Conserving Refugia: What Are We Protecting and Why?
Abstract
:1. Introduction: Refugia as Conservation Priorities
2. Management-Oriented Definitions of Refugia
2.1. Persistent Refugia
2.2. Future Refugia
2.3. Temporary Refugia
3. The World Heritage Gondwana Rainforests as an Example
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mackey, B.G.; Watson, J.E.; Hope, G.; Gilmore, S. Climate change, biodiversity conservation, and the role of protected areas: An Australian perspective. Biodiversity 2008, 9, 11–18. [Google Scholar] [CrossRef]
- Joppa, L.N.; Pfaff, A. Global protected area impacts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 278, 1633–1638. [Google Scholar] [CrossRef] [Green Version]
- Morelli, T.L.; Barrows, C.W.; Ramirez, A.R.; Cartwright, J.M.; Ackerly, D.D.; Eaves, T.D.; Ebersole, J.L.; Krawchuk, M.A.; Letcher, B.H.; Mahalovich, M.F.; et al. Climate-change refugia: Biodiversity in the slow lane. Front Ecol. Environ. 2020, 18, 228–234. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.J.; Tracey, J.G.; Williams, W.T. Regeneration and pattern in the subtropical rain forest. J. Ecol. 1972, 60, 675–695. [Google Scholar] [CrossRef]
- May, R.M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 1977, 269, 471–477. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Ferrat, M. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; United Nations: San Francisco, CA, USA, 2019. [Google Scholar]
- Watson, J.E.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [Green Version]
- Kooyman, R.M.; Watson, J.; Wilf, P. Protect Australia’s gondwana rainforests. Science 2020, 367, 1083. [Google Scholar]
- Keppel, G.; Ottaviani, G.; Harrison, S.; Wardell-Johnson, G.W.; Marcantonio, M.; Mucina, L. Towards an eco-evolutionary understanding of endemism hotspots and refugia. Ann. Bot. 2018, 122, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, D.; Roy, K.; Valentine, J.W. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science 2006, 314, 102–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falster, D.S.; Brännström, Å.; Westoby, M.; Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl. Acad. Sci. USA 2017, 114, E2719–E2728. [Google Scholar] [CrossRef] [Green Version]
- Monsarrat, S.; Jarvie, S.; Svenning, J.C. Anthropocene refugia: Integrating history and predictive modelling to assess the space available for biodiversity in a human-dominated world. Philos. Trans. R. Soc. Lond B Biol. Sci. 2019, 374, 20190219. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Laffan, S.W.; Lubarsky, E.; Rosauer, D.F. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 2010, 33, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Kooyman, R.M.; Wilf, P.; Barreda, V.D.; Carpenter, R.J.; Jordan, G.J.; Sniderman, J.M.K.; Allen, A.; Brodribb, T.J.; Crayn, D.; Feild, T.S.; et al. Paleo-antarctic rainforest into the modern old-world tropics: The rich past and threatened future of the “southern wet forest survivors”. Am. J. Bot. 2014, 101, 2121–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhold, P.; Cahill, J.F.; Winter, M.; Bartish, I.V.; Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 2015, 29, 600–614. [Google Scholar] [CrossRef]
- Prinzing, A.; Ozinga, W.; Brändle, M.; Courty, P.-E.; Hennion, F.; Labandeira, C. Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. Phytologist 2016, 213, 66–82. [Google Scholar] [CrossRef]
- Bartish, I.V.; Ozinga, W.A.; Bartish, M.I.; Wamelink, G.W.; Hennekens, S.M.; Yguel, B.; Prinzing, A. Anthropogenic threats to evolutionary heritage of angiosperms in The Netherlands through an increase in high-competition environments. Cons. Biol. 2020, 34, 1536–1548. [Google Scholar] [CrossRef]
- Harrison, S.; Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 2017, 119, 207–214. [Google Scholar] [CrossRef]
- Gerhold, P.; Carlucci, M.B.; Procheş, S.; Prinzing, A. The deep past controls the phylogenetic structure of present, local communities. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 477–497. [Google Scholar] [CrossRef]
- Barrows, C.W.; Ramirez, A.R.; Sweet, L.C.; Morelli, T.L.; Millar, C.I.; Frakes, N.; Rodgers, J.; Mahalovich, M.F. Validating climate-change refugia: Empirical bottom-up approaches to support management actions. Front. Ecol. Environ. 2020, 18, 298–306. [Google Scholar] [CrossRef]
- Mokany, K.; Westcott, D.A.; Prasad, S.; Ford, A.J.; Metcalfe, D.J. Identifying priority areas for conservation and man-agement in diverse tropical forests. PLoS ONE 2014, 9, e89084. [Google Scholar] [CrossRef] [Green Version]
- Kooyman, R.M.; Rossetto, M.; Cornwell, W.; Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and sub-tropical rainforests. Global Ecol. Biogeogr. 2011, 20, 707–716. [Google Scholar] [CrossRef]
- Rosauer, D.; Laffan, S.W.; Crisp, M.D.; Donnellan, S.C.; Cook, L.G. Phylogenetic endemism: A new approach for iden-tifying geographical concentrations of evolutionary history. Mol. Ecol. 2009, 18, 4061–4072. [Google Scholar] [CrossRef] [PubMed]
- Forest, F.; Grenyer, R.; Rouget, M.; Davies, T.J.; Cowling, R.M.; Faith, D.P.; Balmford, A.; Manning, J.C.; Procheş, Ş.; van der Bank, M.; et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nat. Cell Biol. 2007, 445, 757–760. [Google Scholar] [CrossRef]
- Winter, M.; Devictor, V.; Schweiger, O. Phylogenetic diversity and nature conservation: Where are we? Trends Ecol. Evol. 2013, 28, 199–204. [Google Scholar] [CrossRef]
- Prinzing, A. On the opportunity of using phylogenetic information to ask evolutionary questions in functional com-munity ecology. Folia Geobot. 2016, 51, 69–74. [Google Scholar] [CrossRef]
- Jackson, S.T.; Overpeck, J.T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 2000, 26, 194–220. [Google Scholar] [CrossRef]
- Kershaw, A.P.; Bretherton, S.C.; van der Kaars, S. A complete pollen record of the last 230 ka from Lynch’s Crater, north-eastern Australia. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 251, 23–45. [Google Scholar] [CrossRef]
- Bartish, I.V.; Ozinga, W.A.; Bartish, M.I.; Wamelink, G.W.W.; Hennekens, S.M.; Prinzing, A. Different habitats within a region contain evolutionary heritage from different epochs depending on the abiotic environment. Glob. Ecol. Biogeogr. 2015, 25, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.D.; Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 2008, 27, 2449–2455. [Google Scholar] [CrossRef]
- Rossetto, M.; McPherson, H.; Siow, J.; Kooyman, R.M.; van der Merwe, M.; Wilson, P.D. Where did all the trees come from? A novel multispecies approach reveals the impacts of biogeographical history and functional diversity on rain forest assembly. J. Biogeogr. 2015, 42, 2172–2186. [Google Scholar] [CrossRef]
- Das, S.; Baumgartner, J.B.; Esperon-Rodriguez, M.; Wilson, P.D.; Yap, J.-Y.S.; Rossetto, M.; Beaumont, L.J. Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landsc. Ecol. 2019, 34, 2883–2896. [Google Scholar] [CrossRef]
- Waltari, E.; Hijmans, R.J.; Peterson, A.T.; Nyári, A.S.; Perkins, S.L.; Guralnick, R.P. Locating pleistocene refugia: Com-paring phylogeographic and ecological niche model predictions. PLoS ONE 2007, 2, e563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosauer, D.F.; Catullo, R.A.; VanDerWal, J.; Moussalli, A.; Moritz, C. Lineage range estimation method reveals fi-ne-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 2015, 10, e0126274. [Google Scholar]
- Carnaval, A.C.; Waltari, E.; Rodrigues, M.T.; Rosauer, D.; van der Wal, J.; Damasceno, R.; Prates, I.; Strangas, M.; Spanos, Z.; Rivera, D.; et al. Prediction of phyloge-ographic endemism in an environmentally complex biome. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141461. [Google Scholar] [CrossRef] [Green Version]
- Cantalapiedra, J.L.; Aze, T.; Cadotte, M.; Riva, G.V.D.; Huang, D.; Mazel, F.; Pennell, M.W.; Ríos, M.; Mooers, A.Ø. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. R. Soc. B Boil. Sci. 2019, 286, 20182896. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Y.; Marshall, C.R. The true tempo of evolutionary radiation and decline revealed on the Hawaiian archipelago. Nature 2017, 543, 710–713. [Google Scholar] [CrossRef]
- Reside, A.E.; Briscoe, N.J.; Dickman, C.R.; Greenville, A.C.; Hradsky, B.A.; Kark, S.; Kearney, M.R.; Kutt, A.S.; Nimmo, D.G.; Pavey, C.R.; et al. Persistence through tough times: Fixed and shifting refuges in threatened species conservation. Biodivers. Conserv. 2019, 28, 1303–1330. [Google Scholar] [CrossRef]
- Haight, J. Hammill protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 2020, 241, 108258. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Esperón-Rodríguez, M.; Nipperess, D.A.; Wauchope-Drumm, M.; Baumgartner, J.B. Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biol. Conserv. 2019, 237, 230–237. [Google Scholar] [CrossRef]
- Prober, S.M.; Byrne, M.; McLean, E.H.; Steane, D.A.; Potts, B.M.; Vaillancourt, R.E.; Stock, W.D. Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 2015, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Kooyman, R.M.; Taylor, C.; Ward, M.; Watson, J.E.M. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 2020, 4, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Beever, E.A.; O’Leary, J.; Mengelt, C.; West, J.M.; Julius, S.H.; Green, N.; Magness, D.R.; Petes, L.E.; Stein, B.A.; Nicotra, A.B.; et al. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv. Lett. 2016, 9, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Pavey, C.R.; Addison, J.; Brandle, R.; Dickman, C.R.; McDonald, P.J.; Moseby, K.E.; Young, L.I. The role of refuges in the persistence of Australian dryland mammals. Biol. Rev. 2015, 92, 647–664. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Meigs, G.W.; Cartwright, J.M.; Coop, J.D.; Davis, R.; Holz, A.; Kolden, C.; Meddens, A.J. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 2020, 18, 235–244. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire refugia: What are they, and why do they matter for global change? BioScience 2018, 68, 944–954. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Kling, M.M.; Clark, M.L.; Papper, P.; Oldfather, M.F.; Flint, A.L.; Flint, L.E. Topoclimates, refugia, and biotic responses to climate change. Front. Ecol. Environ. 2020, 18, 288–297. [Google Scholar] [CrossRef]
- Di Marco, M.; Ferrier, S.; Harwood, T.D.; Hoskins, A.J.; Watson, J.E. Wilderness areas halve the extinction risk of ter-restrial biodiversity. Nature 2019, 573, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Wyse, S.V.; Dickie, J.B.; Willis, K.J. Seed banking not an option for many threatened plants. Nat. Plants 2018, 4, 848–850. [Google Scholar] [CrossRef]
- Hill, R.S. History of the Australian Vegetation: Cretaceous to Recent; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Laurance, W.F.; Dell, B.; Turton, S.M.; Lawes, M.J.; Hutley, L.B.; McCallum, H.; Dale, P.; Bird, M.; Hardy, G.; Prideaux, G.; et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Conserv. 2011, 144, 1472–1480. [Google Scholar] [CrossRef]
- Kooyman, R.M.; Rossetto, M.; Sauquet, H.; Laffan, S.W. Landscape patterns in rainforest phylogenetic signal: Isolated islands of refugia or structured continental distributions? PLoS ONE 2013, 8, e80685. [Google Scholar]
- Yap, J.-Y.S.; Rossetto, M.; Costion, C.; Crayn, D.M.; Kooyman, R.M.; Richardson, J.; Henry, R. Filters of floristic exchange: How traits and climate shape the rain forest invasion of Sahul from Sunda. J. Biogeogr. 2018, 45, 838–847. [Google Scholar] [CrossRef]
- Van Der Merwe, M.; McPherson, H.; Siow, J.; Rossetto, M. Next-Gen phylogeography of rainforest trees: Exploring landscape-level cpDNA variation from whole-genome sequencing. Mol. Ecol. Resour. 2013, 14, 199–208. [Google Scholar] [CrossRef]
- Van Der Merwe, M.; Yap, J.S.; Bragg, J.G.; Cristofolini, C.; Foster, C.S.P.; Ho, S.Y.W.; Rossetto, M. Assemblage accumulation curves: A framework for resolving species accumulation in biological communities using DNA sequences. Methods Ecol. Evol. 2019, 10, 971–981. [Google Scholar] [CrossRef]
- Yap, J.-Y.S.; Van Der Merwe, M.; Ford, A.J.; Henry, R.; Rossetto, M. Biotic exchange leaves detectable genomic patterns in the Australian rain forest flora. Biotropica 2020, 52, 627–635. [Google Scholar] [CrossRef]
- Thorne, J.H.; Gogol-Prokurat, M.; Hill, S.; Walsh, D.; Boynton, R.M.; Choe, H. Vegetation refugia can inform climate-adaptive land management under global warming. Front. Ecol. Environ. 2020, 18, 281–287. [Google Scholar] [CrossRef]
- Kooyman, R.M.; Rossetto, M. Definition of plant functional groups for informing implementation scenarios in re-source-limited multi-species recovery planning. Biodivers. Conserv. 2018, 17, 2917–2937. [Google Scholar] [CrossRef]
- Rossetto, M.; Kooyman, R.M. The tension between dispersal and persistence regulates the current distribution of rare palaeo-endemic rainforest flora: A case study. J. Ecol. 2005, 93, 906–917. [Google Scholar] [CrossRef]
- Rossetto, M.; Kooyman, R.; Yap, J.Y.S.; Laffan, S.W. From ratites to rats: The size of fleshy fruits shapes species’ distri-butions and continental rainforest assembly. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151998. [Google Scholar] [CrossRef]
- Michalak, J.L.; Stralberg, D.; Cartwright, J.M.; Lawler, J.J. Combining physical and species-based approaches improves refugia identification. Front. Ecol. Environ. 2020, 18, 254–260. [Google Scholar] [CrossRef]
- Tear, T.H.; Kareiva, P.; Angermeier, P.L.; Comer, P.; Czech, B.; Kautz, R.; Landon, L.; Mehlman, D.; Murphy, K.; Ruckelshaus, M.; et al. How much is enough? The recurrent problem of setting measurable objectives in conservation. BioScience 2005, 55, 835. [Google Scholar] [CrossRef] [Green Version]
- Bragg, J.G.; Cuneo, P.; Sherieff, A.; Rossetto, M. Optimizing the genetic composition of a translocation population: In-corporating constraints and conflicting objectives. Mol. Ecol. Res. 2020, 20, 54–65. [Google Scholar] [CrossRef] [PubMed]
Persistent Refugia | Future Refugia | Temporary Refugia | |
---|---|---|---|
Main Identification Criteria |
|
|
|
Core Value Criteria |
|
|
|
Management Strategy Criteria |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossetto, M.; Kooyman, R. Conserving Refugia: What Are We Protecting and Why? Diversity 2021, 13, 67. https://doi.org/10.3390/d13020067
Rossetto M, Kooyman R. Conserving Refugia: What Are We Protecting and Why? Diversity. 2021; 13(2):67. https://doi.org/10.3390/d13020067
Chicago/Turabian StyleRossetto, Maurizio, and Robert Kooyman. 2021. "Conserving Refugia: What Are We Protecting and Why?" Diversity 13, no. 2: 67. https://doi.org/10.3390/d13020067
APA StyleRossetto, M., & Kooyman, R. (2021). Conserving Refugia: What Are We Protecting and Why? Diversity, 13(2), 67. https://doi.org/10.3390/d13020067