit board for low cost diagnosis. IEEE Sens. J. 2013, 14, 2112–2117. [Google Scholar] [CrossRef]
- Wego, A.; Pagel, L. A self-filling micropump based on PCB technology. Sens. Actuators A Phys. 2001, 88, 220–226. [Google Scholar] [CrossRef]
- Lan, W.J.; Maxwell, E.J.; Parolo, C.; Bwambok, D.K.; Subramaniam, A.B.; Whitesides, G.M. Paper-based electroanalytical devices with an integrated, stable reference electrode. Lab Chip 2013, 13, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Polk, B.J.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sens. Actuators B Chem. 2006, 114, 239–247. [Google Scholar] [CrossRef]
- Safari, S.; Selvaganapathy, P.R.; Derardja, A.; Deen, M.J. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes. Nanotechnology 2011, 22, 315601. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, M.W.; Zhitomirsky, D.; Deen, I.A.; Selvaganapathy, P.R.; Deen, M.J.; Landheer, D. Microfabricated reference electrodes and their biosensing applications. Sensors 2010, 10, 1679–1715. [Google Scholar] [CrossRef] [PubMed]
- Shitanda, I.; Kiryu, H.; Itagaki, M. Improvement in the long-term stability of screen-printed planar type solid-state Ag/AgCl reference electrode by introducing poly(dimethylsiloxane) liquid junction. Electrochim. Acta 2011, 58, 528–531. [Google Scholar] [CrossRef]
- Snook, G.A.; Best, A.S.; Pandolfo, A.G.; Hollenkamp, A.F. Evaluation of a Ag/Ag+ reference electrode for use in room temperature ionic liquids. Electrochem. Commun. 2006, 8, 1405–1411. [Google Scholar] [CrossRef]
- Cranny, A.; Harris, N.R.; Nie, M.; Wharton, J.A.; Wood, R.J.K.; Stokes, K.R. Screen-printed potentiometric Ag/AgCl chloride sensors: Lifetime performance and their use in soil salt measurements. Sens. Actuators A Phys. 2011, 169, 288–294. [Google Scholar] [CrossRef]
- Bhavsar, K.; Fairchild, A.; Alonas, E.; Bishop, D.K.; La Belle, J.T.; Sweeney, J.; Alford, T.; Joshi, L. A cytokine immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes. Biosens. Bioelectron. 2009, 25, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Prodromakis, T.; Liu, Y.; Yang, J.; Hollinghurst, D.; Toumazou, C. A novel design approach for developing chemical sensing platforms using inexpensive technologies. In Proceedings of the IEEE International Conference on Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, USA, 10–12 November 2011; pp. 369–372.
- Trantidou, T.; Payne, D.J.; Tsiligkiridis, V.; Chang, Y.-C.; Toumazou, C.; Prodromakis, T. The dual role of parylene c in chemical sensing: Acting as an encapsulant and as a sensing membrane for pH monitoring applications. Sens. Actuators B Chem. 2013, 186, 1–8. [Google Scholar] [CrossRef]
- Prodromakis, T.; Moschou, D. A PCB Integrated Reference Electrode. UK Patent GB1415406.6, 15 October 2014. [Google Scholar]
- Macdermid Electronics Solutions, Immersion Silver. Available online: http://electronics.macdermid.com/cms/products-services/printed-circuit-board/final-finishes/immersion-silver/index.shtml (accessed on 21 May 2015).
- Macdermid Electronics Solutions, Sterling Silver. Available online: http://www.multicircuits.com/assets/content/files/immersion_silver.pdf (accessed on 21 May 2015).
- Inzelt, G. Pseudo-reference electrodes. In Handbook of Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer: Berlin, Germany, 2013; pp. 331–332. [Google Scholar]
- Ghijsen, J.; Tjeng, L.; van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G.; Czyzyk, M. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330. [Google Scholar] [CrossRef]
- Pauly, N.; Tougaard, S.; Yubero, F. Determination of the Cu 2p primary excitation spectra for Cu, Cu2O and CuO. Surf. Sci. 2014, 620, 17–22. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moschou, D.; Trantidou, T.; Regoutz, A.; Carta, D.; Morgan, H.; Prodromakis, T. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors 2015, 15, 18102-18113. https://doi.org/10.3390/s150818102
Moschou D, Trantidou T, Regoutz A, Carta D, Morgan H, Prodromakis T. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors. 2015; 15(8):18102-18113. https://doi.org/10.3390/s150818102
Chicago/Turabian StyleMoschou, Despina, Tatiana Trantidou, Anna Regoutz, Daniela Carta, Hywel Morgan, and Themistoklis Prodromakis. 2015. "Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies" Sensors 15, no. 8: 18102-18113. https://doi.org/10.3390/s150818102
APA StyleMoschou, D., Trantidou, T., Regoutz, A., Carta, D., Morgan, H., & Prodromakis, T. (2015). Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors, 15(8), 18102-18113. https://doi.org/10.3390/s150818102