Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal
Abstract
:1. Introduction
- (1)
- Predict the trajectory of the lowland population at Yellingbo without genetic rescue;
- (2)
- Determine whether genetic rescue can retain genetic variation unique to the lowland population;
- (3)
- Assess whether more rapid genetic rescue presents a greater risk of uniquely lowland variation being replaced.
2. Materials and Methods
2.1. Study System and Sampling
2.2. Defining Conservation Targets
2.3. General Assumptions of the PVA Model
2.4. Genotyping
2.5. Detecting Alleles Unique to the Lowland Population
2.6. Pairwise Kinship Estimation
2.7. Survival and Reproduction Parameters Used in Vortex Models
2.8. Sensitivity Analysis
2.9. Simulated Scenarios
- (i)
- 1990s Condition: The effect of limited carrying capacity and inbreeding on population size at Yellingbo
- (ii)
- 2019 Trajectory: The forward projection of the population size of lowland possums at Yellingbo without genetic rescue
- (iii)
- Demographic Rescue: The effect of numerical population reinforcement on population growth
- (iv)
- Genetic Rescue: The supplementation of a new lowland population with highland possums
- (v)
- Genetic Swamping Test: Determining whether a higher supplementation rate risks the replacement of locally unique alleles
3. Results
3.1. Sensitivity Analysis
3.2. Trajectory of the Lowland Population without Genetic Management
3.3. Effect of Genetic and Demographic Rescue on Lowland Population Recovery
3.4. Locally Unique Alleles in the Lowland Population at Yellingbo
3.5. Risk of Decreased Retention of Locally Unique Alleles from Genetic Rescue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frankham, R.; Ballou, J.D.; Ralls, K.; Eldridge, M.D.B.; Dudash, M.R.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P. Genetic Management of Fragmented Animal and Plant Populations; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Whiteley, A.R.; Fitzpatrick, S.W.; Funk, W.C.; Tallmon, D.A. Genetic Rescue to the Rescue. Trends Ecol. Evol. 2015, 30, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Fredrickson, R. Genetic Rescue Guidelines with Examples from Mexican Wolves and Florida Panthers. Conserv. Genet. 2010, 11, 615–626. [Google Scholar] [CrossRef]
- Eizaguirre, C.; Baltazar-Soares, M. Evolutionary Conservation--Evaluating the Adaptive Potential of Species. Evol. Appl. 2014, 7, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Fagan, W.F.; Holmes, E.E. Quantifying the Extinction Vortex. Ecol. Lett. 2006, 9, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, D.; Pauliny, A.; Larsson, M.; Flodin, L.-A. Trapped in the Extinction Vortex? Strong Genetic Effects in a Declining Vertebrate Population. BMC Evol. Biol. 2010, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- vander Wal, E.; Garant, D.; Calmé, S.; Chapman, C.A.; Festa-Bianchet, M.; Millien, V.; Rioux-Paquette, S.; Pelletier, F. Applying Evolutionary Concepts to Wildlife Disease Ecology and Management. Evol. Appl. 2014, 7, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Miller, A.D.; Weeks, A.R. Genetic Mixing for Population Management: From Genetic Rescue to Provenancing. Evol. Appl. 2021, 14, 634–652. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R. Genetic Rescue of Small Inbred Populations: Meta-Analysis Reveals Large and Consistent Benefits of Gene Flow. Mol. Ecol. 2015, 24, 2610–2618. [Google Scholar] [CrossRef] [PubMed]
- Love Stowell, S.M.; Pinzone, C.A.; Martin, A.P. Overcoming Barriers to Active Interventions for Genetic Diversity. Biodivers. Conserv. 2017, 26, 1753–1765. [Google Scholar] [CrossRef]
- Odell, E.A.; Heffelfinger, J.R.; Rosenstock, S.S.; Bishop, C.J.; Liley, S.; González-Bernal, A.; Velasco, J.A.; Martínez-Meyer, E. Perils of Recovering the Mexican Wolf Outside of Its Historical Range. Biol. Conserv. 2018, 220, 290–298. [Google Scholar] [CrossRef]
- Bell, D.A.; Robinson, Z.L.; Funk, W.C.; Fitzpatrick, S.W.; Allendorf, F.W.; Tallmon, D.A.; Whiteley, A.R. The Exciting Potential and Remaining Uncertainties of Genetic Rescue. Trends Ecol. Evol. 2019, 34, 1070–1079. [Google Scholar] [CrossRef]
- Harrisson, K.A.; Pavlova, A.; Telonis-Scott, M.; Sunnucks, P. Using Genomics to Characterize Evolutionary Potential for Conservation of Wild Populations. Evol. Appl. 2014, 7, 1008–1025. [Google Scholar] [CrossRef]
- Roberts, D.G.; Gray, C.A.; West, R.J.; Ayre, D.J. Marine Genetic Swamping: Hybrids Replace an Obligately Estuarine Fish. Mol. Ecol. 2010, 19, 508–520. [Google Scholar] [CrossRef]
- Hedrick, P.W. Gene Flow and Genetic Restoration: The Florida Panther as a Case Study. Conserv. Biol. 1995, 9, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Liddell, E.; Sunnucks, P.; Cook, C.N. To Mix or Not to Mix Gene Pools for Threatened Species Management? Few Studies Use Genetic Data to Examine the Risks of Both Actions, but Failing to Do so Leads Disproportionately to Recommendations for Separate Management. Biol. Conserv. 2021, 256, 109072. [Google Scholar] [CrossRef]
- Aitken, S.N.; Whitlock, M.C. Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 367–388. [Google Scholar] [CrossRef]
- Sjöstrand, A.E.; Sjödin, P.; Jakobsson, M. Private Haplotypes Can Reveal Local Adaptation. BMC Genet. 2014, 15, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrimawithana, A.H.; Ortiz-Catedral, L.; Rodrigo, A.; Hauber, M.E. Reduced Total Genetic Diversity Following Translocations? A Metapopulation Approach. Conserv. Genet. 2013, 14, 1043–1055. [Google Scholar] [CrossRef]
- Weeks, A.R.; Stoklosa, J.; Hoffmann, A.A. Conservation of Genetic Uniqueness of Populations May Increase Extinction Likelihood of Endangered Species: The Case of Australian Mammals. Front. Zool. 2016, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, S.W.; Bradburd, G.S.; Kremer, C.T.; Salerno, P.E.; Angeloni, L.M.; Funk, W.C. Genomic and Fitness Consequences of Genetic Rescue in Wild Populations. Curr. Biol. 2020, 30, 517–522.e5. [Google Scholar] [CrossRef] [Green Version]
- Willi, Y.; Griffin, P.; van Buskirk, J. Drift Load in Populations of Small Size and Low Density. Heredity 2013, 110, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Fournier, P.; Lewthwaite, J.M.M.; Mooers, A.Ø. Do We Need to Identify Adaptive Genetic Variation When Prioritizing Populations for Conservation? Conserv. Genet. 2021, 22, 205–216. [Google Scholar] [CrossRef]
- Ørsted, M.; Hoffmann, A.A.; Sverrisdóttir, E.; Nielsen, K.L.; Kristensen, T.N. Genomic Variation Predicts Adaptive Evolutionary Responses Better than Population Bottleneck History. PLoS Genet. 2019, 15, e1008205. [Google Scholar] [CrossRef] [PubMed]
- Hoban, S.; Bertorelle, G.; Gaggiotti, O.E. Computer Simulations: Tools for Population and Evolutionary Genetics. Nat. Rev. Genet. 2012, 13, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, A.; Beheregaray, L.B.; Coleman, R.; Gilligan, D.; Harrisson, K.A.; Ingram, B.A.; Kearns, J.; Lamb, A.M.; Lintermans, M.; Lyon, J.; et al. Severe Consequences of Habitat Fragmentation on Genetic Diversity of an Endangered Australian Freshwater Fish: A Call for Assisted Gene Flow. Evol. Appl. 2017, 10, 531–550. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.H.; Weiser, E.; Jamieson, I.; Hatfield, J.S. Demographic Variation, Reintroduction, and Persistence of an Island Duck (Anas Laysanensis). J. Wildl. Manag. 2013, 77, 1094–1103. [Google Scholar] [CrossRef]
- Schueller, A.M.; Hayes, D.B. Minimum Viable Population Size for Lake Sturgeon (Acipenser Fulvescens) Using an Individual-Based Model of Demographics and Genetics. Can. J. Fish. Aquat. Sci. 2010, 68, 62–73. [Google Scholar] [CrossRef]
- White, D.J.; Ottewell, K.; Spencer, P.B.S.; Smith, M.; Short, J.; Sims, C.; Mitchell, N.J. Genetic Consequences of Multiple Translocations of the Banded Hare-Wallaby in Western Australia. Diversity 2020, 12, 448. [Google Scholar] [CrossRef]
- Harris, K.; Zhang, Y.; Nielsen, R. Genetic Rescue and the Maintenance of Native Ancestry. Conserv. Genet. 2019, 20, 59–64. [Google Scholar] [CrossRef]
- Greet, J.; Harley, D.; Ashman, K.; Watchorn, D.; Duncan, D. The Vegetation Structure and Condition of Contracting Lowland Habitat for Leadbeater’s Possum (Gymnobelideus Leadbeateri). Aust. Mammal. 2020. First published online 16 December 2020. [Google Scholar] [CrossRef]
- Harley, D. An Overview of Actions to Conserve Leadbeater’s Possum “Gymnobelideus Leadbeateri”. Vic. Nat. 2016, 133, 85–97. [Google Scholar] [CrossRef]
- Harley, D.; Worley, M.; Harley, T. The Distribution and Abundance of Leadbeater’s Possum Gymnobelideus Leadbeateri in Lowland Swamp Forest at Yellingbo Nature Conservation Reserve. Aust. Mammal. 2005, 27, 7–15. [Google Scholar] [CrossRef]
- Hansen, B.D.; Taylor, A.C. Isolated Remnant or Recent Introduction? Estimating the Provenance of Yellingbo Leadbeater’s Possums by Genetic Analysis and Bottleneck Simulation. Mol. Ecol. 2008, 17, 4039–4052. [Google Scholar] [CrossRef]
- Hansen, B.D.; Harley, D.K.P.; Lindenmayer, D.B.; Taylor, A.C. Population Genetic Analysis Reveals a Long-Term Decline of a Threatened Endemic Australian Marsupial. Mol. Ecol. 2009, 18, 3346–3362. [Google Scholar] [CrossRef]
- Zilko, J.P.; Harley, D.; Hansen, B.; Pavlova, A.; Sunnucks, P. Accounting for Cryptic Population Substructure Enhances Detection of Inbreeding Depression with Genomic Inbreeding Coefficients: An Example from a Critically Endangered Marsupial. Mol. Ecol. 2020, 29, 2978–2993. [Google Scholar] [CrossRef]
- Harley, D. The Application of Zoos Victoria’s “Fighting Extinction” Commitment to the Conservation of Leadbeater’s Possum “Gymnobelideus Leadbeateri”. Vic. Nat. 2012, 129, 175–180. [Google Scholar] [CrossRef]
- Harley, D.K.P.; Lill, A. Reproduction in a Population of the Endangered Leadbeater’s Possum Inhabiting Lowland Swamp Forest. J. Zool. 2007, 272, 451–457. [Google Scholar] [CrossRef]
- Lacy, R.C. Lessons from 30 Years of Population Viability Analysis of Wildlife Populations. Zoo Biol. 2019, 38, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Lacy, R.C. VORTEX: A Computer Simulation Model for Population Viability Analysis. Wildl. Res. 1993, 20, 45–65. [Google Scholar] [CrossRef]
- O’Grady, J.J.; Brook, B.W.; Reed, D.H.; Ballou, J.D.; Tonkyn, D.W.; Frankham, R. Realistic Levels of Inbreeding Depression Strongly Affect Extinction Risk in Wild Populations. Biol. Conserv. 2006, 133, 42–51. [Google Scholar] [CrossRef]
- Simmons, M.J.; Crow, J.F. Mutations Affecting Fitness in Drosophila Populations. Annu. Rev. Genet. 1977, 11, 49–78. [Google Scholar] [CrossRef] [PubMed]
- Harley, D.K.P. The Life History and Conservation of Leadbeater’s Possum (Gymnobelideus leadbeateri) in Lowland Swamp Forest. PhD Thesis, Monash University, Melbourne, Australia, 2005. [Google Scholar]
- Charlesworth, D.; Willis, J.H. The Genetics of Inbreeding Depression. Nat. Reviews. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Sunnucks, P.; Hales, D.F. Numerous Transposed Sequences of Mitochondrial Cytochrome Oxidase I-II in Aphids of the Genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 1996, 13, 510–524. [Google Scholar] [CrossRef]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. In Methods in Molecular Biology; Humana Press: Clifton, NJ, USA, 2012; Volume 888, pp. 67–89. [Google Scholar]
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. Dartr: An r Package to Facilitate Analysis of SNP Data Generated from Reduced Representation Genome Sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.A. Population Correlation and Population Kinship. Theor. Popul. Biol. 1976, 10, 205–226. [Google Scholar] [CrossRef]
- Städele, V.; Vigilant, L. Strategies for Determining Kinship in Wild Populations Using Genetic Data. Ecol. Evol. 2016, 6, 6107–6120. [Google Scholar] [CrossRef] [Green Version]
- Goudet, J. Hierfstat, a Package for r to Compute and Test Hierarchical F-Statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Goudet, J.; Kay, T.; Weir, B.S. How to Estimate Kinship. Mol. Ecol. 2018, 27, 4121–4135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, B.S.; Goudet, J. A Unified Characterization of Population Structure and Relatedness. Genetics 2017, 206, 2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only Anova Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; Association for Computing Machinery, New York, NY, USA, 12 May 2011; pp. 143–146. [Google Scholar]
- Ryan, C.M.; Hobbs, R.J.; Valentine, L.E. Bioturbation by a Reintroduced Digging Mammal Reduces Fuel Loads in an Urban Reserve. Ecol. Appl. 2020, 30, e02018. [Google Scholar] [CrossRef] [PubMed]
- Burbidge, A.A.; Abbott, I. Mammals on Western Australian Islands: Occurrence and Preliminary Analysis. Aust. J. Zool. 2017, 65, 183–195. [Google Scholar] [CrossRef]
- Pacioni, C.; Wayne, A.F.; Page, M. Guidelines for Genetic Management in Mammal Translocation Programs. Biol. Conserv. 2019, 237, 105–113. [Google Scholar] [CrossRef]
- Slade, B.; Parrott, M.L.; Paproth, A.; Magrath, M.J.L.; Gillespie, G.R.; Jessop, T.S. Assortative Mating among Animals of Captive and Wild Origin Following Experimental Conservation Releases. Biol. Lett. 2014, 10, 20140656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilakouta, N.; Smiseth, P.T. Female Mating Preferences for Outbred versus Inbred Males Are Conditional upon the Female’s Own Inbreeding Status. Anim. Behav. 2017, 123, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Pacioni, C.; Atkinson, A.; Trocini, S.; Rafferty, C.; Morley, K.; Spencer, P.B.S. Is Supplementation an Efficient Management Action to Increase Genetic Diversity in Translocated Populations? Ecol. Manag. Restor. 2020, 21, 123–130. [Google Scholar] [CrossRef]
- Armstrong, D.P.; Seddon, P.J. Directions in Reintroduction Biology. Trends Ecol. Evol. 2008, 23, 20–25. [Google Scholar] [CrossRef]
- Westgate, M.J.; Likens, G.E.; Lindenmayer, D.B. Adaptive Management of Biological Systems: A Review. Biol. Conserv. 2013, 158, 128–139. [Google Scholar] [CrossRef]
- Pacioni, C.; Trocini, S.; Wayne, A.F.; Rafferty, C.; Page, M. Integrating Population Genetics in an Adaptive Management Framework to Inform Management Strategies. Biodivers. Conserv. 2020, 29, 947–966. [Google Scholar] [CrossRef]
- Verdon, S.J.; Mitchell, W.F.; Clarke, M.F. Can Flexible Timing of Harvest for Translocation Reduce the Impact on Fluctuating Source Populations? Wildl. Res. 2021, 28, 458–469. [Google Scholar] [CrossRef]
- McComb, L.B.; Lentini, P.E.; Harley, D.K.P.; Lumsden, L.F.; Antrobus, J.S.; Eyre, A.C.; Briscoe, N.J. Feral Cat Predation on Leadbeater’s Possum (Gymnobelideus Leadbeateri) and Observations of Arboreal Hunting at Nest Boxes. Aust. Mammal. 2019, 41, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Pacioni, C.; Williams, M.R.; Lacy, R.C.; Spencer, P.B.S.; Wayne, A.F. Predators and Genetic Fitness: Key Threatening Factors for the Conservation of a Bettong Species. Pac. Conserv. Biol. 2017, 23, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Hardy, M.A.; Hull, S.D.; Zuckerberg, B. Swift Action Increases the Success of Population Reinforcement for a Declining Prairie Grouse. Ecol. Evol. 2018, 8, 1906–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirier, M.-A.; Coltman, D.W.; Pelletier, F.; Jorgenson, J.; Festa-Bianchet, M. Genetic Decline, Restoration and Rescue of an Isolated Ungulate Population. Evol. Appl. 2019, 12, 1318–1328. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Payne, J.L.; Wagner, A. Cryptic Genetic Variation Accelerates Evolution by Opening Access to Diverse Adaptive Peaks. Science 2019, 365, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, W.C.; Lovich, R.E.; Hohenlohe, P.A.; Hofman, C.A.; Morrison, S.A.; Sillett, T.S.; Ghalambor, C.K.; Maldonado, J.E.; Rick, T.C.; Day, M.D.; et al. Adaptive Divergence despite Strong Genetic Drift: Genomic Analysis of the Evolutionary Mechanisms Causing Genetic Differentiation in the Island Fox (Urocyon Littoralis). Mol. Ecol. 2016, 25, 2176–2194. [Google Scholar] [CrossRef] [Green Version]
- Tigano, A.; Friesen, V.L. Genomics of Local Adaptation with Gene Flow. Mol. Ecol. 2016, 25, 2144–2164. [Google Scholar] [CrossRef] [PubMed]
- Bosse, M.; Megens, H.-J.; Derks, M.F.L.; de Cara, Á.M.R.; Groenen, M.A.M. Deleterious Alleles in the Context of Domestication, Inbreeding, and Selection. Evol. Appl. 2018, 12, 6–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriazis, C.C.; Wayne, R.K.; Lohmueller, K.E. Strongly Deleterious Mutations Are a Primary Determinant of Extinction Risk Due to Inbreeding Depression. Evol. Lett. 2021, 5, 33–47. [Google Scholar] [CrossRef]
- Ralls, K.; Sunnucks, P.; Lacy, R.C.; Frankham, R. Genetic Rescue: A Critique of the Evidence Supports Maximizing Genetic Diversity Rather than Minimizing the Introduction of Putatively Harmful Genetic Variation. Biol. Conserv. 2020, 251, 108784. [Google Scholar] [CrossRef]
- Mussmann, S.M.; Douglas, M.R.; Anthonysamy, W.J.B.; Davis, M.A.; Simpson, S.A.; Louis, W.; Douglas, M.E. Genetic Rescue, the Greater Prairie Chicken and the Problem of Conservation Reliance in the Anthropocene. R. Soc. Open Sci. 2021, 4, 160736. [Google Scholar] [CrossRef] [Green Version]
Scenario | N | K | Inbred | Inbreeding Depression | Juvenile Mortality | Supplementation Rate | Supplementation Duration (Years) | Simulation Duration (Years) | Source |
---|---|---|---|---|---|---|---|---|---|
1990s Condition | 110 | 120 | No | Yes and no | Estimated | 0 | NA | 50 | NA |
1000 | No | Yes and no | Estimated | 0 | NA | 50 | NA | ||
2019 Trajectory | 35 | 40 | Yes | Yes | 6% | 0 | NA | 50 | NA |
120 | Yes | Yes | 6% | 0 | NA | 50 | NA | ||
Demographic Rescue | 20 | 1000 | Yes | Yes | 6% | 2; 4; 6; 8; 10 | 50 | 50 | Lowland |
Genetic Rescue | 20 | 1000 | Yes | Yes | 6% | 2; 4; 6; 8; 10 | 50 | 50 | Highland |
Genetic Swamping Test | 20 | 1000 | Yes | Yes | 6% | 2; 4; 6; 8; 10 | 50 | 10; 20; 30; 40; 50 | Highland |
Parameter | Value (SD) | Source |
---|---|---|
Diploid lethal equivalents | 6.29 | [42] |
Percent inbreeding due to lethal recessives | 50 | [43] |
Environmental variation correlation between reproduction and survival | 0 | Not used |
Environmental variation correlation among populations | 0 | Not used |
Age producing first offspring (years) | 2 | [39] |
Maximum lifespan (years) | 9 | [37] |
Maximum litters per year | 2 * | [39] |
Maximum progeny per litter | 2 | [39] |
Maximum age of reproduction (years) | 9 | [37] |
Sex ratio at birth | 01:01 | [39] |
Percent adult females breeding | 66.6 (6.7) | [39] |
Distribution of litters per year | ||
0 litter | 0 | [44] |
1 litter | 7 | [44] |
2 litter | 93 | [44] |
Distribution of offspring per litter | ||
1 offspring | 45 | [39] |
2 offspring | 55 | [39] |
Mortality | ||
0–1 years (males) | 42 (4.2) † | [44] |
0–1 years (females) | 41 (4.1) † | [44] |
1–2 years (males) | 17 (1.7) | [44] |
1–2 years (females) | 22 (2.2) | [44] |
Annual >2 years (males) | 29 (2.9) | [37] |
Annual >2 years (females) | 29 (2.9) | [37] |
Percent males in breeding pool | 100 |
Input Parameter | Sensitivity Index |
---|---|
0–1 year annual mortality | −0.29 |
1–2 year annual mortality | −0.11 |
2+ year annual mortality | −0.44 |
Proportion of females breeding | 0.35 |
Brood size | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilko, J.P.; Harley, D.; Pavlova, A.; Sunnucks, P. Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal. Diversity 2021, 13, 382. https://doi.org/10.3390/d13080382
Zilko JP, Harley D, Pavlova A, Sunnucks P. Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal. Diversity. 2021; 13(8):382. https://doi.org/10.3390/d13080382
Chicago/Turabian StyleZilko, Joseph P., Dan Harley, Alexandra Pavlova, and Paul Sunnucks. 2021. "Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal" Diversity 13, no. 8: 382. https://doi.org/10.3390/d13080382
APA StyleZilko, J. P., Harley, D., Pavlova, A., & Sunnucks, P. (2021). Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal. Diversity, 13(8), 382. https://doi.org/10.3390/d13080382