The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Analysis
2.2. Fungal Isolation, Initial Identification, and Deposition
2.3. Molecular Identification of Fungi by ITS Sequencing
2.4. Seed Germination
2.5. Data Analysis
3. Results
3.1. Orchid MF Collected during Dry Season
3.2. Orchid MF Collected during Rainy Season
3.3. Soil Characteristics and Fungal Diversity in Orchids Collected during Rainy Season
3.4. Symbiotic Seed Germination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yokoya, K.; Zettler, L.W.; Kendon, J.P.; Bidartondo, M.I.; Stice, A.L.; Skarha, S.; Corey, L.L.; Knight, A.C.; Sarasan, V. Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar. Mycorrhiza 2015, 25, 611–625. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, S.T.; Buisson, E.; Rabarison, H.; Rajeriarison, C.; Birkinshaw, C.; Ii, P.P.L. Comparison of plant communities on the Ibity and Itremo massifs, Madagascar, with contrasting conservation histories and current status. Plant Ecol. Divers. 2014, 7, 497–508. [Google Scholar] [CrossRef]
- Carrasco, J.; Price, V.; Tulloch, V.; Mills, M. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodivers. Conserv. 2020, 29, 1841–1854. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Dixon, K.W.; Jersáková, J.; Těšitelová, T. Germination and seedling establishment in orchids: A complex of requirements. Ann. Bot. 2015, 116, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, H.N.; Rasmussen, F.N. Orchid mycorrhiza: Implications of a mycophagous lifestyle. Oikos 2009, 118, 334–345. [Google Scholar] [CrossRef]
- Cameron, D.D.; Leake, J.R.; Read, D.J. Mutualistic mycorrhiza in orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 2006, 171, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Waterman, R.J.; Bidartondo, M.I.; Stofberg, J.; Combs, J.K.; Gebauer, G.; Savolainen, V.; Barraclough, T.G.; Pauw, A. The Effects of Above- and Belowground Mutualisms on Orchid Speciation and Coexistence. Am. Nat. 2011, 177, E54–E68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearnaley, J.D.W.; Martos, F.; Selosse, M.A. 12 Orchid Mycorrhizas: Molecular Ecology, Physiology, Evolution and Conservation Aspects. In Fungal Associations. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research); Hock, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar] [CrossRef]
- Novotná, A.; Benítez, Á.; Herrera, P.; Cruz, D.; Filipczyková, E.; Suárez, J.P. High diversity of root-associated fungi isolated from three epiphytic orchids in southern Ecuador. Mycoscience 2018, 59, 24–32. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, K.; Cheng, S.; Nie, Q.; Zhou, S.-X.; Chen, Q.; Zhou, J.; Zhen, X.; Li, X.T.; Zhen, T.W.; et al. Fusarium oxysporum KB-3 from Bletilla striata: An orchid mycorrhizal fungus. Mycorrhiza 2019, 29, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Zettler, L.W.; Rajaovelona, L.; Yokoya, K.; Kendon, J.P.; Stice, A.L.; Wood, A.E.; Sarasan, V. Techniques for the collection, transportation, and isolation of orchid endophytes from afar: A case study from Madagascar. Bot. Stud. 2017, 58, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagame, T.; Funabiki, E.; Nagasawa, E.; Fukiharu, T.; Iwase, K. Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am. J. Bot. 2013, 100, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Brys, R.; Lievens, B.; Wiegand, T. Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. J. Ecol. 2012, 100, 1328–1337. [Google Scholar] [CrossRef]
- McCormick, M.K.; Jacquemyn, H. What constrains the distribution of orchid populations? New Phytol. 2014, 202, 392–400. [Google Scholar] [CrossRef]
- Mitchell, R.B. Growing hardy orchids from seeds at Kew. Plantsman 1989, 2, 152–169. [Google Scholar]
- Clements, M.A.; Muir, H.; Cribb, P.J. A Preliminary Report on the Symbiotic Germination of European Terrestrial Orchids. Kew Bull. 1986, 41, 437. [Google Scholar] [CrossRef]
- Zettler, L.W.; Sharma, J.; Rasmussen, F. Mycorrhizal diversity. In Orchid Conservation; Dixon, K.W., Kell, S.P., Barrett, R.L., Cribb, P.J., Eds.; Natural History Publications (Borneo): Kota, India, 2003; pp. 185–203. [Google Scholar]
- Batty, A.L.; Dixon, K.; Brundrett, M.C.; Sivasithamparam, K. Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust. J. Bot. 2001, 49, 619. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Taylor, D.L.; McCormick, M.K. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol. 2008, 177, 1020–1033. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, J.; Miyoshi, K. In Vitro Asymbiotic Germination of Immature Seed and Formation of Protocorm by Cephalanthera falcata (Orchidaceae). Ann. Bot. 2006, 98, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- McNair, J.N.; Sunkara, A.; Frobish, D.J. How to analyse seed germination data using statistical time-to-event analysis: Non-parametric and semi-parametric methods. Seed Sci. Res. 2012, 22, 77–95. [Google Scholar] [CrossRef]
- Rafter, M.; Yokoya, K.; Schofield, E.J.; Zettler, L.W.; Sarasan, V. Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar. Mycorrhiza 2016, 26, 541–552. [Google Scholar] [CrossRef]
- Kendon, J.P.; Yokoya, K.; Zettler, L.W.; Jacob, A.S.; McDiarmid, F.; Bidartondo, M.I.; Sarasan, V. Recovery of mycorrhizal fungi from wild collected protocorms of Madagascan endemic orchid Aerangis ellisii (B.S. Williams) Schltr. and their use in seed germination in vitro. Mycorrhiza 2020, 30, 567–576. [Google Scholar] [CrossRef]
- Dycus, A.M.; Knudson, L. The Role of the Velamen of the Aerial Roots of Orchids. Int. J. Plant Sci. 1957, 119, 78–87. [Google Scholar] [CrossRef]
- Bayman, P.; Otero, J.T. Microbial Endophytes of Orchid Roots. In Microbial Root Endophytes; Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2006; Volume 9. [Google Scholar] [CrossRef]
- Bell, J.; Yokoya, K.; Kendon, J.P.; Sarasan, V. Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics. PeerJ 2020, 8, e8695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, M.K.; Whigham, D.F.; O’Neill, J. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol. 2004, 163, 425–438. [Google Scholar] [CrossRef]
- McCormick, M.K.; Whigham, D.F.; Sloan, D.; O’Malley, K.; Hodkinson, B. Orchid–Fungus Fidelity: A Marriage Meant to Last? Ecology 2006, 87, 903–911. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Honnay, O.; Cammue, B.P.A.; Brys, R.; Lievens, B. Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Mol. Ecol. 2010, 19, 4086–4095. [Google Scholar] [CrossRef]
- Fracchia, S.; Rickert, A.M.A.; Flachsland, E.; Terada, G.; Sede, S.M. Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 2014, 24, 627–634. [Google Scholar] [CrossRef]
- Zettler, L.W.; Corey, L.L.; Jacks, A.L.; Gruender, L.T.; Lopez, A.M. Tulasnella irregularis (basidiomycota: Tulasnellaceae) from roots of Encyclia tampensis in south Florida, and confirmation of its mycorrhizal significance through symbiotic seed germination. Lankesteriana 2013, 13, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Otero, J.T.; Ackerman, J.D.; Bayman, P. Differences in mycorrhizal preferences between two tropical orchids. Mol. Ecol. 2004, 13, 2393–2404. [Google Scholar] [CrossRef]
- Otero, J.T.; Flanagan, N.S.; Herre, E.A.; Ackerman, J.D.; Bayman, P. Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am. J. Bot. 2007, 94, 1944–1950. [Google Scholar] [CrossRef] [Green Version]
- Suárez, J.P.; Weiss, M.; Abele, A.; Garnica, S.; Oberwinkler, F.; Kottke, I. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol. Res. 2006, 110, 1257–1270. [Google Scholar] [CrossRef]
- Suárez, J.P.; Weiß, M.; Abele, A.; Oberwinkler, F.; Kottke, I. Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol. Prog. 2008, 7, 75–85. [Google Scholar] [CrossRef]
- Xing, X.; Ma, X.; Deng, Z.; Chen, J.; Wu, F.; Guo, S. Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (Orchidaceae). Mycorrhiza 2013, 23, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Whitman, M.; Medler, M.; Randriamanindry, J.J.; Rabakonandrianina, E. Conservation of Madagascar’s granite outcrop orchids: The influence of fire and moisture. Lankesteriana Int. J. Orchid. 2011, 11, 55–67. [Google Scholar] [CrossRef]
- Rasmussen, H.N. Terrestrial Orchids: From Seed to Mycotrophic Plant; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Crawford, N.M. Nitrate: Nutrient and signal for plant growth. Plant Cell 1995, 7, 859. [Google Scholar]
- Dechorgnat, J.; Nguyen, C.T.; Armengaud, P.; Jossier, M.; Diatloff, E.; Filleur, S.; Daniel-Vedele, F. From the soil to the seeds: The long journey of nitrate in plants. J. Exp. Bot. 2011, 62, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Figura, T.; Weiser, M.; Ponert, J. Orchid seed sensitivity to nitrate reflects habitat preferences and soil nitrate content. Plant Biol. 2020, 22, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Nurfadilah, S.; Swarts, N.D.; Dixon, K.W.; Lambers, H.; Merritt, D.J. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann. Bot. 2013, 111, 1233–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Taxa (Epiphytes) | Growth Phase | OTU | Taxa (Lithophytes) | Growth Phase | OTU | Taxa (Terrestrial) | Growth Phase | OTU |
---|---|---|---|---|---|---|---|---|
Aerangis sp. 1 | Juvenile | cer1 | Aerangis ellisii | Juvenile | cer2 | Benthamia sp. | Mature | - |
Aerangis sp. 2 | Juvenile | cer3 | Mature | - | B. cinnabarina | Mature | tul2 | |
Mature | - | Angraecum coutrixii | Juvenile | - | B. glaberrima | Mature | - | |
Aerangis ellisii | Mature | - | Mature | - | B. rostrata | Juvenile | - | |
Aerangis punctata | Juvenile | cer1, tul7 | Angraecum longicalcar | Mature | - | Calanthe sp. | Mature | - |
Aeranthes sp. | Mature | - | Angraecum magdalenae | Juvenile | tul1 | Cynorkis gibbosa | Mature | - |
Angraecum sp. 1 | Juvenile | - | Angraecum protensum | Juvenile | tul3 | Cynorkis purpurea | Juvenile | cer4 |
Angraecum sp. 2 | Juvenile | - | Mature | - | ser1 | |||
Angraecum coutrixii | Mature | - | Angraecum rutenbergianum | Juvenile | - | tul3 | ||
Angraecum protensum | Juvenile | - | Angraecum sororium | Juvenile | - | tul4 | ||
Angraecum rutenbergianum | Mature | - | Bulbophyllum sp. 1 | Mature | - | Disa incarnata | Mature | - |
Bulbophyllum sp. 2 | Juvenile | - | Oeceoclades calcarata | Mature | - | Eulophia macra | Mature | - |
Bulbophyllum sp. 3 | Mature | - | Graphorkis concolor | Mature | - | |||
Bulbophyllum sp. 4 | Mature | - | Habenaria sp. | Mature | - | |||
Bulbophyllum sp. 5 | Mature | - | Satyrium trinerve | Mature | - | |||
Jumellea densefoliata | Juvenile | - | Tylostigma sp. | Mature | tul5 | |||
Polystachya concreta | Juvenile | ser2, ser3 | T. nigrescens | Mature | tul6 | |||
P. cultriformis | Juvenile | - | T. tenellum | Juvenile | tul4 |
Host | Growth Phase | Life Form | OTU | pH | Nitrogen (ppm) | Phosphorus (ppm) | Potassium (ppm) | Soil Comments |
---|---|---|---|---|---|---|---|---|
Aerangis fastuosa | Seedling | Epiphyte | - | 6.8 | 20 | 37 | 50 | Very little soil. Live moss and dead leaves |
Angreacum punctata | Seedling | Epiphyte | - | 6.8 | 20 | 37 | 50 | Very little soil. Live moss and dead leaves |
Angraecum sororium | Seedling | Lithophyte | - | 5.2 | 20 | 12 | 150 | Dark, moist, live grass |
Disa incarnata | Mature | Terrestrial | - | 5 | 30 | 5 | 70 | Dry, brown, sandy |
Eulophia plantaginea | Mature | Terrestrial | tul9, tul10 | 5.2 | 30 | 5 | 70 | Dry, brown, sandy |
Habenaria sp. | Juvenile | Terrestrial | - | 5.2 | 20 | 5 | 50 | Dark, moist, grass and moss |
Habenaria simplex | Mature | Terrestrial | tul5 | 5 | 30 | 5 | 70 | Dry, brown, sandy |
Jumellea pachyceras | Mature | Terrestrial | - | 5 | 30 | 37 | 50 | Lots of grass roots, wood and mulch. Dark, moist |
Liparis ochracea | Mature | Terrestrial | tul12, cop1, cop2 | 6.8 | 20 | 37 | 50 | Very little soil. Live moss and dead leaves |
Orchid sp. | Mature | Terrestrial | tul5 | 6.8 | 30 | 12 | 65 | Heavy clay. Dark |
Polystachya concreta | Mature | Epiphyte | tul5, tul 13 | 5 | 50 | 12 | 175 | Dark, slightly moist, some grass roots |
Polystachya sp. | Seedling | Epiphyte | - | 5 | 50 | 12 | 175 | Dark, slightly moist. some gr ass roots |
OTU and Fungal Source | cer1 | cer2 | cer3 | ser1 | ser2 | tul1 | tul2 | tul3 | ser3 | tul5 | Oatmeal Control- Most Advanced Stage (Total Germination Percentage of Stages 2–4) |
---|---|---|---|---|---|---|---|---|---|---|---|
Aerangis punctata (E) | Aerangis ellisii (E) | Aerangis sp. (E) | Cynorkis purpurea (T) | Polystachya concreta (E) | Angraecum magdalenae (L) | Benthamia cinnabarina (T) | Cynorkis purpurea (T) | Polystachya concreta (E) | Tylostigma sp. (T) | ||
Seed source | |||||||||||
Aerangis ellisii (E) * | - | 5 | 5 | - | - | - | - | - | - | 0 | |
Cynorkis purpurea (T) ** | 5 | 5 | 5 | 5 | 5 | 4 | - | 5 | 5 | 5 | 4 (74) |
Angraecum coutrixii (L) | - | - | 3 | 3 | - | 3 | - | - | - | - | 2 (2.1) |
Habenaria quartziticola (T) | 4 | 4 | 5 | 4 | - | 3 | 4 | 4 | - | - | Data not available |
Habenaria ambositrana (T) | 4 | 4 | 5 | 4 | - | - | 4 | - | 4 | - | 4 (18.2) |
Benthamia cinnabarina (T) | 4 | - | 4 | 4 | - | - | - | 5 | 4 | - | 4 (14.8) |
Disa incarnata (T) | 4 | - | 4 | - | 4 | 4 | 4 | 4 | - | - | 4 (10.8) |
Satyrium trinerve (T) | - | - | 4 | - | 3 | - | 3 | - | - | - | 3 (19.2) |
Tylostigma nigrescens (T) | 4 | - | 4 | 4 | 4 | - | 5 | 4 | - | - | 3 (21.4) |
Aerangis citrata (E) | - | - | 4 | - | - | 3 | - | - | - | - | 1 (0) |
Bulbophyllum peyrotii (E) | - | - | - | 5 | 4 | - | 4 | 4 | - | - | 4 (98) |
Bulbophyllum sp. (E) | - | - | - | - | - | 4 | - | - | - | - | 1 (0) |
Angraecum rutenbergianum (E/L) | - | - | - | 3 | - | 5 | 5 | 3 | - | - | 2 (5.1) |
Tylostigma sp. (T) | 4 | - | 4 | 4 | 4 | 5 | 5 | 4 | 4 | - | 4 (37.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokoya, K.; Zettler, L.W.; Bell, J.; Kendon, J.P.; Jacob, A.S.; Schofield, E.; Rajaovelona, L.; Sarasan, V. The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality. Diversity 2021, 13, 96. https://doi.org/10.3390/d13020096
Yokoya K, Zettler LW, Bell J, Kendon JP, Jacob AS, Schofield E, Rajaovelona L, Sarasan V. The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality. Diversity. 2021; 13(2):96. https://doi.org/10.3390/d13020096
Chicago/Turabian StyleYokoya, Kazutomo, Lawrence W. Zettler, Jake Bell, Jonathan P. Kendon, Alison S. Jacob, Emily Schofield, Landy Rajaovelona, and Viswambharan Sarasan. 2021. "The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality" Diversity 13, no. 2: 96. https://doi.org/10.3390/d13020096
APA StyleYokoya, K., Zettler, L. W., Bell, J., Kendon, J. P., Jacob, A. S., Schofield, E., Rajaovelona, L., & Sarasan, V. (2021). The Diverse Assemblage of Fungal Endophytes from Orchids in Madagascar Linked to Abiotic Factors and Seasonality. Diversity, 13(2), 96. https://doi.org/10.3390/d13020096