Geographical Distribution Pattern and Ecological Niche of Solenopsis invicta Buren in China under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Occurrence Records of Solenopsis invicta
2.2. Selection of Environment Variables
2.3. Construction of the Model
2.4. Ecological Niche Comparison Measures
2.5. Model Evaluation and Potential Suitable Area Classification
3. Results
3.1. Evaluation of Model Accuracy
3.2. Important Environmental Variables
3.3. Ecological Niche of Solenopsis invicta in China
3.4. Potential Suitable Areas of Solenopsis invicta in China under Current Climatic Condition
3.5. Potential Suitable Areas and Changes of Solenopsis invicta in China under Future Climatic Conditions
3.6. The Centroids Migration of Highly Suitable Areas of Solenopsis invicta
4. Discussion
4.1. Important Environmental Variables Affecting the Distribution of Solenopsis invicta
4.2. Ecological Niche Shifts of Solenopsis invicta after Invasion in China
4.3. Distribution of Potential Suitable Areas for Solenopsis invicta under Current and Future Climatic Conditions
4.4. Measures for the Control and Management of Solenopsis invicta
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Diagne, C.; Leroy, B.; Vaissière, A.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.; Bradshaw, C.J.A.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Li, H.R.; Yan, J.; Du, C.; Yan, X.L. Current status and suggestions of research on invasive risk assessment of alien plants in China. Acta Ecol. Sin. 2022, 42, 6451–6463. [Google Scholar]
- Hulme, P.E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 2017, 92, 1297–1313. [Google Scholar] [CrossRef] [PubMed]
- Ryding, S.; Klaassen, M.; Tattersall, G.J.; Gardner, J.L.; Symonds, M.R.E. Shape-shifting: Changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 2021, 36, 1036–1048. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Y.J.; Wang, T.; Jiang, X.F.; Hu, X.K.; Feng, J.M. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. Sci. Total Environ. 2020, 740, 139933. [Google Scholar] [CrossRef]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Chang. Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef]
- Wang, R.; Huang, H.K.; Zhang, H.B.; Zhang, Y.P.; Xue, L.; Chen, B.X.; Yang, N.W.; Guo, J.Y.; Liu, W.X.; Wan, F.H. Analysis of gaps in regulations and management mechanisms for the prevention and control of invasive alien species in China. Plant. Quar. 2022, 48, 2–9. [Google Scholar]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.; Simard, F.; Courchamp, F. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016, 7, 12986. [Google Scholar] [CrossRef]
- Lv, X.Y.; Liu, X.; Zhang, Y. Inter-specific competition between invasive ant Anoplolepis gracilipes and native ant Oecophylla smaragdina (Hymenoptera: Formicidae) in Xishuangbanna, southwestern China. Acta Entomol. Sin. 2021, 64, 1196–1204. [Google Scholar]
- Luque, G.M.; Bellard, C.; Cleo, B.; Bonnaud, E.; Genovesi, P.; Simberloff, D.; Courchamp, F. The 100th of the world’s worst invasive alien species. Biol. Invasions 2014, 16, 981–985. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhao, C.Y.; Li, F.F.; Zhu, J.F.; Gao, K.X.; Hu, Y.B. Prediction of potential geographical distribution of Solenopsis invicta Buren in China based on MaxEnt. Plant. Quar. 2019, 33, 70–76. [Google Scholar]
- Allen, C.R.; Lutz, R.S.; Demarais, S. Red Imported Fire Ant Impacts on Northern Bobwhite Populations. Ecol. Appl. 1995, 5, 632–638. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, Y.Y.; He, X.F.; Zhang, W.Q.; Liang, G.W. Identification of red imported fire ant Solenopsis invicta to invade mainland China and infestation in Wuchaun, Guangdong. Chin. J. Appl. Entomol. 2005, 42, 144–148. [Google Scholar]
- Lu, Y.Y.; Zeng, L. 10 years after red imported fire ant found to invade China: History, current situation and trend of its infestation. Plant Quar. 2015, 29, 1–6. [Google Scholar]
- Huang, J.; Xu, Y.J.; Liang, G.W.; Lu, Y.Y.; Zeng, L. Effects on the germination of two dry land crop seeds of Solenopsis invicta Buren. J. Biosaf. 2014, 23, 88–92. [Google Scholar]
- Fu, Q.Y.; Song, Z.D.; Zhao, Y.; Li, S.L.; Xu, Y.J. Analysis on the control cost of Solenopsis invicta in China’s mainland. J. Environ. Entomol. 2022, 44, 345–351. [Google Scholar]
- Wu, N.J.; Lu, W.C.; Luo, H.M.; He, Z.D.; He, J.F.; Liang, K.B.; Yang, C.; Ke, J.Y.; Xiao, K.S. A Survey on human bitten by Red Imported Fire Ants in Mainland for the First Time. Chin. J. Vector Biol. Control 2005, 16, 334–342. [Google Scholar]
- Zhang, Q.L.; Lin, L.F.; Chen, H.T.; Chen, P.H.; Lu, W.C.; Li, Y.J. An investigation on the first human death incident caused by the bite of red imported fire ants. Dis. Surveill. 2006, 21, 654–656. [Google Scholar]
- Chen, Y.; Huang, Y.; Zhu, S.F. A molecular identification of Solenopsis invicta based on partial Cyt b gene. Plant Quar. 2009, 23, 18–20. [Google Scholar]
- Zhang, R.Z.; Ren, L.; Liu, N. An introduction and strict precautions against red imported fire ant, Solenopsis invicta, for its potential invasion to the mainland of China. Chin. J. Appl. Entomol. 2005, 42, 6–10. [Google Scholar]
- Gao, X.W.; Gao, H.R. Chemical control of the red imported fire ant (RIFA), Solenopsis invicta Buren. Plant Quar. 2005, 31, 14–17. [Google Scholar]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, M.M.; Donahue, M.J.; Fowler, A.E. Reconstructing past biological invasions: Niche shifts in response to invasive predators and competitors. Biol. Invasions 2007, 9, 397–407. [Google Scholar] [CrossRef]
- Fernández, M.; Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS ONE 2015, 10, e0119891. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Li, G.Q.; Du, S. Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China. Ecol. Eng. 2018, 113, 27–34. [Google Scholar] [CrossRef]
- Luo, M.; Wang, H.; Lv, Z. Evaluating the performance of species distribution model Biomod2 and MaxEnt using the giant panda distribution data. Chin. J. Appl. Ecol. 2017, 28, 4001–4006. [Google Scholar]
- Hao, T.X.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Lantschner, M.V.; Vega, G.; Corley, J.C. Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: An overview. Int. J. Pest Manag. 2018, 65, 190–206. [Google Scholar] [CrossRef]
- Seidl, R.; Klonner, G.; Rammer, W.; Essl, F.; Moreno, A.; Neumann, M.; Dullinger, S. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 2018, 9, 1626. [Google Scholar] [CrossRef]
- Lei, J.C.; Chen, L.A.; Li, H. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environ. Monit. Assess. 2017, 189, 404. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Zhang, Q.Z.; Liu, R.F.; Sun, Y.; Xiao, J.H.; Gao, L.; Gao, X.; Wang, H.B. Impacts of changing climate on the distribution of Solenopsis invicta Buren in Mainland China: Exposed urban population distribution and suitable habitat change. Ecol. Indic. 2022, 139, 108944. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Chang. Biol. 2012, 21, 481–497. [Google Scholar] [CrossRef]
- Schoener, T.W. Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. Ecology 1970, 51, 408–418. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Zhao, H.X.; Xian, X.Q.; Zhao, Z.H.; Zhang, G.F.; Liu, W.X.; Wan, F.H. Climate Change Increases the Expansion Risk of Helicoverpa zea in China According to Potential Geographical Distribution Estimation. Insects 2022, 13, 79. [Google Scholar] [CrossRef]
- Xian, X.Q.; Zhao, H.X.; Wang, R.; Zhang, H.B.; Cheng, B.X.; Huang, H.K.; Liu, W.X.; Wan, F.H. Predicting the potential geographical distribution of Ageratina adenophora in China using equilibrium occurrence data and ensemble model. Front. Ecol. Evol. 2022, 10, 973371. [Google Scholar] [CrossRef]
- Wei, B.; Liu, L.S.; Gu, C.J.; Yu, H.B.; Zhang, Y.L.; Zhang, B.H.; Cui, B.H.; Gong, D.Q.; Tu, Y.L. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodivers. Sci. 2022, 30, 88–99. [Google Scholar] [CrossRef]
- Liu, C.L.; Wolter, C.; Courchamp, F.; Roura-Pascual, N.; Jeschke, J.M. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology 2022, 103, e3719. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, C.S. Effect of global warming on insect: A literature review. Acta Ecol. Sin. 2010, 30, 2159–2172. [Google Scholar]
- Ma, G.; Ma, C.S. The Impacts of Extreme High Temperature on Insect Populations under Climate Change: A review. Sci. Sin. 2016, 46, 556–564. [Google Scholar] [CrossRef]
- Hicking, R.; Roy, D.B.; Hill, J.K.; Thomas, C.D. A northward shift of range margins in British Odonata. Glob. Chang. Biol. 2005, 11, 502–506. [Google Scholar] [CrossRef]
- Menzel, F.; Feldmeyer, B. How does climate change affect social insects? Curr. Opin. Insect Sci. 2021, 46, 10–15. [Google Scholar] [CrossRef]
- Lei, Y.Y.; Jaleel, W.; Shahzad, M.F.; Ali, S.; Azad, R.; Ikram, R.M.; Ail, H.; Ghramh, H.A.; Khan, K.A.; Qiu, X.L.; et al. Effect of constant and fluctuating temperature on the circadian foraging rhythm of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Saudi J. Biol. Sci. 2020, 28, 64–72. [Google Scholar] [CrossRef]
- Oi, D.H.; Atchison, R.A.; Chuzel, G.; Chen, J.; Henke, J.A.; Weeks, R.D. Effect of Irrigation on the Control of Red Imported Fire Ants (Hymenoptera: Formicidae) by Water-Resistant and Standard Fire Ant Baits. J. Econ. Entomol. 2021, 115, 266–272. [Google Scholar] [CrossRef]
- Porter, S.D.; Tschinkel, W.R. Foraging in Solenopsis invicta (Hymenoptera: Formicidae): Effects of Weather and Season. Environ. Entomol. 1987, 16, 802–808. [Google Scholar] [CrossRef]
- Roeder, K.A.; Roeder, D.V.; Kaspari, M. The role of temperature in competition and persistence of an invaded ant assemblage. Ecol. Entomol. 2018, 43, 774–781. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Maywald, G. A Climate Model of the Red Imported Fire Ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for Invasion of New Regions, Particularly Oceania. Environ. Entomol. 2005, 34, 317–335. [Google Scholar] [CrossRef]
- Duan, R.X.; Huang, G.H.; Li, Y.P.; Zheng, R.B.; Wang, G.Q.; Xin, B.Z.; Tian, C.Y.; Ren, J.Y. Ensemble Temperature and Precipitation Projection for Multi-Factorial Interactive Effects of GCMs and SSPs: Application to China. Front. Environ. Sci. 2021, 9, 382. [Google Scholar] [CrossRef]
- Scott, E.R.; Wei, J.P.; Li, X.; Han, W.Y.; Orians, C.M. Differing non-linear, lagged effects of temperature and precipitation on an insect herbivore and its host plant. Environ. Entomol. 2021, 46, 866–876. [Google Scholar] [CrossRef]
- Chen, C.; Harvey, J.A.; Biere, A.; Gols, R. Rain downpours affect survival and development of insect herbivores: The specter of climate change? Ecology 2019, 100, e02819. [Google Scholar] [CrossRef] [PubMed]
- Vinson, S.B. Invasion of the red imported fire ant (Hymenoptera: Formicidae): Spread, biology, and impact. Am. Entomol. 1997, 43, 23–39. [Google Scholar] [CrossRef]
- Morrison, L.W.; Porter, S.D.; Daniels, E.; Korzukhin, M.D. Potential Global Range Expansion of the Invasive Fire Ant, Solenopsis invicta. Biol. Invasions 2004, 6, 183–191. [Google Scholar] [CrossRef]
- Mertl, A.L.; Wilkie, K.T.R.; Traniello, J.F.A. Impact of Flooding on the Species Richness, Density and Composition of Amazonian Litter-Nesting Ants. Biotropica 2009, 41, 633–641. [Google Scholar] [CrossRef]
- Bertelsmeier, C.; Ollier, S.; Liebhold, A.; Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 2017, 1, 0184. [Google Scholar] [CrossRef]
- Chen, S.; Ding, F.Y.; Hao, M.M.; Jiang, D. Mapping the Potential Global Distribution of Red Imported Fire Ant (Solenopsis invicta Buren) Based on a Machine Learning Method. Sustainability 2020, 12, 10182. [Google Scholar] [CrossRef]
- King, J.R.; Tschinkel, W.R.; Affiliations, A.I. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. USA 2008, 105, 20339–20343. [Google Scholar] [CrossRef]
- Liu, C.L.; Wolter, C.; Xian, W.W.; Jeschke, J.M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. USA 2020, 117, 23643–23651. [Google Scholar] [CrossRef]
- Pili, A.N.; Tingley, R.; Sy, E.Y.; Diesmos, M.L.L.; Diesmos, A.C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments. Sci. Rep. 2020, 10, 7972. [Google Scholar] [CrossRef]
- Zenni, R.D.; Bailey, J.K.; Simberloff, D. Rapid evolution and range expansion of an invasive plant are driven by provenance–environment interactions. Ecol. Lett. 2014, 17, 727–735. [Google Scholar] [CrossRef]
- Bujan, J.; Charavel, E.; Bates, O.K.; Gippet, J.M.W.; Darras, H.; Lebas, C.; Bertelsmeier, C. Increased acclimation ability accompanies a thermal niche shift of a recent invasion. J. Anim. Ecol. 2020, 90, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.D.; Tang, X.G.; Liu, M.Y.; Liu, X.F.; Tao, J. Species Distribution Models of the Spartina alterniflora Loisel in Its Origin and Invasive Country Reveal an Ecological Niche Shift. Front. Plant Sci. 2021, 12, 738769. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Z.; Wang, C.J.; Tan, J.F.; Yu, F.H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 2017, 7, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Tricarico, E.; Panov, V.; Cardoso, A.; Katsanevakis, S. Pathways and gateways of freshwater invasions in Europe. Aquat. Invasions 2015, 10, 359–370. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium; CAB International: Wallingford, UK, 2022; Available online: https://www.cabi.org/isc (accessed on 21 September 2022).
- Song, J.Y.; Zhang, H.; Li, M.; Han, W.H.; Yin, Y.X.; Lei, J.P. Prediction of Spatiotemporal Invasive Risk of the Red Import Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae), in China. Insects 2021, 12, 874. [Google Scholar] [CrossRef]
- Sung, S.; Kwon, Y.S.; Lee, D.K.; Cho, Y. Predicting the Potential Distribution of an Invasive Species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under Climate Change using Species Distribution Models. Entomol. Res. 2018, 48, 505–513. [Google Scholar] [CrossRef]
- Li, X.; Ge, X.Z.; Chen, L.H.; Zhang, L.J.; Wang, T.; Zong, S.C. Climate Change Impacts on the Potential Distribution of Eogystia hippophaecolus in China. Pest Manag. Sci. 2018, 75, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xian, X.Q.; Zhao, H.X.; Xue, L.; Chen, B.X.; Huang, H.K.; Wan, F.H.; Liu, W.X. Predicting the Potential Suitable Area of the Invasive Ant Linepithema humile in China under Future Climatic Scenarios Based on Optimized MaxEnt. Diversity 2022, 14, 921. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Liang, G.W.; Zeng, L. Study on Expansion Pattern of Red Imported Fire Ant, Solenopsis invicta Buren, in South China. Sci. Agric. Sin. 2008, 41, 1053–1063. [Google Scholar]
- Wang, L.; Chen, K.W.; Feng, X.D.; Wang, X.L.; Lu, Y.Y. Log-term predication of red imported fire ant (Solenopsis invicta Buren) expansion in Chinese mainland. J. Environ. Entomol. 2022, 44, 339–344. [Google Scholar]
- Graham, L.C.F.; Porter, S.D.; Pereira, R.M.; Dorough, H.D.; Kelley, A.T. Field releases of the decapitating fly Pseudacteon curvatus (Diptera: Phoridae) for control of imported fire ants (Hymenoptera: Formicidae) in Alabama, Florida, and Tennessee. Fla. Entomol. 2003, 86, 334–339. [Google Scholar] [CrossRef]
- Oi, D.H.; Briano, J.A.; Valles, S.M.; Williams, D.F. Transmission of Vairimorpha invictae (Microsporidia: Burenellidae) infections between red imported fire ant (Hymenoptera: Formicidae) colonies. J. Invertebr. Pathol. 2005, 88, 108–115. [Google Scholar] [CrossRef]
- Pang, X.Y.; Tao, Q.H.; Li, Q.T.; Zhang, F.C.; Lu, Y.Y.; Wang, L. Toxicity of five solvents against Solenopsis invicta. J. Environ. Entomol. 2021, 43, 1040–1046. [Google Scholar]
- Yu, X.; Wang, L.; Liang, G.W.; Zeng, L. Population dynamics of a Solenopsis invicta population and associated nontarget arthropod community in a lawn after pesticide. Chin. J. Appl. Entomol. 2015, 52, 1353–1360. [Google Scholar]
Variable | Description | Unit |
---|---|---|
Bio1 | Annual mean temperature | °C |
Bio2 | Mean diurnal air temperature area | °C |
Bio3 | Isothermality (bio2/bio7) (*100) | — |
Bio4 | Temperature seasonality (standard deviation*100) | — |
Bio5 | Max temperature of warmest month | °C |
Bio6 | Min temperature of coldest month | °C |
Bio7 | Temperature annual area (bio5-bio6) | °C |
Bio8 | Mean temperature of wettest quarter | °C |
Bio9 | Mean temperature of driest quarter | °C |
Bio10 | Mean temperature of warmest quarter | °C |
Bio11 | Mean temperature of coldest quarter | °C |
Bio12 | Annual precipitation | mm |
Bio13 | Precipitation of wettest month | mm |
Bio14 | Precipitation of driest month | mm |
Bio15 | Precipitation seasonality (coefficient of variation) | — |
Bio16 | Precipitation of wettest quarter | mm |
Bio17 | Precipitation of driest quarter | mm |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Altitude | Altitude | m |
Hii | Human influence index | — |
Emission | Description |
---|---|
SSP1-2.6 | SSP1 (low forcing scenario) upgrade to RCP2.6 scenario based on (Radiative forcing reaches 2.6 W/m2 in 2100) |
SSP2-4.5 | SSP2 (medium forcing scenario) upgrade to RCP4.5 scenario based on (Radiative forcing reaches 4.5 W/m2 in 2100) |
SSP5-8.5 | SSP5 (high forcing scenario) upgrade to RCP8.5 scenario based on (SSP5 is the only SSP scenario that can achieve radiative forcing to 8.5 W/m2 in 2100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhao, H.; Xian, X.; Zhu, J.; Chen, B.; Jia, T.; Wang, R.; Liu, W. Geographical Distribution Pattern and Ecological Niche of Solenopsis invicta Buren in China under Climate Change. Diversity 2023, 15, 607. https://doi.org/10.3390/d15050607
Li M, Zhao H, Xian X, Zhu J, Chen B, Jia T, Wang R, Liu W. Geographical Distribution Pattern and Ecological Niche of Solenopsis invicta Buren in China under Climate Change. Diversity. 2023; 15(5):607. https://doi.org/10.3390/d15050607
Chicago/Turabian StyleLi, Ming, Haoxiang Zhao, Xiaoqing Xian, Jingquan Zhu, Baoxiong Chen, Tao Jia, Rui Wang, and Wanxue Liu. 2023. "Geographical Distribution Pattern and Ecological Niche of Solenopsis invicta Buren in China under Climate Change" Diversity 15, no. 5: 607. https://doi.org/10.3390/d15050607
APA StyleLi, M., Zhao, H., Xian, X., Zhu, J., Chen, B., Jia, T., Wang, R., & Liu, W. (2023). Geographical Distribution Pattern and Ecological Niche of Solenopsis invicta Buren in China under Climate Change. Diversity, 15(5), 607. https://doi.org/10.3390/d15050607