Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Design
2.4. Quantification Method of Multifunctional Land Use Levels
2.5. Identification Method of Influencing Factors
2.5.1. Selection of Influencing Factors
2.5.2. Geographical Detector
2.5.3. Grey Relational Model
2.6. Identification Method of Trade-Offs/Synergies in Land Use Multifunctionality
3. Results
3.1. Spatiotemporal Evolution of Land Use Multifunctionality in the Hehuang Valley
3.1.1. Spatiotemporal Evolution of Land Ecological Function
3.1.2. Spatiotemporal Evolution of Land Social Function
3.1.3. Spatiotemporal Evolution of Land Economic Production Function
3.1.4. Spatiotemporal Evolution of Land Comprehensive Function
3.2. Trade-Offs and Synergies in Land Use Multifunctionality in the Hehuang Valley
3.2.1. Pearson Correlation Coefficients of Land Use Multifunctionality
3.2.2. Partial Correlation Coefficients of Land Use Multifunctionality
3.3. Influencing Factors of Spatiotemporal Changes in Land Use Function Levels in the Hehuang Valley
3.3.1. Influencing Factors of the Spatial Distribution of Land Use Functions
3.3.2. Temporal Changes in Land Use Function Drivers in the Hehuang Valley
4. Discussion
4.1. Understanding the Changes and Interactions of Multifunctional Land Use
4.2. Policy Implications
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Schößer, B.; Helming, K.; Wiggering, H. Assessing Land Use Change Impacts—A Comparison of the SENSOR Land Use Function Approach with Other Frameworks. J. Land Use Sci. 2010, 5, 159–178. [Google Scholar]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Müller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecol. Indic. 2006, 6, 238–249. [Google Scholar] [CrossRef]
- Vereijken, P.H. Multifunctionality: Applying the OECD Framework, a Review of Literature in the Netherlands; OECD: Paris, France, 2001. [Google Scholar]
- Song, X.Q.; Ouyang, Z. Connotation of multifunctional cultivated land and its implications for cultivated land protection. Prog. Geogr. 2012, 31, 859–868. [Google Scholar]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Tinacci Mossello, M.; et al. Land use functions—A multifunctionality approach to assess the impact of land use changes on land use sustainability. In Sustainability Impact Assessment of Land Use Changes; Helming, K., Pérez-Soba, M., Tabbush, P., Eds.; Springer: Berlin, Germany, 2008; pp. 375–404. [Google Scholar]
- De Groot, R.S. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Zhen, L.; Chao, S.Y.; Wei, Y.J.; Xie, G.D.; Li, F.; Yang, L. Land use functions: Conceptual framework and application for China. Resour. Sci. 2009, 31, 544–551. [Google Scholar]
- Xie, G.; Zhen, L.; Zhang, C.; Deng, X.; Koenig, H.J.; Tscherning, K.; Helming, K. Assessing the multifunctionalities of land use in China. J. Resour. Ecol. 2010, 1, 311–318. [Google Scholar]
- Yin, R.; Li, X.; Fang, B. The Relationship between the Spatial and Temporal Evolution of Land Use Function and the Level of Economic and Social Development in the Yangtze River Delta. Int. J. Environ. Res. Public Health 2023, 20, 2461. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Yang, Q.-Y.; Su, K.-c.; Zhang, Z.-X. Spatiotemporal Dynamics and Obstacles of the Multi-Functionality of Land Use in Xiangxi, China. Appl. Sci. 2019, 9, 3649. [Google Scholar] [CrossRef]
- Lin, S.G.; Lu, R.C.; Liu, S.K.; Ye, Z.D.; Wei, Q.T.; Luo, J.L. Land use pattern and multifunctional evolution in the border areas in the Guangxi Zhuang Autonomous Region based on “production-living-ecosystem” space. Trans. Chin. Soc. Agric. Eng. 2021, 1817, 265–274. [Google Scholar]
- Reidsma, P.; König, H.; Feng, S.; Bezlepkina, I.; Nesheim, I.; Bonin, M.; Sghaier, M.; Purushothaman, S.; Sieber, S.; van Ittersum, M.K.; et al. Methods and tools for integrated assessment of land use policies on sustainable development in developing countries. Land Use Policy 2011, 28, 604–617. [Google Scholar] [CrossRef]
- Plieninger, T.; Torralba, M.; Hartel, T.; Fagerholm, N. Perceived ecosystem services synergies, trade-offs, and bundles in European high nature value farming landscapes. Landsc. Ecol. 2019, 34, 1565–1581. [Google Scholar] [CrossRef]
- Drescher, J.; Rembold, K.; Allen, K.; Beckschäfer, P.; Buchori, D.; Clough, Y.; Faust, H.; Fauzi, A.M.; Gunawan, D.; Hertel, D.; et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150275. [Google Scholar] [CrossRef]
- Manning, P.; van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; de Groot, R.S.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing landscape functions with broad-scale environmental data: Insights gained from a prototype development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Xue, D. Research on the Spatiotemporal Evolution of Land Use Functions and Its Coupling Relationship with Human Well-Being: A Case Study of Hehuang Valley. Master’s Thesis, The Henan Agricultural University, Zhengzhou, China, 2023. [Google Scholar]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.R.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the Trade-Offs and Synergies among Land Use Functions and Their Influencing Factors from a Geospatial Perspective: A Case Study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, X.; Yan, J. Trade-offs or synergies? Identifying dynamic land use functions and their interrelations at the grid scale in urban agglomeration. Cities 2023, 140, 104384. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Liu, R.; Jiang, Y.; Qie, L.; Pu, L. Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land 2022, 11, 286. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial Identification of Land Use Functions and Their Tradeoffs/Synergies in China: Implications for Sustainable Land Management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X.; Fan, Y.; Liu, J.; Shan, W.; Zhou, Y. Spatial-temporal characteristics and coordination status of the land use function transition in Jiangsu province from 1995 to 2015. J. Nat. Resour. 2019, 34, 689–706. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.B.; Pan, Y.C.; Tang, L.N.; Tu, M.G. Spatial differentiation characteristics and trade-off or synergy relationships of rural multi-functions based on multi-source data. Sci. Geogr. Sin. 2021, 40, 2036–2050. [Google Scholar]
- Li, X.; Fang, B.; Yin, R.; Rong, H. Spatial-temporal change and collaboration/trade-off relationship of “production-living-ecological” functions in county area of Jiangsu province. J. Nat. Resour. 2019, 34, 2363–2377. [Google Scholar]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2016, 576, 705–719. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, K.; Liang, Y. A Review of Agricultural Land Functions: Analysis and Visualization Based on Bibliometrics. Land 2023, 12, 561. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Sun, P.; Liu, J. Progress and prospects of multi-functionality of land use research. Prog. Geogr. 2016, 35, 1087–1099. (In Chinese) [Google Scholar]
- Morizet-Davis, J.; Marting Vidaurre, N.A.; Reinmuth, E.; Rezaei-Chiyaneh, E.; Schlecht, V.; Schmidt, S.; Singh, K.; Vargas-Carpintero, R.; Wagner, M.; Von Cossel, M. Ecosystem Services at the Farm Level—Overview, Synergies, Trade-Offs and Stakeholder Analysis. Glob. Chall. 2023, 7, 2200225. [Google Scholar] [CrossRef] [PubMed]
- Adolph, B.; Allen, M.; Beyuo, E.; Banuoku, D.; Barrett, S.; Bourgou, T.; Bwanausi, N.; Dakyaga, F.; Derbile, E.K.; Gubbels, P.; et al. Supporting smallholders’ decision making: Managing trade-offs and synergies for sustainable agricultural intensification. Int. J. Agric. Sustain. 2020, 19, 456–473. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the beijing-tianjin-hebei region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Sang, W. Land Use Trade-Offs and Synergies Based on Temporal and Spatial Patterns of Ecosystem Services in South China. Ecol. Indic. 2022, 143, 109335. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ren, J.; Xu, Y. Study on cultivated land use transformation based on multi-functional trade-off and collaborative analysis of cultivated land—A case study of Beijing. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 25–33. [Google Scholar]
- Fan, Y.; Jin, X.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.; Xiang, X.; Zhou, Y. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef]
- Zhu, J.; Gong, J.; Li, J. Spatiotemporal change of habitat quality in ecologically sensitive areas of eastern Qinghai-Tibet Plateau: A case study of the Hehuang Valley, Qinghai Province. Resour. Sci. 2020, 42, 991–1003. [Google Scholar] [CrossRef]
- Hou, G.; Xu, C.; Li, X.; Qi, B. Spatial Pattern of Water Conservation Function in Hehuang Valley. Ecol. Sci. 2021, 40, 169–176. (In Chinese) [Google Scholar]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xin, Z.; Yang, J.; Liu, J. The spatiotemporal changes and influencing factors of vegetation NDVI in the Hehuang Valley of Qinghai Province from 2000 to 2020. J. Soil Water Conserv. 2023, 13, 79–90. [Google Scholar]
- Guo, R.; Liu, F.G.; Chen, Q.; Zhou, Q.; Gu, X.J.; Cai, X.C.M. Reconstruction of cultivated land pattern in the upper reaches of the Yellow River in the late Northern Song Dynasty: Take Hehuang Valley as an example. J. Nat. Resour. 2021, 36, 27–37. [Google Scholar]
- Chen, R.; Zhou, Q.; Liu, F.; Zhang, Y.; Chen, Q.; Chen, Y. Contribution of climate change to food yield in Yellow River-Huangshui River Valley. Hubei Agric. Sci. 2018, 57, 114–119. (In Chinese) [Google Scholar]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4407714. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial Vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.10.2. User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Renard, K.G. Predicting Soil Erosion by Water: A guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Angima, S.D.; Stott, D.E.; O’Neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Ren, J.; Ma, R.R.; Huang, Y.H.; Wang, Q.X.; Guo, J.; Li, C.Y.; Zhou, W. Identifying the trade-offs and synergies of land use functions and their influencing factors of Lanzhou-xining urban agglomeration in the upper reaches of Yellow River Basin, China. Ecol. Indic. 2024, 158, 111279. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.Q.; Huang, A.; Li, Y.X.; Wang, H.; Lu, L.H.; Sun, P.L.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.-X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Wei, H.; Han, Q.; Yang, Y.; Li, L.; Liu, M. Spatial Heterogeneity of Watershed Ecosystem Health and Identification of Its Influencing Factors in a Mountain–Hill–Plain Region, Henan Province, China. Remote Sens. 2023, 15, 3751. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Wei, H.; Cai, E.; Xue, D.; Liu, M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land 2021, 10, 843. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, D.H.; Pan, J.H. A study on spatial pattern of GDP in Lanzhou City based on spatialization and land utilization. J. Northwest Norm. Univ. 2010, 46, 92–96+102. [Google Scholar]
- Zhang, Y.Y.; Cai, X.B.; Yang, C.; Song, X.X.; Li, R.D.; Li, E.H.; Wang, X.L. Driving force analysis of landscape pattern changes in Honghu Wetland Nature Reserve in recent 40 years. J. Lake Sci. 2019, 31, 171–182. [Google Scholar]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Long, H.; Ge, D.; Zhang, Y.; Tu, S.; Qu, Y.; Ma, L. Changing man-land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manag. 2018, 209, 440–451. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Whigham, D.F.; Weller, D.E.; Jordan, T.E.; Kazyak, P.F.; Hurd, M.K. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecol. Appl. 2005, 15, 137–153. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Ding, Z.; Weng, B.; Xing, K.; Wang, X.; Lu, N.; Ulgiati, S.; Dong, X. Ecosystem Services and Ecological Restoration in the Northern Shaanxi Loess Plateau, China, in Relation to Climate Fluctuation and Investments in Natural Capital. Sustainability 2017, 9, 199. [Google Scholar] [CrossRef]
- Zhen, L.; Wei, Y.; Xie, G.; Helming, K.; Cao, S.; Yang, L.; Pan, Y.; Koenig, H. Regional analysis of dynamic land use functions in China. Acta Ecol. Sin. 2010, 30, 6749–6761. [Google Scholar]
- Boone, R.B.; Conant, R.T.; Sircely, J.; Thornton, P.K.; Herrero, M. Climate change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 2018, 24, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Li, X.M.; Lin, H.X.; Chong, K. Crop improvement through temperature resilience. Annu. Rev. Plant Biol. 2019, 70, 753–780. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Liu, Y.; Huang, X.; Shi, R.; Yu, W.; Zhang, T. Exploring the driving forces of farmland loss under rapidurbanization using binary logistic regression and spatial regression: A case study of Shanghai and Hangzhou Bay. Ecol. Indic. 2018, 95, 455–467. [Google Scholar] [CrossRef]
- Li, B.J.; Chen, D.X.; Wu, S.H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze River Economic Belt, China. Ecol. Indic. 2023, 147, 109925. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Zheng, Y.; Wang, J.; Cui, H. Evolution of land use functions and their trade-offs/synergies relationship in resource-based cities. Ecol. Indic. 2024, 165, 112175. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Zhang, J.; Zhang, X.; Li, H.; Gao, F.; Zhan, Y. Spatial Identification and Evaluation of Land Use Multifunctions and Their Interrelationships Improve Territorial Space Zoning Management in Harbin, China. Land 2024, 13, 1092. [Google Scholar] [CrossRef]
- Okorondu, J.; Umar, N.A.; Ulor, C.O.; Onwuagba, C.G.; Diagi, B.E.; Ajiere, S.I.; Nwaogu, C. Anthropogenic Activities as Primary Drivers of Environmental Pollution and Loss of Biodiversity A Review. Int. J. Trend Sci. Res. Dev. 2022, 6, 621–643. [Google Scholar]
- Singh, R.L.; Singh, P.K. Global environmental problems. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2017; pp. 13–41. [Google Scholar]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
Data Type | Data Name | Data Format | Data Source | Data Use |
---|---|---|---|---|
Natural geographic data | DEM Elevation Data | Raster data with 30 m resolution | Geospatial Data Cloud (http://www.gscloud.cn/search, accessed on 8 June 2022) | Basic parameter input for soil erosion equation and wind erosion model |
MOD13Q1 | Raster data with 250 m resolution | NASA website (https://www.nasa.gov/, accessed on 8 June 2023) | Obtain Normalized Difference Vegetation Index (NDVI) and vegetation coverage data | |
Soil Moisture Data | Raster data with 1000 m resolution | Cold and Arid Regions Science Data Center | Topsoil moisture factor (0–10 cm depth range) | |
Precipitation Data | List data | China Meteorological Data Network (http://data.cma.cn/, accessed on 5 July 2022) | Obtain rainfall erosion factor and annual average rainfall raster maps | |
Temperature, Precipitation, Radiation Data | List data | China Meteorological Data Network (http://data.cma.cn/, accessed on 5 July 2022) | Obtain monthly average temperature, radiation raster data, and annual potential evaporation data | |
Socio-economic statistical data | Annual Meat, Grain Production, and Population Data | Statistical data | Qinghai Statistical Yearbook, China County Statistical Yearbook | Obtain grain and meat production and county population data |
Land use-related data | Land Use Remote Sensing Data | Raster data with 30 m resolution | Resources, Environment and Science and Data Center (http://www.resdc.cn/, accessed on 2 October 2022) | Basic parameter input for NPP (Net Primary Productivity), water conservation, and soil erosion models |
Global Land Cover Data (China subset) | Raster data with 100 m resolution | Cold and Arid Regions Science Data Center | Obtain vegetation type data for the study area | |
Road Network Data | Vector data | Resources, Environment, and Science and Data Center (http://www.resdc.cn/, accessed on 2 January 2023) | Obtain road and railway data for 1995, 2012, and 2020 | |
Night Light Index [49] | Raster data with 1000 m resolution | An improved time–series DMSP–OLS–like data (1992–2021) in China by integrating DMSP–OLS and SNPP–VIIRS—Harvard Dataverse | Input for the PLUS model |
Functions (Weight) | Indicators (Indicator Sign)/Weight | Indicator Description | Calculation Method | Formula/Calculation Description |
---|---|---|---|---|
Ecological Function (1/3) | NPP (+)/0.251 | NPP can directly reflect the ability of vegetation community to produce organic matter in natural environment. | NPP was estimated by utilizing the Carnegie-Ames-Stanford Approach based on the principle of light energy utilization. The detailed model and parameter selection are based on Zhu et al. [50]. NPPAPAR× ε | NPP represents the net primary productivity of the pixel in month (g·C·m−2); APAR is the photosynthetically active radiation of the pixel in month (MJ·m−2); ε is the actual light-use efficiency of the pixel in month (g·C·MJ−1). |
Water Conservation (+)/0.484 | Water conservation can provide support for improving regional water circulation and rational utilization of water resources. | Water conservation was assessed by the Water Yield module of the InVEST model [51] based on the principle of water balance. WY(x) = (1 − ) × P(x) | WY(x) is the annual water yield of a landscape type (mm); AET(x) is the actual annual evapotranspiration of the grid cell (mm); P(x) is the annual precipitation of the grid cell (mm). | |
Soil Erosion (–)/0.265 | Soil erosion refers to the process of soil erosion, transport and accumulation, which affects the stability and productivity of ecosystems. | The RUSLE is used to quantify soil erosion in the Hehuang Valley. Soil retention is determined by the difference between potential soil erosion and actual soil erosion [52,53]. USLE = R × K × C × LS × P | USLE is the actual soil erosion amount (t·hm−2·a−1); R is the rainfall erosivity factor (MJ·mm·hm−2·h−1·a−1); K is the soil erodibility factor (t·hm2·h·MJ−1·mm−1·hm−2); LS is the topographic factor; C is the cover management factor; P is the support practice factor. | |
Social Function (1/3) | Residential Capacity (+)/0.675 | Due to the fixed location and area of land, it has a spatial carrying function and provides space for human habitation and activities. | Using the Habitat Index and population size to quantify indicators of residential capacity and the detailed formulas could be found be in [54,55]. = | is the population density of the grid ; and are the areas of urban and rural residential points in grid i and county j, respectively; and represent the habitation indices of grid i and county j, respectively; is the population of county j; OLS and are the value and maximum value of nighttime lights in grid x; OLS′ represents the normalized nighttime light value; is the maximum normalized difference vegetation index. |
Travel Convenience (+)/0.182 | Travel convenience is the basic support of social functions. An effective road system can promote the overall progress of society and improve residents’ sense of happiness. | Calculating the road network density of each 1 km grid cell to quantify the level of travel security. | Establish a 1 km grid in the Hehuang Valley, intersect with road data, calculate the road length within each grid cell, summarize by the FID field of the grid, and obtain the total road length within each 1 km grid cell. | |
Aesthetic Landscape (+)/0.143 | Aesthetic landscapes are a key component of the social and life functions of land, which can improve quality of life and psychological well-being, promote social interaction, and provide educational functions. | Measured based on the value equivalent method [56] and appropriately adjusted using the local grown grains. Ea = × | Ea is the ecosystem service value per unit equivalent factor in the Hehuang Valley (yuan/hectare); AOV is the average agricultural production value over the years in the Hehuang Valley (yuan); S is the average grain planting area over the years in the Hehuang Valley (hectares). | |
Economic Production Function (1/3) | Grain Output (+)/0.217 | The Hehuang Valley is the most important grain-producing area in Qinghai Province and plays an important role in the land economic production. | Spatialization of statistical grain output data based on the significant linear correlation between cropland NDVI and crop product yields [57,58]. Gi = Gsum × | Gi is the grain output in grid i (t); Gsum is the total grain output in the Hehuang Valley (t); NDVIi is the NDVI value of cultivated land in grid i; NDVIsum is the sum of NDVI values of cultivated land in the study area. |
Livestock Product Supply (+)/0.115 | The Hehuang Valley has a large amount of temperate grassland suitable for grazing, and livestock products are an indispensable daily necessity for local residents. | Spatialization of statistical livestock production data based on the significant linear correlation between grassland NDVI and livestock product yields [57,58]. Li = Lsum × | Li is the meat output in grid i (t); Lsum is the total meat output in the Hehuang Valley (t); NDVIi is the NDVI value of grassland in grid i; NDVIsum is the sum of NDVI values of grassland in the study area. | |
GDP (+)/0.668 | GDP represents the economic development level of a region and is also an important indicator of regional land economic output. | GDP is spatialized by the GDP statistical value of the county-level administrative, the land use type, and nighttime light brightness et al. [22,59]. | GDPij is the raster unit value after spatialization; GDP is the GDP statistical value of the county-level administrative unit where the raster unit is located; Qij is the total weight of land use type, nighttime light brightness, and residential point density in the raster unit; Q is the total weight of land use type, nighttime light brightness, and residential point density in the county-level administrative unit where the raster unit is located. |
Type | Factors | Specific Calculation | Code |
---|---|---|---|
Natural conditions | Elevation | DEM | X1 |
Slope | Extracted from DEM | X2 | |
Temperature | Average annual temperature over five periods | X3 | |
Precipitation | Average annual precipitation over five periods | X4 | |
Accessibility | Distance to County | ArcGIS tool: Euclidean distance (County locations in 2020) | X5 |
Distance to City | ArcGIS tool: Euclidean distance (City locations in 2020) | X6 | |
Human Factors | Farmland Non-agricultural Rate | Proportion of construction land per 1 km2 unit, annual average | X7 |
Land Use Intensity | Assigned based on different land types, annual average | X8 | |
Human Activity Intensity | Annual average nighttime light index | X9 |
Type | Unused Land | Forest, Grassland, Water Land | Agricultural Land | Construction Land |
---|---|---|---|---|
Land Use Type | Unused land, Permanent ice and snow | Forest land, Grassland, Lakes | Arable land, Reservoirs, Ponds, and River channels | Beach land, Urban and rural land, Industrial and mining land, Residential land |
Classification Index | 1 | 2 | 3 | 4 |
County | Trade-off and Synergy Types |
---|---|
Ledu District | Synergy (++–) |
Tongren County | Synergy (++–) |
Guide County | Synergy (+++) |
Minhe County | Synergy (++–) |
Ping’an District | Synergy (++–) |
Huangyuan County | Trade-off (–––) |
Menyuan County | Trade-off (–––) |
Huzhu County | Trade-off (––+) |
Jainca County | Synergy (+++) |
Huangzhong County | Trade-off (–––) |
Xunhua County | Synergy (++–) |
Datong County | Trade-off (––+) |
Xining Urban Area | Trade-off (––+) |
Hualong County | Trade-off (––+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ji, W.; Meng, Q.; Zhang, Y.; Li, L.; Liu, M.; Wei, H. Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau. Diversity 2024, 16, 618. https://doi.org/10.3390/d16100618
Ma Y, Ji W, Meng Q, Zhang Y, Li L, Liu M, Wei H. Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau. Diversity. 2024; 16(10):618. https://doi.org/10.3390/d16100618
Chicago/Turabian StyleMa, Yu, Wenfeng Ji, Qingxiang Meng, Yali Zhang, Ling Li, Mengxue Liu, and Hejie Wei. 2024. "Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau" Diversity 16, no. 10: 618. https://doi.org/10.3390/d16100618
APA StyleMa, Y., Ji, W., Meng, Q., Zhang, Y., Li, L., Liu, M., & Wei, H. (2024). Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau. Diversity, 16(10), 618. https://doi.org/10.3390/d16100618