Testing White’s Floristic Impoverishment Hypothesis in the Forest-Savanna Transition Zones of Africa
Abstract
:1. Introduction
“The floras of the Guineo-Congolian and Zambezian Regions are almost mutually exclusive. There is, however a transition zone between them, up to 500 km wide and of considerable complexity. In it, an impoverished Guineo-Congolian flora and an even more impoverished Zambesian flora interdigitate or occur in mosaic, and locally intermingle.”Frank White (1983) [1]
- –
- Do transition zones contain fewer species than forest or savanna core zones?
- –
- Do transition zones hold less phylogenetic diversity than forest or savanna core zones?
- –
- Which regions of Africa hold the highest woody plant species richness and phylogenetic diversity for forest and savanna assemblages?
2. Methods
2.1. Species Biome
2.2. Species Occurrence
2.3. Floristic Assemblages
2.4. Phylogenetic Reconstruction
2.5. Diversity Metrics
2.6. Statistical Analyses
3. Results
3.1. Species Richness
3.2. Phylogenetic Diversity
4. Discussion
4.1. Forest Diversity
4.2. Savanna Diversity
4.3. Transition Zones as Centres of Evolutionary Diversity
4.4. Caveats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- White, F. The Vegetation of Africa; UNESCO: Paris, France, 1983; ISBN 9231019554. [Google Scholar]
- FAO. Global Ecological Zoning for the Global Forest Resources Assessment 2000; FAO: Rome, Italy, 2000. [Google Scholar]
- Burgess, N.; Hales, J.D.; Underwood, E.; Dinerstein, E.; Olson, D.; Itoua, I.; Schipper, J.; Ricketts, T.; Newman, K. Terrestrial Ecoregions of Africa and Madagascar: A Conservation Assessment; Island Press: Washington, DC, USA, 2004; ISBN 1-55963-364-6. [Google Scholar]
- Osborne, C.P.; Charles-Dominique, T.; Stevens, N.; Bond, W.J.; Midgley, G.; Lehmann, C.E.R. Human Impacts in African Savannas Are Mediated by Plant Functional Traits. New Phytol. 2018, 220, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhi, Y.; Adu-Bredu, S.; Asare, R.A.; Lewis, S.L.; Mayaux, P. African Rainforests: Past, Present and Future. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.M.; Pritchard, R.; McNicol, I.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem Services from Southern African Woodlands and Their Future under Global Change. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosef, M.S.M.; Dauby, G.; Blach-Overgaard, A.; van der Burgt, X.; Catarino, L.; Damen, T.; Deblauwe, V.; Dessein, S.; Dransfield, J.; Droissart, V.; et al. Exploring the Floristic Diversity of Tropical Africa. BMC Biol. 2017, 15, 15. [Google Scholar] [CrossRef]
- Droissart, V.; Dauby, G.; Hardy, O.J.; Deblauwe, V.; Harris, D.J.; Janssens, S.; Mackinder, B.A.; Blach-Overgaard, A.; Sonké, B.; Sosef, M.S.M.; et al. Beyond Trees: Biogeographical Regionalization of Tropical Africa. J. Biogeogr. 2018, 45, 1153–1167. [Google Scholar] [CrossRef]
- Frost, P. The Ecology of Miombo Woodlands. In The Miombo in Transition: Woodlands and Welfare in Africa; Centre for International Forestry Research: Bogor, Indonesia, 1996; Volume 266. [Google Scholar]
- Scheffer, M.; Carpenter, S.R. Catastrophic Regime Shifts in Ecosystems: Linking Theory to Observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Staver, A.C.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef] [Green Version]
- Hirota, M.; Holmgren, M.; Van Nes, E.H.; Scheffer, M. Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science 2011, 334, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J. Open Ecosystems: Ecology and Evolution beyond the Forest Edge; Oxford University Press: Oxford, UK, 2019; ISBN 9780192540706. [Google Scholar]
- Beckett, H.; Staver, A.C.; Charles-Dominique, T.; Bond, W.J. Pathways of Savannization in a Mesic African Savanna–Forest Mosaic Following an Extreme Fire. J. Ecol. 2022, 110, 902–915. [Google Scholar] [CrossRef]
- Oliveras, I.; Malhi, Y. Many Shades of Green: The Dynamic Tropical Forest–Savannah Transition Zones. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150308. [Google Scholar] [CrossRef] [Green Version]
- Ratnam, J.; Bond, W.J.; Fensham, R.J.; Hoffmann, W.A.; Archibald, S.; Lehmann, C.E.R.; Anderson, M.T.; Higgins, S.I.; Sankaran, M. When Is a “forest” a Savanna, and Why Does It Matter? Glob. Ecol. Biogeogr. 2011, 20, 653–660. [Google Scholar] [CrossRef]
- Torello-Raventos, M.; Feldpausch, T.R.; Veenendaal, E.; Schrodt, F.; Saiz, G.; Domingues, T.F.; Djagbletey, G.; Ford, A.; Kemp, J.; Marimon, B.S.; et al. On the Delineation of Tropical Vegetation Types with an Emphasis on Forest/Savanna Transitions. Plant Ecol. Divers. 2013, 6, 101–137. [Google Scholar] [CrossRef]
- Aleman, J.C.; Fayolle, A.; Favier, C.; Staver, A.C.; Dexter, K.G.; Ryan, C.M.; Azihou, A.F.; Bauman, D.; te Beest, M.; Chidumayo, E.N.; et al. Floristic Evidence for Alternative Biome States in Tropical Africa. Proc. Natl. Acad. Sci. 2020, 117, 28183–28190. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.I.; Conradi, T.; Kruger, L.M.; Slingsby, J.A. Limited Climatic Space for Alternative Ecosystem States in Africa. Science 2023, 1042, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.M. Climatic Gradients in Woody Plant Species Richness: Towards an Explanation Based on an Analysis of Southern Africa’s Woody Flora. J. Biogeogr. 1993, 20, 181. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Whittaker, R.J.; Field, R. Climate and Woody Plant Diversity in Southern Africa: Relationships at Species, Genus and Family Levels. Ecography 1998, 21, 495–509. [Google Scholar] [CrossRef]
- Linder, H.P. Plant Diversity and Endemism in Sub-Saharan Tropical Africa. J. Biogeogr. 2001, 28, 169–182. [Google Scholar] [CrossRef]
- Linder, H.P.; Lovett, J.C.; Mutke, J.; Barthlott, W. A Numerical Re-Evaluation of the Sub-Saharan Phytochoria of Mainland Africa a Numerical Re-Evaluation of the Sub-Saharan Phytochoria of Mainland Africa. Biol. Skr. 2005, 55, 229–252. [Google Scholar]
- Linder, H.P.; De Klerk, H.M.; Born, J.; Burgess, N.D.; Fjeldså, J.; Rahbek, C. The Partitioning of Africa: Statistically Defined Biogeographical Regions in Sub-Saharan Africa. J. Biogeogr. 2012, 39, 1189–1205. [Google Scholar] [CrossRef]
- Taplin, J.R.D.; Lovett, J.C. Can We Predict Centres of Plant Species Richness and Rarity from Environmental Variables in Sub-Saharan Africa? Bot. J. Linn. Soc. 2003, 142, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.C.; De Vries, H.; Guppy, H.B.; Reid, E.M.; Small, J. Age and Area: A Study in Geographical Distribution and Origin of Species; CUP Archive: Cambridge, UK, 1922. [Google Scholar]
- Linder, H.P. The Evolution of African Plant Diversity. Front. Ecol. Evol. 2014, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Endler, J.A. Geographic Variation, Speciation, and Clines; Princeton University Press: Princeton, NJ, USA, 1977. [Google Scholar]
- Neves, D.M.; Dexter, K.G.; Baker, T.R.; Coelho de Souza, F.; Oliveira-Filho, A.T.; Queiroz, L.P.; Lima, H.C.; Simon, M.F.; Lewis, G.P.; Segovia, R.A.; et al. Evolutionary Diversity in Tropical Tree Communities Peaks at Intermediate Precipitation. Sci. Rep. 2020, 10, 1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, J.A.; Orr, A.H. Speciation; Sinauer Associates: Sunderland, MA, USA, 2004; ISBN 0878930892. [Google Scholar]
- Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
- MacArthur, R.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Haffer, J. Speciation in Amazonian Forest Birds. Science 1969, 165, 131–137. [Google Scholar] [CrossRef]
- Prance, G.T. Forest Refuges: Evidence from Woody Angiosperms. In Biological Diversification in the Tropics; Columbia University Press: New York, NY, USA, 1982; pp. 137–158. [Google Scholar]
- Mayr, E.; O’Hara, R.J. The Biogeographic Evidence Supporting the Pleistocene Forest Refuge Hypothesis. Evolution 1986, 40, 55–67. [Google Scholar] [CrossRef]
- Duminil, J.; Mona, S.; Mardulyn, P.; Doumenge, C.; Walmacq, F.; Doucet, J.L.; Hardy, O.J. Late Pleistocene Molecular Dating of Past Population Fragmentation and Demographic Changes in African Rain Forest Tree Species Supports the Forest Refuge Hypothesis. J. Biogeogr. 2015, 42, 1443–1454. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. The Genetical Theory of Natural Selection; Clarendon Press: Oxford, UK, 1930. [Google Scholar]
- Endler, J.A. Problems in Distinguishing Historical from Ecological Factors in Biogeography. Integr. Comp. Biol. 1982, 22, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.B.; Wayne, R.K.; Girman, D.J.; Bruford, M.W. A Role for Ecotones in Generating Rainforest Biodiversity. Science 1997, 276, 1855–1857. [Google Scholar] [CrossRef]
- Smith, T.B.; Schneider, C.J.; Holder, K. Refugial Isolation versus Ecological Gradients: Testing Alternative Mechanisms of Evolutionary Divergence in Four Rainforest Vertebrates. Genetica 2001, 112–113, 383–398. [Google Scholar] [CrossRef]
- Schneider, C.J.; Smith, T.B.; Larison, B.; Moritz, C. A Test of Alternative Models of Diversification in Tropical Rainforests: Ecological Gradients vs. Rainforest Refugia. Proc. Natl. Acad. Sci. USA 1999, 96, 13869–13873. [Google Scholar] [CrossRef]
- Freedman, A.H.; Harrigan, R.J.; Zhen, Y.; Hamilton, A.M.; Smith, T.B. Evidence for Ecotone Speciation across an African Rainforest-Savanna Gradient. Mol. Ecol. 2023, 32, 2287–2300. [Google Scholar] [CrossRef]
- Moritz, C.; Patton, J.L.; Schneider, C.J.; Smith, T.B. Diversification of Rainforest Faunas: An Integrated Molecular Approach. Annu. Rev. Ecol. Syst. 2000, 31, 533–563. [Google Scholar] [CrossRef] [Green Version]
- Stebbins, L.G. Flowering Plants: Evolution Above the Species Level; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Vasconcelos, T.; Meara, B.C.O.; Beaulieu, J.M. Retiring “ Cradles ” and “ Museums ” of Biodiversity. Am. Nat. 2022, 199, 717412. [Google Scholar] [CrossRef]
- Dagallier, L.P.M.J.; Janssens, S.B.; Dauby, G.; Blach-Overgaard, A.; Mackinder, B.A.; Droissart, V.; Svenning, J.C.; Sosef, M.S.M.; Stévart, T.; Harris, D.J.; et al. Cradles and Museums of Generic Plant Diversity across Tropical Africa. New Phytol. 2020, 225, 2196–2213. [Google Scholar] [CrossRef] [Green Version]
- Dauby, G.; Zaiss, R.; Blach-Overgaard, A.; Catarino, L.; Damen, T.; Deblauwe, V.; Dessein, S.; Dransfield, J.; Droissart, V.; Duarte, M.C.; et al. RAINBIO: A Mega-Database of Tropical African Vascular Plants Distributions. PhytoKeys 2016, 74, 9723. [Google Scholar] [CrossRef]
- Janssens, S.; Couvreur, T.L.P.; Mertens, A.; Dauby, G.; Dagallier, L.-P.; Vanden Abeele, S.; Vandelook, F.; Mascarello, M.; Beeckman, H.; Sosef, M.; et al. A Large-Scale Species Level Dated Angiosperm Phylogeny for Evolutionary and Ecological Analyses. Biodivers. Data J. 2020, 8, e39677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishler, B.D.; Knerr, N.; González-Orozco, C.E.; Thornhill, A.H.; Laffan, S.W.; Miller, J.T. Phylogenetic Measures of Biodiversity and Neo- and Paleo-Endemism in Australian Acacia. Nat. Commun. 2014, 5, 4473. [Google Scholar] [CrossRef]
- Gorel, A.-P.; Hardy, O.J.; Dauby, G.; Dexter, K.G.; Segovia, R.A.; Steppe, K.; Fayolle, A. Climatic Niche Lability but Growth Form Conservatism in the African Woody Flora. Ecol. Lett. 2022, 25, 1164–1176. [Google Scholar] [CrossRef]
- Taugourdeau, S.; Daget, P.; Chatelain, C.; Mathieu, D.; Juanes, X.; Huguenin, J.; Ickowicz, A. FLOTROP, a Massive Contribution to Plant Diversity Data for Open Ecosystems in Northern Tropical Africa. Sci. Data 2019, 6, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Kyalangalilwa, B.; Boatwright, J.S.; Daru, B.H.; Maurin, O.; van der Bank, M. Phylogenetic Position and Revised Classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, Including New Combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 2013, 172, 500–523. [Google Scholar] [CrossRef] [Green Version]
- Honorio Coronado, E.N.; Dexter, K.G.; Pennington, R.T.; Chave, J.; Lewis, S.L.; Alexiades, M.N.; Alvarez, E.; Alves de Oliveira, A.; Amaral, I.L.; Araujo-Murakami, A.; et al. Phylogenetic Diversity of Amazonian Tree Communities. Divers. Distrib. 2015, 21, 1295–1307. [Google Scholar] [CrossRef]
- Daru, B.H.; Park, D.S.; Primack, R.B.; Willis, C.G.; Barrington, D.S.; Whitfeld, T.J.S.; Seidler, T.G.; Sweeney, P.W.; Foster, D.R.; Ellison, A.M.; et al. Widespread Sampling Biases in Herbaria Revealed from Large-Scale Digitization. New Phytol. 2018, 217, 939–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, C.A.M.; Wieringa, J.J.; Hawthorne, W.D. An Interpolated Biogeographical Framework for Tropical Africa Using Plant Species Distributions and the Physical Environment. J. Biogeogr. 2021, 48, 23–36. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Qian, H.V. PhyloMaker: An R Package That Can Generate Very Large Phylogenies for Vascular Plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Brown, J.W. Constructing a Broadly Inclusive Seed Plant Phylogeny. Am. J. Bot. 2018, 105, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Jin, Y. Are Phylogenies Resolved at the Genus Level Appropriate for Studies on Phylogenetic Structure of Species Assemblages? Plant Divers. 2021, 43, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Trotta, L.; Marx, H.E.; Allen, J.M.; Sun, M.; Soltis, D.E.; Soltis, P.S.; Guralnick, R.P.; Baiser, B. For Common Community Phylogenetic Analyses, Go Ahead and Use Synthesis Phylogenies. Ecology 2019, 100, e02788. [Google Scholar] [CrossRef] [Green Version]
- Tsirogiannis, C.; Sandel, B. PhyloMeasures: A Package for Computing Phylogenetic Biodiversity Measures and Their Statistical Moments. Ecography 2016, 39, 709–714. [Google Scholar] [CrossRef]
- Tucker, C.M.; Cadotte, M.W.; Carvalho, S.B.; Jonathan Davies, T.; Ferrier, S.; Fritz, S.A.; Grenyer, R.; Helmus, M.R.; Jin, L.S.; Mooers, A.O.; et al. A Guide to Phylogenetic Metrics for Conservation, Community Ecology and Macroecology. Biol. Rev. 2017, 92, 698–715. [Google Scholar] [CrossRef]
- Mazel, F.; Davies, T.J.; Gallien, L.; Renaud, J.; Groussin, M.; Münkemüller, T.; Thuiller, W. Influence of Tree Shape and Evolutionary Time-Scale on Phylogenetic Diversity Metrics. Ecography 2015, 39, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Mangiafico, S.S. Rcompanion: Functions to Support Extension Education Program Evaluation. Rutgers Cooperative Extension, New Brunswick, New Jersey, USA. Version 2.4.30. 2023. Available online: https://CRAN.R-project.org/package=rcompanion/ (accessed on 1 January 2023).
- R Core Team. R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- de Miranda, P.L.S.; Dexter, K.G.; Swaine, M.D.; de Oliveira-Filho, A.T.; Hardy, O.J.; Fayolle, A. Dissecting the Difference in Tree Species Richness between Africa and South America. Proc. Natl. Acad. Sci. USA 2022, 119, e2112336119. [Google Scholar] [CrossRef] [PubMed]
- Maley, J. The African Rain Forest—Main Characteristics of Changes in Vegetation and Climate from the Upper Cretaceous to the Quaternary; Cambridge University Press: Cambridge, UK, 1996; Volume 104, ISBN 0269727000. [Google Scholar]
- Maley, J.; Doumenge, C.; Giresse, P.; Mahé, G.; Philippon, N.; Hubau, W.; Lokonda, M.O.; Tshibamba, J.M.; Chepstow-Lusty, A. Late Holocene Forest Contraction and Fragmentation in Central Africa. Quat. Res. 2018, 89, 43–59. [Google Scholar] [CrossRef]
- Couvreur, T.L.P.; Dauby, G.; Blach-Overgaard, A.; Deblauwe, V.; Dessein, S.; Droissart, V.; Hardy, O.J.; Harris, D.J.; Janssens, S.B.; Ley, A.C.; et al. Tectonics, Climate and the Diversification of the Tropical African Terrestrial Flora and Fauna. Biol. Rev. 2021, 96, 16–51. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, T.L.P.; Chatrou, L.W.; Sosef, M.S.M.; Richardson, J.E. Molecular Phylogenetics Reveal Multiple Tertiary Vicariance Origins of the African Rain Forest Trees. BMC Biol. 2008, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauby, G.; Duminil, J.; Heuertz, M.; Koffi, G.K.; Stévart, T.; Hardy, O.J. Congruent Phylogeographical Patterns of Eight Tree Species in Atlantic Central Africa Provide Insights into the Past Dynamics of Forest Cover. Mol. Ecol. 2014, 23, 2299–2312. [Google Scholar] [CrossRef] [Green Version]
- Vanden Abeele, S.; Janssens, S.B.; Piñeiro, R.; Hardy, O.J. Evidence of Past Forest Fragmentation in the Congo Basin from the Phylogeography of a Shade-Tolerant Tree with Limited Seed Dispersal: Scorodophloeus Zenkeri (Fabaceae, Detarioideae). BMC Ecol. Evol. 2021, 21, 50. [Google Scholar] [CrossRef]
- Hardy, O.J.; Born, C.; Budde, K.; Daïnou, K.; Dauby, G.; Duminil, J.; Ewédjé, E.E.B.K.; Gomez, C.; Heuertz, M.; Koffi, G.K.; et al. Comparative Phylogeography of African Rain Forest Trees: A Review of Genetic Signatures of Vegetation History in the Guineo-Congolian Region. Comptes Rendus—Geosci. 2013, 345, 284–296. [Google Scholar] [CrossRef]
- Vincens, A.; Garcin, Y.; Buchet, G. Influence of Rainfall Seasonality on African Lowland Vegetation during the Late Quaternary: Pollen Evidence from Lake Masoko, Tanzania. J. Biogeogr. 2007, 34, 1274–1288. [Google Scholar] [CrossRef]
- deMenocal, P.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Linder, H.P. East African Cenozoic Vegetation History. Evol. Anthropol. 2017, 26, 300–312. [Google Scholar] [CrossRef]
- Hardy, O.J.; Senterre, B. Characterizing the Phylogenetic Structure of Communities by an Additive Partitioning of Phylogenetic Diversity. J. Ecol. 2007, 95, 493–506. [Google Scholar] [CrossRef]
- Lovett, J.C.; Marchant, R.; Taplin, J.; Küper, W. The Oldest Rainforests in Africa: Stability or Resilience for Survival and Diversity? In Phylogeny and Conservation; Purvis, A., Gittleman, J.L., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 198–229. [Google Scholar]
- Burgess, N.D.; Butynski, T.M.; Cordeiro, N.J.; Doggart, N.H.; Fjeldså, J.; Howell, K.M.; Kilahama, F.B.; Loader, S.P.; Lovett, J.C.; Mbilinyi, B.; et al. The Biological Importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol. Conserv. 2007, 134, 209–231. [Google Scholar] [CrossRef]
- Lovett, J.C. Eastern Arc Moist Forest Flora. In Biogeography and Ecology of the Rain Forests of Eastern Africa; Lovett, J.C., Wasser, S.K., Eds.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Willis, K.J.; McElwain, J. The Evolution of Plants; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Fjeldså, J.; Lovett, J.C. Geographical Patterns of Old and Young Species in African Forest Biota: The Significance of Specific Montane Areas as Evolutionary Centres. Biodivers. Conserv. 1997, 6, 325–346. [Google Scholar] [CrossRef]
- Finch, J.; Leng, M.J.; Marchant, R. Late Quaternary Vegetation Dynamics in a Biodiversity Hotspot, the Uluguru Mountains of Tanzania. Quat. Res. 2009, 72, 111–122. [Google Scholar] [CrossRef]
- Fayolle, A.; Swaine, M.D.; Aleman, J.; Azihou, A.F.; Bauman, D.; Beest, M.T.; Chidumayo, E.N.; Cromsigt, J.P.G.M.; Dessard, H.; Finckh, M.; et al. A Sharp Floristic Discontinuity Revealed by the Biogeographic Regionalization of African Savannas. J. Biogeogr. 2019, 46, 454–465. [Google Scholar] [CrossRef]
- Boom, A.F.; Migliore, J.; Kaymak, E.; Meerts, P.; Hardy, O.J. Plastid Introgression and Evolution of African Miombo Woodlands: New Insights from the Plastome-Based Phylogeny of Brachystegia Trees. J. Biogeogr. 2021, 48, 933–946. [Google Scholar] [CrossRef]
- Boom, A.F.; Migliore, J.; Kaymak, E.; Meerts, P.; Hardy, O.J. Nuclear Ribosomal Phylogeny of Brachystegia: New Markers for New Insights about Rain Forests and Miombo Woodlands Evolution. Plant Ecol. Evol. 2022, 155, 301–314. [Google Scholar] [CrossRef]
- Griffiths, A.R.; Silman, M.R.; Farfan-Rios, W.; Feeley, K.J.; Cabrera, K.G.; Meir, P.; Salinas, N.; Segovia, R.A.; Dexter, K.G. Evolutionary Diversity Peaks at Mid-Elevations Along an Amazon-to-Andes Elevation Gradient. Front. Ecol. Evol. 2021, 9, 680041. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Mortier, F.; Bastin, J.F.; Cornu, G.; Barbier, N.; Bayol, N.; Bénédet, F.; Bry, X.; Dauby, G.; Deblauwe, V.; et al. Unveiling African Rainforest Composition and Vulnerability to Global Change. Nature 2021, 593, 90–94. [Google Scholar] [CrossRef]
- Donoghue, M.J.; Edwards, E.J. Biome Shifts and Niche Evolution in Plants. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 547–572. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Ledezma, J.N.; Simon, L.M.; Diniz-Filho, J.A.F.; Villalobos, F. The Geographical Diversification of Furnariides: The Role of Forest versus Open Habitats in Driving Species Richness Gradients. J. Biogeogr. 2017, 44, 1683–1693. [Google Scholar] [CrossRef]
- Dongmo, M.A.K.; Hanna, R.; Smith, T.B.; Fiaboe, K.K.M.; Fomena, A.; Bonebrake, T.C. Local Adaptation in Thermal Tolerance for a Tropical Butterfly across Ecotone and Rainforest Habitats. Biol. Open 2021, 10, 238117. [Google Scholar] [CrossRef] [PubMed]
- de la Estrella, M.; Forest, F.; Wieringa, J.J.; Fougère-Danezan, M.; Bruneau, A. Insights on the Evolutionary Origin of Detarioideae, a Clade of Ecologically Dominant Tropical African Trees. New Phytol. 2017, 214, 1722–1735. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Anhuf, D.; Ledru, M.P.; Behling, H.; Da Cruz, F.W.; Cordeiro, R.C.; Van der Hammen, T.; Karmann, I.; Marengo, J.A.; De Oliveira, P.E.; Pessenda, L.; et al. Paleo-Environmental Change in Amazonian and African Rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 510–527. [Google Scholar] [CrossRef]
- Adjossou, K.; Kokou, K.; Deconchat, M. Floristic Composition and Turnover Analysis in Dahomey Gap and the Surrounding Sub-Humid Togolese Mountain Minor Forest Refuges: Importance for Biogeography and Biodiversity Conservation in Sub-Saharan Africa. Ecol. Evol. 2022, 12, e9304. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.B.; Kark, S.; Schneider, C.J.; Wayne, R.K.; Moritz, C. Biodiversity Hotspots and beyond: The Need for Preserving Environmental Transitions. Trends Ecol. Evol. 2001, 16, 431. [Google Scholar] [CrossRef]
- Moritz, C. Strategies to Protect Biological Diversity and the Evolutionary Processes That Sustain It. Syst. Biol. 2002, 51, 238–254. [Google Scholar] [CrossRef]
- Droissart, V.; Hardy, O.J.; Sonké, B.; Dahdouh-Guebas, F.; Stévart, T. Subsampling Herbarium Collections to Assess Geographic Diversity Gradients: A Case Study with Endemic Orchidaceae and Rubiaceae in Cameroon. Biotropica 2012, 44, 44–52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rees, M.; Godlee, J.L.; Harris, D.J.; Ryan, C.M.; Dexter, K.G. Testing White’s Floristic Impoverishment Hypothesis in the Forest-Savanna Transition Zones of Africa. Diversity 2023, 15, 833. https://doi.org/10.3390/d15070833
Rees M, Godlee JL, Harris DJ, Ryan CM, Dexter KG. Testing White’s Floristic Impoverishment Hypothesis in the Forest-Savanna Transition Zones of Africa. Diversity. 2023; 15(7):833. https://doi.org/10.3390/d15070833
Chicago/Turabian StyleRees, Mathew, John L. Godlee, David J. Harris, Casey M. Ryan, and Kyle G. Dexter. 2023. "Testing White’s Floristic Impoverishment Hypothesis in the Forest-Savanna Transition Zones of Africa" Diversity 15, no. 7: 833. https://doi.org/10.3390/d15070833
APA StyleRees, M., Godlee, J. L., Harris, D. J., Ryan, C. M., & Dexter, K. G. (2023). Testing White’s Floristic Impoverishment Hypothesis in the Forest-Savanna Transition Zones of Africa. Diversity, 15(7), 833. https://doi.org/10.3390/d15070833