Alternaria muriformis sp. nov., a New Species in Section Chalastospora Isolated from Herbivore Dung in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Isolation of Fungi
2.2. DNA Extraction, PCR, Sequencing, and Phylogenetic Analysis
Species | Section | Isolates 1 | Sources | GenBank Accession Numbers 2 | References | ||
---|---|---|---|---|---|---|---|
ITS | gapdh | ATPase | |||||
A. abundans | Chalastospora | CBS 534.83 T | Fragaria sp. and stolon | JN383485 | KC584154 | JQ671802 | [15,32] |
A. armoraciae | Chalastospora | CBS 118702 T | Armoracia rusticana | KC584182 | KC584099 | LR134098 | [2,15] |
A. breviramosa | Chalastospora | CBS 121331 T | Triticum sp. | FJ839608 | KC584148 | LR134099 | [2,15] |
A. cetera | Chalastospora | CBS 121340 T | Elymus scabrus | JN383482 | AY562398 | LR134101 | [15,32] |
A. malorum | Chalastospora | CBS 135.31 | Malus sylvestris and fruit | JQ693638 | JQ646278 | JQ671800 | [33] |
Chalastospora | FMR 17369 | Rabbit dung | LR134074 | LR134077 | LR134029 | [2] | |
A. obclavata | Chalastospora | CBS 124120 T | Air | KC584225 | KC584149 | LR134100 | [2,15] |
A. pobletensis | Chalastospora | FMR 16448 T | Herbivore dung | LR133896 | LR133897 | LR133903 | [2] |
A. muriformis | Chalastospora | FMR 17518 T | Herbivore dung | OQ421258 | OQ425406 | OQ425407 | Present study |
A. caricis | Nimbya | CBS 480.90 T | Carex hoodii | AY278839 | AY278826 | JQ671780 | [15,32] |
A. scirpicola | Nimbya | CBS 481.90 | Scirpus sp. | KC584237 | KC584163 | JQ671781 | [15,32] |
2.3. Phenotypic Study
3. Results
Taxonomy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Von Esenbeck, C.G.N. Das System der Pilze und Schwämme; Stahelschen Buchhandlung: Wurzburg, Germany, 1816. [Google Scholar] [CrossRef]
- Marin-Felix, Y.; Hernández-Restrepo, M.; Iturrieta-González, I.; García, D.; Gené, J.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Quaedvlieg, W.; Schumacher, R.K.; et al. Genera of phytopathogenic fungi: GOPHY 3. Stud. Mycol. 2019, 94, 1–124. [Google Scholar] [CrossRef]
- Huang, D.M.; Liu, X.; Bai, L.; Zhang, S.J.; Zhang, Z.G.; Qin, Q.P. First Report of Alternaria alternata Causing Leaf Spot Disease on Daylily in China. Plant Dis. 2022, 106, 3200. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Phookamsak, R.; Jiang, H.; Bhat, D.J.; Camporesi, E.; Lumyong, S.; Kumla, J.; Hongsanan, S.; Mortimer, P.E.; Xu, J.; et al. Additions to the Inventory of the Genus Alternaria Section Alternaria (Pleosporaceae, Pleosporales) in Italy. J. Fungi 2022, 8, 898. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant. Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef] [PubMed]
- El-Alwany, A.M. Plant Pathogenic Alternaria Species in Libya. Open Access Libr. J. 2015, 2, e1662. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2016, 15, 3. [Google Scholar] [CrossRef]
- Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, F.J.; Guarro, J. Alternaria infections: Laboratory diagnosis and relevant clinical features. Clin. Microbiol. Infect. 2008, 14, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Cardona, S.; Yusef, S.; Silva, E.; Bustos, M.G.; Torres, M.I.; Leal, A.R.; Ceballos-Garzon, A.; Josa, D.F. Cerebral phaeohyphomycosis caused by Alternaria spp.: A case report. Med. Mycol. Case Rep. 2020, 27, 11–13. [Google Scholar] [CrossRef]
- De Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.A.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi, 4th ed.; Foundation Atlas of Clinical Fungi: Hilversum, The Netherlands, 2020. [Google Scholar]
- Iturrieta-González, I.; Pujol, I.; Iftimie, S.; García, D.; Morente, V.; Queralt, R.; Guevara-Suarez, M.; Alastruey-Izquierdo, A.; Ballester, F.; Hernández-Restrepo, M.; et al. Polyphasic identification of three new species in Alternaria section Infectoriae causing human cutaneous infection. Mycoses 2019, 63, 212–224. [Google Scholar] [CrossRef]
- Abbas, H.K.; Riley, R. The presence and phytotoxicity of fumonisins and aal-toxin in Alternaria alternata. Toxicon. 1996, 34, 133–136. [Google Scholar] [CrossRef]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef] [PubMed]
- Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannibal, P.B.; Orina, A.S.; Gasich, E.L. A new section for Alternaria helianthiinficiens found on sunflower and new asteraceous hosts in Russia. Mycol. Prog. 2022, 21, 34. [Google Scholar] [CrossRef]
- Al Ghafri, A.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Al-Saady, N.A.; Al-Sadi, A.M. A new section and a new species of Alternaria encountered from Oman. Phytotaxa 2019, 405, 279–289. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, H.; Cheng, H.; Gou, Y.N.; Yu, Z.H.; Deng, J.X. New Species of Large-Spored Alternaria in Section Porri Associated with Compositae Plants in China. J. Fungi 2022, 8, 607. [Google Scholar] [CrossRef] [PubMed]
- Simmons, E.G. Alternaria: An Identification Manual; CBS Biodiversity Series 6; CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 2007. [Google Scholar]
- Simmons, E.G. Helminthosporium allii as type of a new genus. Mycologia 1971, 63, 380–386. [Google Scholar] [CrossRef]
- Mirhendi, H.; Fatemi, M.J.; Bateni, H.; Hajabdolbaghi, M.; Geramishoar, M.; Ahmadi, B.; Badali, H. First case of disseminated phaeohyphomycosis in an immunocompetent individual due to Alternaria malorum. Med. Mycol. 2013, 51, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Muller, F.M.C.; Werner, K.E.; Kasai, M.; Francesconi, A.; Chanock, S.J.; Walsh, T.J. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J. Clin. Microbiol. 1998, 36, 1625–1629. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing 794 of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and 796 Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Lawrence, D.P.; Gannibal, P.B.; Peever, T.L.; Pryor, B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia 2013, 105, 530–546. [Google Scholar] [CrossRef] [Green Version]
- Berbee, M.L.; Pirseyedi, M.; Hubbard, S. Cochliobolus Phylogenetics and the Origin of Known, Highly Virulent Pathogens, Inferred from ITS and Glyceraldehyde-3-Phosphate Dehydrogenase Gene Sequences. Mycologia 1999, 91, 964–977. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, J.S.; Kallersjo, M.; Kluge, A.G.; Bult, C. Testing significance of incongruence. Cladistics 1994, 10, 315–319. [Google Scholar] [CrossRef]
- Posada, D. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.X.; Li, M.J.; Paul, N.C.; Oo, M.M.; Lee, H.B.; Oh, S.K.; Yu, S.H. Alternaria brassicifolii sp. nov. isolated from Brassica rapa subsp. pekinensis in Korea. Mycobiology 2018, 46, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Poursafar, A.; Ghosta, Y.; Orina, A.S.; Gannibal, P.B.; Javan-Nikkhah, M.; Lawrence, D.P. Taxonomic study on Alternaria sections Infectoriae and Pseudoalternaria associated with black (sooty) head mold of wheat and barley in Iran. Mycol. Prog. 2018, 17, 343–356. [Google Scholar] [CrossRef]
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Methuen: London, UK, 1978; pp. 1–256. [Google Scholar]
- Crous, P.W.; Braun, U.; Wingfield, M.J.; Wood, A.; Shin, H.D.; Summerell, B.A.; Alfenas, A.C.; Cumagun, C.J.; Groenewald, J.Z. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 2009, 22, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Simmons, E.G. An aggregation of Embellisia species. Mycotaxon 1983, 17, 216–241. [Google Scholar]
- Simmons, E.G. Alternaria themes and variations (145–149). Mycotaxon 1996, 57, 391–409. [Google Scholar]
- Braun, U.; Crous, P.W.; Dugan, F.; Groenewald, J.Z.; De Hoog, G.S. Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol. Prog. 2003, 2, 3–18. [Google Scholar] [CrossRef]
- Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W. Large-spored Alternaria pathogens in section Porri disentangled. Stud. Mycol. 2014, 79, 1–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; De Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romain, B.B.N.D.; Hassan, O.; Kim, J.S.; Chang, T. Alternaria koreana sp. nov., a new pathogen isolated from leaf spot of ovate-leaf Atractylodes in South Korea. Mol. Biol. Rep. 2022, 49, 413–420. [Google Scholar] [CrossRef]
- Ruehle, G.D. New apple-rot fungi from Washington. Phytopathology 1931, 21, 1141–1152. [Google Scholar]
- Holter, P. Herbivore dung as food for dung beetles: Elementary coprology for entomologists. Ecol. Entomol. 2016, 41, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M. New and interesting records of coprophilous fungi. Bot. J. Scotl. 1998, 50, 161–175. [Google Scholar] [CrossRef]
- Ghosta, Y.; Poursafar, A.; Qarachal, J.F. Study on coprophilous fungi: New records for Iran mycobiota. Rostaniha 2016, 17, 115–126. [Google Scholar]
- Melo, R.F.R.; Monte, D.B.P.D.; Gondim, N.H.B.; Maia, L.C.; Miller, A.N. Coprophilous fungi from Brazil: New records for the Neotropics. Mycotaxon 2019, 134, 335–352. [Google Scholar] [CrossRef]
- Guevara-Suarez, M.; García, D.; Cano-Lira, J.F.; Guarro, J.; Gené, J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Syst. Evol. 2020, 5, 39–75. [Google Scholar] [CrossRef]
- Iturrieta-González, I.; García, D.; Gené, J. Novel species of Cladosporium from environmental sources in Spain. Mycokeys 2021, 77, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, J.; Liu, J.; Xiao, S.; Yang, S.; Mei, J.; Ren, M.; Wu, S.; Zhang, H.; Yang, X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front. Microbiol. 2023, 13, 1085666. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Tokuda, H.; Ohnishi, K.; Yamashita, M.; Nishino, H.; Maoka, T. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds. Nat. Prod. Res. 2006, 20, 161–166. [Google Scholar] [CrossRef]
- Shi, Y.N.; Pusch, S.; Shi, Y.M.; Richter, C.; Maciá-Vicente, J.G.; Schwalbe, H.; Kaiser, M.; Opatz, T.; Bode, H.B. (±)-Alternarlactones A and B, two antiparasitic alternariol-like dimers from the fungus Alternaria alternata P1210 isolated from the halophyte Salicornia sp. J. Org. Chem. 2019, 84, 11203–11209. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.D.; Yi, T.F.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Chen, J.P.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Biphenyl metabolites from the patchouli endophytic fungus Alternaria sp. PfuH1. Fitoterapia 2020, 146, 104708. [Google Scholar] [CrossRef]
Locus | Primer | Sequence (5′–3′) | References |
---|---|---|---|
Internal transcribed spacer (ITS) | ITS5 | GGAAGTAAAAGTCGTAACAAGG | [23] |
ITS4 | TCCTCCGCTTATTGATATGC | ||
Glyceraldehyde-3-phosphate dehydrogenase (gapdh) | gpd1 | CAACGGCTTCGGTCGCATTG | [25] |
gpd2 | GCCAAGCAGTTGGTTGTGC | ||
Plasma membrane ATPase (ATPase) | ATPDF1 | ATCGTCTCCATGACCGAGTTCG | [24] |
ATPDR1 | TCCGATGGAGTTCATGATAGCC |
Species | Conidia | References | ||||
---|---|---|---|---|---|---|
Shape | Size (µm) | Transverse Septa Numbers | Longitudinal or Oblique Septa Numbers (*) | Ornamentation | ||
A. abundans | Ovoidal Obclavate | 20–30 × 10–12 40–50 × 8–12 | 3–6(–8) | 0–1 | Usually smooth | [36] |
A. armoraciae | Ovoidal to ellipsoidal | 15–35 × 8–12 | 3–5 | 0–1 | Smooth | [19] |
A. breviramosa | Ellipsoidal to fusiform | (8–)10–15(–17) × 3(–3.5) | 0–1(–2) | Absent | Smooth | [35] |
A. cetera | Ellipsoidal to narrow-ovoid | 18–22 × 3–4(–5) | 1–3 | Absent | Smooth | [19,37] |
A. malorum | Ellipsoidal-ovoidal, cylindrical, or fusiform | 6–14(17) × 2–4 | Absent | Absent | Smooth | [38] |
A. obclavata | Obclavate | (23–)26–30(–35) × (3.5–)4 | 0–3 | Absent | Smooth | [35] |
A. pobletensis | Obpyriform or obclavate, and some ellipsoidal or subcylindrical | 8–50 × 5–20 | (1–)3–7(–9) | 0–1(–2) | Smooth or verruculose | [2] |
A. muriformis | Ellipsoidal or obclavate | 10–40 × 4–14 | (1–)3–5(–7) | 0–1(–2) | Smooth | Present study |
Muriform | 37–45 × 16–33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iturrieta-González, I.; Gené, J. Alternaria muriformis sp. nov., a New Species in Section Chalastospora Isolated from Herbivore Dung in Spain. Diversity 2023, 15, 606. https://doi.org/10.3390/d15050606
Iturrieta-González I, Gené J. Alternaria muriformis sp. nov., a New Species in Section Chalastospora Isolated from Herbivore Dung in Spain. Diversity. 2023; 15(5):606. https://doi.org/10.3390/d15050606
Chicago/Turabian StyleIturrieta-González, Isabel, and Josepa Gené. 2023. "Alternaria muriformis sp. nov., a New Species in Section Chalastospora Isolated from Herbivore Dung in Spain" Diversity 15, no. 5: 606. https://doi.org/10.3390/d15050606
APA StyleIturrieta-González, I., & Gené, J. (2023). Alternaria muriformis sp. nov., a New Species in Section Chalastospora Isolated from Herbivore Dung in Spain. Diversity, 15(5), 606. https://doi.org/10.3390/d15050606