Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
Abstract
:1. Introduction
2. Functional Diversity
3. Nematode Functional Role, Functional Groups and Traits Diversity
4. Soil Nematode Communities in Space and Time
5. Biodiversity Alterations Due to Agriculture
5.1. Land Cover Change
5.2. Land Use Intensity
6. Impact in High-Value Crops
6.1. Effects of Banana Cropping Systems on Nematodes
6.2. Diversity and Function of EPN in Banana Crops
6.3. Nematodes in Apple Crops
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPBES. The IPBES assessment report on land degradation and restoration. In Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Montanarella, L., Scholes, R., Brainich, A., Eds.; FRD: Bonn, Germany, 2018; 744p. [Google Scholar]
- World Resources Institute. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Biodiversity Synthesis; Island Press: Washington, DC, USA, 2005; 137p. [Google Scholar]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Knapp, S.; Schweiger, O.; Kraberg, A.; Asmus, H.; Asmus, R.; Brey, T.; Frickenhaus, S.; Gutt, J.; Kühn, I.; Liess, M.; et al. Do drivers of biodiversity change differ in importance across marine and terrestrial systems—Or is it just different research communities’ perspectives? Sci. Total Environ. 2017, 574, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Wardle, D.A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change; Oxford University Press: Oxford, UK, 2010; 301p. [Google Scholar] [CrossRef]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batary, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How agricultural intensification affects biodiversity and ecosystem services. In Large-Scale Ecology: Model Systems to Global Perspectives; Advances in Ecological Research; Dumbrell, A.J., Kordas, R.L., Woodward, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 55, pp. 43–97. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Halley, J.M.; Rillig, M.C. Extinction risk of soil biota. Nat. Commun. 2015, 6, 8862. [Google Scholar] [CrossRef] [PubMed]
- Porazinska, D.L.; Giblin-Davis, R.; Faller, L.; Farmerie, W.; Kanzaki, N.; Morris, K.; Powers, T.O.; Tucker, A.E.; Sung, W.; Thomas, K.W. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol. Ecol. Res. 2009, 9, 1439–1450. [Google Scholar] [CrossRef]
- Hodda, M.; Peters, L.; Traunspurger, W. Nematode diversity in terrestrial, freshwater aquatic and marine systems. In Nematodes as Environmental Indicators; CABI Publishing: Wallingford, UK, 2009; pp. 45–94. [Google Scholar] [CrossRef]
- Yeates, G.W.; Ferris, H.; Moens, T.; Van der Putten, W.H. The role of nematodes in ecosystems. In Nematodes as Environmental Bioindicators; Wilson, M.J., Kakouli-Duarte, T., Eds.; CABI Publishing: Wallingford, UK, 2009; pp. 1–44. [Google Scholar] [CrossRef]
- Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 2010, 48, 371–394. [Google Scholar] [CrossRef]
- Ferris, H.; Griffiths, B.S.; Porazinska, D.L.; Powers, T.O.; Wang, K.H.; Tenuta, M. Reflections on plant and soil nematode ecology: Past, present and future. J. Nematol. 2012, 44, 115–126. [Google Scholar]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Mon. 2005, 75, 3–5. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Tilman, D. Functional diversity. In Encyclopaedia of Biodiversity; Levin, S.A., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 109–120. [Google Scholar] [CrossRef]
- Weisser, W.W.; Roscher, C.; Meyer, S.T.; Ebeling, A.; Luo, G.; Allan, E.; Beßler, H.; Barnard, R.L.; Buchmann, N.; Buscot, F.; et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. 2017, 23, 1–73. [Google Scholar] [CrossRef]
- Gagic, V.; Bartomeus, I.; Jonsson, T.; Taylor, A.; Winqvist, C.; Fischer, C.; Slade, E.M.; Steffan-Dewenter, I.; Emmerson, M.; Potts, S.G.; et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 2014–2620. [Google Scholar] [CrossRef]
- Gross, N.; Bagousse-Pinguet, Y.; Liancourt, P.; Berdugo, M.; Gotelli, N.J.; Maestre, F.T. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 2017, 1, 132. [Google Scholar] [CrossRef]
- Manning, P.; van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- Mouillot, D.; Graham, N.A.; Villéger, S.; Mason, N.W.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, L. Ecosystem services provided by the soil biota. In Soil Ecology and Ecosystem Services; Wall, D., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Hefin Jones, T., Ritz, K., Six, J., Strong, D.R., van der Putten, W.H., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 45–58. [Google Scholar] [CrossRef]
- Wright, J.P.; Naeem, S.; Hector, A.; Lehman, C.; Reich, P.B.; Schmid, B.; Tilman, D. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol. Lett. 2006, 9, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Nock, C.A.; Vogt, R.J.; Beisner, B.E. Functional Traits. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Campos-Herrera, R. Nematodes Pathogenesis of Insect and Other Pest: Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 285–508. [Google Scholar]
- Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010, 42, 63–67. [Google Scholar]
- Ekschmitt, K.; Bakonyi, G.; Bongers, M.; Bongers, T.; Boström, S.; Dogan, H.; Harrison, A.; Kallimanis, A.; Nagy, P.; O’Donnell, A.G.; et al. Effects of the nematofauna on microbial energy and matter transformation rates in European grassland soils. Plant Soil 1999, 212, 45–61. [Google Scholar] [CrossRef]
- Bonkowski, M.; Villenave, C.; Griffiths, B. Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 2009, 321, 213–233. [Google Scholar] [CrossRef]
- Knox, O.G.; Killham, K.; Mullins, C.E.; Wilson, M.J. Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol. Lett. 2003, 225, 227–233. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant Soil 1999, 212, 13–22. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Sommer, R.J.; Dardiry, M.; Lenuzzi, M.; Namdeo, S.; Renahan, T.; Sieriebriennikov, B.; Werner, M.S. The genetics of phenotypic plasticity in nematode feeding structures. Open Biol. 2017, 7, 160332. [Google Scholar] [CrossRef]
- Susoy, V.; Herrmann, M.; Kanzaki, N.; Kruger, M.; Nguyen, C.N.; Rödelsperger, C.; Röseler, W.; Weiler, C.; Giblin-Davis, R.M.; Ragsdale, E.J.; et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2016, 2, e1501031. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, G.V.; Baskaran, P.; Röseler, W.; Sieriebriennikov, B.; Rödelsperger, C.; Sommer, R.J. Life history responses and gene expression profiles of the nematode Pristionchus pacificus cultured on Cryptococcus yeasts. PLoS ONE 2016, 11, e0164881. [Google Scholar] [CrossRef]
- Phillips, P.C. Evolution: Five heads are better than one. Curr. Biol. 2016, 26, R283–R285. [Google Scholar] [CrossRef]
- De Mesel, I.; Derycke, S.; Swings, J.; Vincx, M.; Moens, T. Role of nematodes in decomposition processes: Does within-trophic group diversity matter? Mar. Ecol. Prog. Ser. 2006, 321, 157–166. [Google Scholar] [CrossRef]
- Sylvain, Z.A.; Wall, D.H. Linking soil biodiversity and vegetation: Implications for a changing planet. Am. J. Bot. 2011, 98, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Postma-Blaauw, M.B.; de Vries, F.T.; de Goede, R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L. Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 2005, 142, 428–439. [Google Scholar] [CrossRef]
- Trap, J.; Bonkowski, M.; Plassard, C.; Villenave, C.; Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 2016, 398, 1–24. [Google Scholar] [CrossRef]
- Vonk, J.A.; Breure, A.M.; Mulder, C. Environmentally-driven dissimilarity of trait-based indices of nematodes under different agricultural management and soil types. Agric. Ecosyst. Environ. 2013, 179, 133–138. [Google Scholar] [CrossRef]
- George, P.B.; Lindo, Z. Application of body size spectra to nematode trait-index analyses. Soil Biol. Biochem. 2015, 84, 15–20. [Google Scholar] [CrossRef]
- Sechi, V.; De Goede, R.G.M.; Rutgers, M.; Brusaard, L.; Mulder, C.A. Community trait-based approach to ecosystem functioning in soil. Agric. Ecosyst. Environ. 2017, 239, 265–273. [Google Scholar] [CrossRef]
- Mulder, C.; Boit, A.; Mori, S.; Vonk, J.A.; Dyer, S.D.; Faggiano, L.; Geisen, S.; Gonzalez, A.L.; Kaspari, M.; Lavorel, S.; et al. Distributional (in)congruence of biodiversity—Ecosystem functioning. In Advances in Ecological Research: Global Change in Multispecies Systems, Part 1; Ute, J., Woodward, G., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 1–88. [Google Scholar] [CrossRef]
- Mulder, C.; Vonk, J.A. Nematode traits and environmental constraints in 200 soil systems: Scaling within the 60–6000 μm body size range. Ecology 2011, 92, 2004. [Google Scholar] [CrossRef]
- Turnbull, M.S.; George, P.B.; Lindo, Z. Weighing in: Size spectra as a standard tool in soil community analyses. Soil Biol. Biochem. 2014, 68, 366–372. [Google Scholar] [CrossRef]
- Liu, T.; Guo, R.; Wei, R.; Whalen, J.K.; Li, H. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biol. Biochem. 2015, 88, 275–281. [Google Scholar] [CrossRef]
- Sechi, V.; De Goede, R.G.; Rutgers, M.; Brussaard, L.; Mulder, C. Functional diversity in nematode communities across terrestrial ecosystems. Basic Appl. Ecol. 2018, 30, 76–86. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Moroenyane, I.; Dong, K.; Singh, D.; Chimphango, S.B.; Adams, J.M. Deterministic processes dominate nematode community structure in the Fynbos Mediterranean heathland of South Africa. Evol. Ecol. 2016, 30, 685–701. [Google Scholar] [CrossRef]
- Lavelle, P. Soil as a habitat. In Soil Ecology and Ecosystem Services; Wall, D., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Hefin Jones, T., Ritz, K., Six, J., Strong, D.R., van der Putten, W.H., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 7–27. [Google Scholar]
- Scharroba, A.; Dibbern, D.; Hünninghaus, M.; Kramer, S.; Moll, J.; Butenschoen, O.; Bonkowski, M.; Buscot, F.; Kandeler, E.; Koller, R.; et al. Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol. Biochem. 2012, 50, 1–11. [Google Scholar] [CrossRef]
- Ilieva-Makulec, K.; Bjarnadottir, B.; Sigurdsson, B.D. Nematode diversity, abundance and community structure 50 years after the formation of the volcanic island of Surtsey. Biogeosci. Discuss 2014, 11, 14239–14267. [Google Scholar] [CrossRef]
- Bokhorst, S.; Kardol, P.; Bellingham, P.J.; Kooyman, R.M.; Richardson, S.J.; Schmidt, S.; Wardle, D.A. Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biol. Biochem. 2017, 106, 69–79. [Google Scholar] [CrossRef]
- Bloemers, G.F.; Hodda, M.; Lambshead, P.J.; Lawton, J.H.; Wanless, F.R. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia 1997, 111, 575–582. [Google Scholar] [CrossRef]
- De Castro Solar, R.R.; Barlow, J.; Andersen, A.N.; Schoereder, J.H.; Berenguer, E.; Ferreira, J.N.; Gardner, T.A. Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biol. Cons. 2016, 197, 98–107. [Google Scholar] [CrossRef]
- Lawton, J.H.; Bignell, D.E.; Bolton, B.; Bloemers, G.F.; Eggleton, P.; Hammond, P.M.; Hodda, M.; Holt, R.D.; Larsen, T.B.; Mawdsley, N.A.; et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 1998, 391, 72–76. [Google Scholar] [CrossRef]
- Stork, N.E.; Srivastava, D.S.; Eggleton, P.; Hodda, M.; Lawson, G.; Leakey, R.R.; Watt, A.D. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Cons. Biol. 2017, 31, 924–933. [Google Scholar] [CrossRef]
- Todd, T.C.; Powers, T.O.; Mullin, P.G. Sentinel nematodes of land-use change and restoration in tallgrass prairie. J. Nematol. 2006, 38, 20–27. [Google Scholar]
- Li, Y.; Feng, J.; Chen, J.; Wu, J. Original vegetation type affects soil nematode communities. Appl. Soil Ecol. 2007, 35, 68–78. [Google Scholar] [CrossRef]
- Biederman, L.A.; Boutton, T.W. Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biol. Biochem. 2009, 41, 1943–1950. [Google Scholar] [CrossRef]
- Kardol, P.; Bezemer, T.M.; Van der Wal, A.; Van der Putten, W.H. Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biol. Cons. 2005, 126, 317–327. [Google Scholar] [CrossRef]
- Holtkamp, R.; Kardol, P.; Van der Wal, A.; Dekker, S.C.; Van der Putten, W.H.; de Ruiter, P.C. Soil food web structure during ecosystem development after land abandonment. Appl. Soil Ecol. 2008, 39, 23–34. [Google Scholar] [CrossRef]
- Kardol, P.; Newton, J.S.; Bezemer, T.M.; Maraun, M.; Van der Putten, W.H. Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecol. 2009, 35, 603–609. [Google Scholar] [CrossRef]
- Kardol, P.; Bezemer, T.M.; Van Der Putten, W.H. Soil organism and plant introductions in restoration of species-rich grassland communities. Rest. Ecol. 2009, 17, 258–269. [Google Scholar] [CrossRef]
- Postma-Blaauw, M.B.; De Goede, R.G.; Bloem, J.; Faber, J.H.; Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 2010, 91, 460–473. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; Van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; Ruiter, P.C.; Putten, W.H.; Birkhofer, K.; Hemerik, L.; Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- De Vries, F.T.; Thébault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjørnlund, L.; Jørgensen, H.B.; Brady, M.V.; Christensen, S.; de Ruiter, P.C.; et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 110, 14296–14301. [Google Scholar] [CrossRef]
- De Vries, F.T.; Liiri, M.E.; Bjørnlund, L.; Bowker, M.A.; Christensen, S.; Setälä, H.M.; Bardgett, R.D. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2012, 2, 276–280. [Google Scholar] [CrossRef]
- Yeates, G.W. Diversity of nematodes. In Biodiversity in Agricultural Production Systems; Benckiser, G., Schnell, S., Eds.; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2006; pp. 215–236. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Parmelee, R.W.; Crossley, D.A.; Coleman, D.C.; Odum, E.P.; Groffman, P.M. Detritus food webs in conventional and no-tillage agroecosystems. BioScience 1986, 36, 374–380. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Yeates, G.W.; Ross, D.J.; Schon, N.L.; Mackay, A.D.; Wardle, D.A. Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. Appl. Soil Ecol. 2010, 45, 175–186. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Ma, M.; Nielsen, U.N.; Wang, J.; Du, G. Nematode communities response to long-term grazing disturbance on Tibetan plateau. Eur. J. Soil Biol. 2015, 69, 24–32. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Castro, J.; Alonso-Prados, E.; Alonso-Prados, J.L.; García-Baudín, J.M.; Talavera, M.; Durán-Zuazo, V.H. Tillage and herbicide decrease soil biodiversity in olive orchards. Agron. Sustain. Dev. 2015, 35, 691–700. [Google Scholar] [CrossRef]
- Brmež, M.; Ivezić, M.; Raspudić, E. Effect of mechanical disturbances on nematode communities in arable land. Helminthologia 2006, 43, 117–121. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bodenhausen, N.; Bünemann, E.K.; Brussaard, L.; Geisen, S.; Mäder, P.; Quist, C.W.; Walser, J.C.; De Goede, R.G. Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments. Mol. Ecol. 2019, 28, 4987–5005. [Google Scholar] [CrossRef] [PubMed]
- Sauvadet, M.; Chauvat, M.; Cluzeau, D.; Maron, P.A.; Villenave, C.; Bertrand, I. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biol. Biochem. 2016, 95, 262–274. [Google Scholar] [CrossRef]
- Timper, P.; Davis, R.; Jagdale, G.; Herbert, J. Resiliency of a nematode community and suppressive service to tillage and nematicide application. Appl. Soil Ecol. 2012, 59, 48–59. [Google Scholar] [CrossRef]
- Roth, E.; Samara, N.; Ackermann, M.; Seiml-Buchinger, R.; Saleh, A.; Ruess, L. Fertilization and irrigation practice as source of microorganisms and the impact on nematodes as their potential vectors. Appl. Soil Ecol. 2015, 90, 68–77. [Google Scholar] [CrossRef]
- Okada, H.; Harada, H. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Appl. Soil Ecol. 2007, 35, 582–598. [Google Scholar] [CrossRef]
- Wang, K.H.; McSorley, R.; Gallaher, R.N. Relationship of soil management history and nutrient status to nematode community structure. Nematropica 2004, 34, 83–95. [Google Scholar]
- Fiscus, D.A.; Neher, D.A. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecol. Appl. 2002, 12, 565–575. [Google Scholar] [CrossRef]
- Santiago, D.C.; de Oliveira Arieira, G.; De Almeida, E.; de Fátima Guimarães, M. Responses of soil nematode communities to agroecological crop management systems. Nematology 2012, 14, 209–221. [Google Scholar] [CrossRef]
- Sauvadet, M.; Chauvat, M.; Fanin, N.; Coulibaly, S.; Bertrand, I. Comparing the effects of litter quantity and quality on soil biota structure and functioning: Application to a cultivated soil in Northern France. Appl. Soil Ecol. 2016, 107, 261–271. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Ackermann, M.; Gass, S.; Klier, M.; Migunova, V.; Nitschke, N.; Ruess, L.; Sabais, A.C.; Weisser, W.W.; Scheu, S. Nematicide impacts on nematodes and feedbacks on plant productivity in a plant diversity gradient. Acta Oecol. 2010, 36, 477–483. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Migunova, V.D.; Ackermann, M.; Ruess, L.; Scheu, S. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland. PLoS ONE 2011, 6, e24087. [Google Scholar] [CrossRef] [PubMed]
- De Deyn, G.B.; Raaijmakers, C.E.; Van Ruijven, J.; Berendse, F.; Van Der Putten, W.H. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 2004, 106, 576–586. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Fountain, M.T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; Van Hal, R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; et al. Divergent composition but similar function of soil food webs of individual plants: Plant species and community effects. Ecology 2010, 91, 3027–3036. [Google Scholar] [CrossRef]
- Scharroba, A.; Kramer, S.; Kandeler, E.; Ruess, L. Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiology 2016, 59, 111–120. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; van der Putten, W.H.; Wall, D.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Putten, W.H.; Bradford, M.A.; Pernilla Brinkman, E.; Voorde, T.F.; Veen, G.F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 2016, 30, 1109–1121. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, H.; Chen, L.; Yuan, Y.; Fang, H.; Luan, L.; Chen, Y.; Wang, X.; Liu, M.; Li, H.; et al. Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Front. Microbiol. 2018, 9, 2803. [Google Scholar] [CrossRef] [PubMed]
- Harkes, P.; Verhoeven, A.; Sterken, M.G.; Snoek, L.B.; Van den Elsen, S.J.; Mooijman, P.J.; Quist, C.W.; Vervoort, M.T.; Helder, J. The differential impact of a native and a non-native ragwort species (Senecioneae) on the first and second trophic level of the rhizosphere food web. Oikos 2017, 126, 1790–1803. [Google Scholar] [CrossRef]
- Neher, D.A. Nematode communities in organically and conventionally managed agricultural soils. J. Nematol. 1999, 31, 142–154. [Google Scholar] [PubMed]
- Tsiafouli, M.A.; Argyropoulou, M.D.; Stamou, G.P.; Sgardelis, S.P. Soil nematode biodiversity in organic and conventional agroecosystems of Northern Greece. Russ. J. Nematol. 2006, 14, 159–169. [Google Scholar]
- Carrascosa, M.; Sánchez-Moreno, S.; Alonso-Prados, J.L. Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematology 2015, 17, 11–26. [Google Scholar] [CrossRef]
- Matsushita, Y.; Bao, Z.; Kurose, D.; Okada, H.; Takemoto, S.; Sawada, A.; Nagase, H.; Takano, M.; Murakami, H.; Koitabashi, M.; et al. Community structure, diversity, and species dominance of bacteria, fungi, and nematodes from naturally and conventionally farmed soil: A case study on Japanese apple orchards. Org. Agric. 2015, 5, 11–28. [Google Scholar] [CrossRef]
- Pokharel, R.; Marahatta, S.P.; Handoo, Z.A.; Chitwood, D.J. Nematode community structures in different deciduous tree fruits and grape in Colorado, USA and impact of organic peach and apple production practices. Eur. J. Soil Biol. 2015, 67, 59–68. [Google Scholar] [CrossRef]
- Coyne, D.; Kidane, S. Nematode pathogens. In Diseases of Banana, Abacá and Enset, 2nd ed.; Jones, D., Ed.; CABI: Wallingford, UK, 2018; 632p. [Google Scholar]
- Djigal, D.; Chabrier, C.; Duyck, P.F.; Achard, R.; Quénéhervé, P.; Tixier, P. Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol. Biochem. 2012, 48, 142–150. [Google Scholar] [CrossRef]
- Poeydebat, C.; Tixier, P.; Chabrier, C.; de Bellaire, L.D.; Vargas, R.; Daribo, M.O.; Carval, D. Does plant richness alter multitrophic soil food web and promote plant-parasitic nematode regulation in banana agroecosystems? Appl. Soil Ecol. 2017, 117, 137–146. [Google Scholar] [CrossRef]
- Rodríguez, A.; Muñoz, Y.; Pocasangre, L.E. Evaluation of free-living nematodes as indicators of soil quality in three banana production systems. Tierra Trop. Sostenibilidad Ambient. Soc. 2012, 8, 15–25. [Google Scholar]
- Chauvin, C.; Dorel, M.; Villenave, C.; Roger-Estrade, J.; Thuries, L.; Risède, J.M. Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil. Appl. Soil Ecol. 2015, 96, 131–140. [Google Scholar] [CrossRef]
- Godefroid, M.; Tixier, P.; Chabrier, C.; Djigal, D.; Quénéhervé, P. Associations of soil type and previous crop with plant-feeding nematode communities in plantain agrosystems. Appl. Soil Ecol. 2017, 13, 63–70. [Google Scholar] [CrossRef]
- Florence, A.M.; McGuire, A.M. Do diverse cover crop mixtures perform better than monocultures? A systematic review. Agron. J. 2020, 112, 3513–3534. [Google Scholar] [CrossRef]
- Damour, G.; Garnier, E.; Navas, M.L.; Dorel, M.; Risede, J.M. Using functional traits to assess the services provided by cover plants: A review of potentialities in banana cropping systems. Adv. Agron. 2015, 134, 81–133. [Google Scholar] [CrossRef]
- Tabarant, P.; Villenave, C.; Risede, J.M.; Roger-Estrade, J.; Thuries, L.; Dorel, M. Effects of four organic amendments on banana parasitic nematodes and soil nematode communities. Appl. Soil Ecol. 2011, 49, 59–67. [Google Scholar] [CrossRef]
- Ferris, H.; Pocasangre, L.E.; Serrano, E.; Muñoz, J.; Garcia, S.; Perichi, G.; Martinez, G. Diversity and complexity complement apparent competition: Nematode assemblages in banana plantations. Acta Oecol. 2012, 40, 1–8. [Google Scholar] [CrossRef]
- Moser, T.; Förster, B.; Frankenbach, S.; Marques, R.; Römbke, J.; Schmidt, P.; Höfer, H. Nematode assemblages in banana (Musa acuminata) monocultures and banana plantations with Juçara palms (Euterpe edulis) in the southern Mata Atlântica, Brazil. Nematology 2012, 14, 371–384. [Google Scholar] [CrossRef]
- Caveness, F.E.; Badra, T. Control of Helicotylenchus multicinctus and Meloidogyne javanica in established plantain and nematode survival as influenced by rainfall. Nematropica 1980, 10, 10–14. [Google Scholar]
- Plowright, R.; Dusabe, J.; Coyne, D.; Speijer, P. Analysis of the pathogenic variability and genetic diversity of the plant-parasitic nematode Radopholus similis on bananas. Nematology 2013, 15, 41–56. [Google Scholar] [CrossRef]
- Coyne, D. Pre-empting plant-parasitic nematode losses on Musa spp. Acta Hortic. 2009, 828, 227–236. [Google Scholar] [CrossRef]
- Lorenzen, J.; Tenkouano, A.; Bandyopadhyay, R.; Vroh, B.I.; Coyne, D.; Tripathi, L. The role of crop improvement in pest and disease management. Acta Hortic. 2009, 828, 305–314. [Google Scholar] [CrossRef]
- Lorenzen, J.; Tenkouano, A.; Bandyopadhyay, R.; Vroh, B.; Coyne, D.; Tripathi, L. Overview of banana and plantain improvement in Africa: Past and future. Acta Hortic. 2010, 879, 595–604. [Google Scholar] [CrossRef]
- Seshu Reddy, K.V.; Prasad, J.S.; Speijer, P.R.; Sikora, R.A.; Coyne, D.L. Distribution of plant-parasitic nematodes on Musa in Kenya. InfoMusa 2007, 16, 18–23. [Google Scholar]
- Luambano, N.; Kashando, B.; Masunga, M.; Mwenisongole, A.; Mziray, M.; Mbaga, J.; Polini, R.; Mgonja, D. Status of Pratylenchus coffeae in banana-growing areas of Tanzania. Physiol. Mol. Plant Pathol. 2018, 105, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Mgonja, D.; Temu, G.; Mziray, M.; Kashando, B.; Mwenisongole, A.; Masunga, M.; Lyantagaye, S.; Luambano, N. Morphological and molecular identification of Pratylenchus goodeyi associated with banana in Tanzania. J. Nematol. 2019, 45, 265–278. [Google Scholar]
- Anderson, J.P. Accelerated microbial degradation of nematicides and other plant protection chemicals. Nematropica 1989, 19, 1. [Google Scholar]
- Kema, G.H.J. The pesticide reduction plan for banana. In XVII Annual International Reunion ACORBAT: Bananicultura: Um Negócio Sustentável; Soprano, E., Tcacenco, F.A., Lichtemberg, L.A., Silva, M.C., Eds.; ACORBAT: Joinville, Brazil, 2006; pp. 3–4. [Google Scholar]
- Churchill, A.C.L. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: Progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol. Plant Pathol. 2011, 12, 307–328. [Google Scholar] [CrossRef]
- Cabidochea, Y.-M.; Achardb, R.; Cattanc, P.; Clermont-Dauphina, C.; Massatd, F.; Sansouleta, J. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environ. Pollut. 2009, 157, 1697–1705. [Google Scholar] [CrossRef]
- Anon. Recommended Classification of Pesticides by Hazard, and Guidelines to Classification; World Health Organization: Geneva, Switzerland, 2006; 78p. [Google Scholar]
- Sikora, R.A.; Pocasangre, L.; Zum Felde, A.; Niere, B.; Tam, T.; Vu, T.T.; Dababat, A.A. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol. Control 2008, 46, 15–23. [Google Scholar] [CrossRef]
- Sikora, R.A.; Zum Felde, A.; Mendoza, A.; Menjivar, R.; Pocasangre, L. In planta suppressiveness to nematodes and long-term root health stability through biological enhancement—Do we need a cocktail? Acta Hortic. 2010, 879, 553–560. [Google Scholar] [CrossRef]
- Zum Felde, A. Endophytes: Novel weapons in the IPM arsenal. In CGIAR SP-IPM Technical Innovation Brief No. 9; IITA: Ibadan, Nigeria, 2011. [Google Scholar]
- Kaushal, M.; Swennen, R.; Mahuku, G. Unlocking the microbiome communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and non-stressed conditions. Microorganisms 2020, 8, 443. [Google Scholar] [CrossRef]
- Van der Veken, L.; Win, P.P.; Elsen, A.; Swennen, R.; De Waele, D. Susceptibility of banana intercrops for rhizobacteria, arbuscular mycorrhizal fungi and the burrowing nematode Radopholus similis. Appl. Soil Ecol. 2008, 40, 283–290. [Google Scholar] [CrossRef]
- Milne, D.L.; Keetch, D.P. Some observations on the host plant relationships of Radopholus similis in Natal. Nematropica 1976, 6, 13–17. [Google Scholar]
- Van Asten, P.J.A.; Wairegi, L.W.I.; Mukasa, D.; Uringi, N.O. Agronomic and economic benefits of coffee-banana intercropping in Uganda’s smallholder farming systems. Agric. Syst. 2011, 104, 326–333. [Google Scholar] [CrossRef]
- Köberl, M.; Dita, M.; Martinuz, A.; Staver, C.; Berg, G. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Front. Microbiol. 2015, 6, 91. [Google Scholar] [CrossRef]
- Elsen, A.; Gervacio, D.; Swennen, R.; De Waele, D. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: A systemic effect. Mycorrhiza 2008, 18, 251–256. [Google Scholar] [CrossRef]
- Olaniyi, M.O. Effects of mycorrhizal inoculant and organic mulches on nematode damage to cooking banana. J. Biol. Agric. Healthc. 2014, 19, 81–86. [Google Scholar]
- Van der Veken, L. Potential of Dual-Purpose Intercrops for the Management of Pathogenic Nematodes and Beneficial Arbuscular Mycorrhizal Fungi and Root Nodulating Rhizobacteria in Banana-Based Cropping Systems. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2010. [Google Scholar]
- Wairegi, L.W.I.; Van Asten, P.J.A. The agronomic and economic benefits of fertilizer and mulch use in highland banana systems in Uganda. Agric. Syst. 2010, 103, 543–550. [Google Scholar] [CrossRef]
- Pattison, A.B.; Badcock, K.; Sikora, R.A. Influence of soil organic amendments on suppression of the burrowing nematode, Radopholus similis, on the growth of bananas. Australas. Plant Pathol. 2011, 40, 385–396. [Google Scholar] [CrossRef]
- Gaidashova, S.V.; Van Asten, P.; De Waele, D.; Delvaux, B. Relationship between soil properties, crop management, plant growth and vigour, nematode occurrence and root damage in East African Highland banana-cropping systems: A case study in Rwanda. Nematology 2009, 883–894. [Google Scholar] [CrossRef]
- Rotimi, M.O.; Speijer, P.; De Waele, D.; Swennen, R. Effect of mulching on the response of plantain cv. Agbagba (Musa spp., AAB-group) to plant parasitic nematodes in southeastern Nigeria. II. Reproductive growth. Niger. J. For. 2004, 34, 102–111. [Google Scholar]
- Olaniyi, M.O. Effects of organic mulches on the vegetative growth of plantain and nematode infection. Int. J. Nematol. 2008, 18, 86–92. [Google Scholar]
- Coyne, D.; Rotimi, O.; Speijer, P.; De Schutter, B.; Dubois, T.; Auwerkerken, A.; Tenkouano, A.; De Waele, D. Effects of nematode infection and mulching on plantain (Musa spp., AAB-group) yield of ratoon cycles and plantation longevity in southeastern Nigeria. Nematology 2005, 7, 531–541. [Google Scholar] [CrossRef]
- McIntyre, B.D.; Speijer, P.R.; Riha, S.J.; Kizito, F. Effect of mulching on biomass, nutrients and soil water in banana inoculated with nematodes. Agron. J. 2000, 92, 1081–1085. [Google Scholar] [CrossRef]
- Viaene, N.; Coyne, D.L.; Davies, K. Biological and cultural control. In Plant Nematology, 2nd ed.; Perry, R.A., Moens, M., Eds.; CABI: Wallingford, UK, 2013; pp. 383–410. [Google Scholar]
- Tenkouano, A.; Hauser, S.; Coyne, D.; Coulibaly, O. Clean planting materials and management practices for sustained production of banana and plantain in Africa. Chron. Hortic. 2006, 46, 14–18. [Google Scholar]
- Stock, S.P. Diversity, biology and evolutionary relationships. In Nematode Pathogenesis of Insects and Other Pests—Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 3–28. [Google Scholar]
- Hussain, A.B.; Kumar, A.C.; Hassan, T.A. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 31. [Google Scholar] [CrossRef]
- Hominick, W.M. Biogeography. In Entomopathogenic Nematology; Gaugler, R., Ed.; CABI Publishing: Wallingford, UK; New York, NY, USA, 2002; pp. 115–144. [Google Scholar]
- San-Blas, E.; Campos-Herrera, R.; Dolinski, C.; Monteiro, C.; Andaló, V.; Garrigós Leite, L.; Rodríguez, M.G.; Morales-Montero, P.; Sáenz-Aponte, A.; Cedano, C.; et al. Entomopathogenic nematology in Latin America: A brief history, current research and future prospects. J. Invertebr. Pathol. 2019, 165, 22–45. [Google Scholar] [CrossRef]
- Rodríguez, M.G. Entomopathogenic nematodes in Cuba: From laboratories to popular biological control agents for pest management in a developing country. In Nematode Pathogenesis of Insects and Other Pests—Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 343–364. [Google Scholar] [CrossRef]
- Touray, M.; Gulcu, B.; Ulug, D.; Gulsen, S.H.; Cimen, H.; Kaya, H.K.; Cakmak, I.; Hazir, S. Evaluation of different sponge types on the survival and infectivity of stored entomopathogenic nematodes. J. Invertebr. Pathol. 2020, 171, 1–15. [Google Scholar] [CrossRef]
- Lewis, E.E.; Clarke, D.J. Nematode parasites and entomopathogens. In Insect Pathology, 2nd ed.; Vega, F.E., Kaya, H.K., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 395–424. [Google Scholar] [CrossRef]
- Stuart, R.J.; Gaugler, R. Patchiness in population of entomopathogenic nematodes. J. Invertebr. Pathol. 1994, 64, 39–45. [Google Scholar] [CrossRef]
- Stuart, R.J.; Barbercheck, M.E.; Grewal, S.P. Entomopathogenic nematodes in the soil environment: Distribution, interactions and the influence of biotic and abiotic factors. In Nematode Pathogenesis of Insects and Other Pests—Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 97–138. [Google Scholar] [CrossRef]
- Lewis, E.E.; Hazir, S.; Hoodson, A.; Gulcu, B. Trophic relationships of entomopathogenic nematodes in agricultural habitats. In Nematodes Pathogenesis of Insect and Other Pest: Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 139–163. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; El-Borai, F.E.; Duncan, L.W. Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR. J. Invertebr. Pathol. 2012, 111, 126–135. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Pathak, E.; El-Borai, F.E.; Stuart, R.J.; Gutiérrez, C.; Rodríguez-Martín, J.A.; Graham, J.H.; Duncan, L.W. Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol. Biochem. 2013, 66, 163–174. [Google Scholar] [CrossRef]
- Duncan, L.W.; Dunn, D.C.; Bague, G.; Nguyen, K. Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. J. Nematol. 2003, 35, 187–193. [Google Scholar]
- Kawaka, F.J.; Kimenju, J.W.; Ayodo, G.; Mwaniki, S.W.; Muoma, J.O.; Okoth, S.A.; Orinda, G.O. Impact of land use on the distribution and diversity of entomopathogenic nematodes in Embu and Taita districts, Kenya. Trop. Subtrop. Agroecosyst. 2011, 13, 59–63. [Google Scholar]
- Franco-Navarro, F.; Godinez-Vidal, D. Soil nematodes associated with different land uses in the Los Tuxtlas Biosphere Reserve, Veracruz, Mexico. Rev. Mex. Biodiv. 2017, 88, 136–145. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Escuer, M.; Labrador, S.; Gutiérrez, C. Aislamiento, identificación y caracterización ecológica de nematodos entomopatógenos de La Rioja. Zúbia 2006, 23–24, 27–56. [Google Scholar]
- Leah, M.C.; Barbercheck, M.E. Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biol. Control 2001, 25, 1–11. [Google Scholar] [CrossRef]
- Barker, C.W.; Barker, G.M. Generalist entomopathogens as biological indicators of deforestation and agricultural land use impacts on Waikato Soils. N. Z. J. Ecol. 1998, 22, 189–196. [Google Scholar]
- Nagesh, M.; Askary, T.H.; Manohar, B.; Aracalagud, N.S.; Rajan. Strategies for making entomopathogenic nematodes cost-effective biological control agents. In Biocontrol Agents; Entomopathogenic Nematodes and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Asky, T.H., Coupland, J., Eds.; CAB International: Oxfordshire, UK; Boston, MA, USA, 2017; pp. 596–611. [Google Scholar] [CrossRef]
- Saleh, M.M.E.; Hala, M.S.M.; Abonaem, M. Commercialization of biopesticides based on entomopathogenic nematodes. In Cottage Industry of Biocontrol Agents and Their Applications; Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops; El-Wakeil, N., Saleh, M., Abu-Hashim, M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 253–275. [Google Scholar] [CrossRef]
- Robinson, J.C.; Galán Saúco, V. Bananas and Plantains, 2nd ed.; CAB International: Wallingford, UK; Cambridge, MA, USA, 2010; pp. 233–244. [Google Scholar]
- Gaugler, R. Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agric. Ecosyst. Environ. 1988, 24, 351–360. [Google Scholar] [CrossRef]
- Treverrow, N.L.; Bedding, R.A. Development of a system for the control of the banana weevil borer, Cosmopolites sordidus, with entomopathogenic nematodes. In Nematodes and the Biological Control of Insect Pests; Bedding, R., Akhurst, R., Kaya, H.K., Eds.; CSIRO: Melbourne, Australia, 1993; pp. 41–47. [Google Scholar]
- Miranda, I.; García-Perera, D.; Rodríguez, M.G. Meta-análisis de las estrategias para el manejo de Cosmopolitis sordidus Guermar en Musa spp. Rev. Prot. Veg. 2019, 34, 1–7. [Google Scholar]
- Sepúlveda-Cano, P.A.; López-Núñez, J.C.; Soto-Giraldo, A. Efecto de dos nematodos entomopatógenos sobre Cosmopolites sordidus (Coleoptera: Dryophthoridae). Rev. Colomb. Entomol. 2008, 34, 62–67. [Google Scholar]
- Figueroa, W.; Román, J.; Acosta, M.A. Isolates of entomogenous nematodes Heterorhabditis spp. and mortality of larvae of Galleria mellonella, Cylas formicarius, Euscepes postfasciatus and Cosmopolites sordidus. J. Agric. Univ. P. R. 1993, 77, 53–60. [Google Scholar] [CrossRef]
- Schmitt, A.T.; Gowen, S.R.; Hague, G.M. A baiting technique for the control of Cosmopolites sordidus Germar (Coleoptera: Curculionidae) by Steinernema carpocapsae (Nematoda: Steinernematidae). Nematropica 1992, 22, 159–163. [Google Scholar]
- Smith, D. Banana weevil borer control in south-eastern Queensland. Aust. J. Exp. Agric. 1995, 35, 1165–1172. [Google Scholar] [CrossRef]
- Rosales, L.C.; Suárez, Z. Nematodos entomopatógenos como posibles agentes de control del gorgojo negro del plátano Cosmopolites sordidus (Germar 1824) (Coleoptera: Curculionidae). Bol. Entomol. Venez. 1998, 13, 123–140. [Google Scholar]
- Chabrier, C.; Mauléon, H.; Quénéhervé, P. Combination of Steinernema carpocapsae (Weiser) and pheromone lure: A promising strategy for biological control of the banana black weevil Cosmopolites sordidus (Germar) on bananas in Martinique. Nematology 2002, 4, 190–191. [Google Scholar]
- Padilla-Cubas, Á.; Carnero, A.H.; García del Pino, F. Laboratory efficacy against neonate larvae of the banana weevil Cosmopolites sordidus of two indigenous entomopathogenic nematode species from the Canary Islands (Spain). Int. J. Pest Manag. 2010, 56, 211–216. [Google Scholar] [CrossRef]
- Bortoluzzi, L.; Alves, L.F.A.; Alves, V.S.; Holz, N. Entomopathogenic nematodes and their interaction with chemical insecticide aiming at the control of banana weevil borer, Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Arq. Inst. Biol. 2013, 80, 183–192. [Google Scholar] [CrossRef]
- Amador, M.; Molina, D.; Guillen, C.; Parajeles, E.; Jiménez, K.; Uribe, L. Utilización del nematodo entomopatógeno Heterorhabditis atacamensis CIA-NE07 en el control del picudo del banano Cosmopolites sordidus en condiciones in vitro. Agron. Cost. 2015, 39, 47–60. [Google Scholar]
- Moses, M.N.; Kilalo, D.; Kimenju, W.J.; Mwaniki, S.W. Pathogenicity of selected Kenyan entomopathogenic nematodes of genus Steinernema against banana weevil (Cosmopolites sordidus). J. Sci. Food Agric. 2016, 3, 29–36. [Google Scholar] [CrossRef]
- Kutnjem, D.; Bekolo, N.; Zachée, A.; Mounpoubeyi, N.M.; Zemko, P.N.; Tongue, T. Sensibilité des charançons (Cosmopolites sordidus) du Bananier (Musa sp.) aux nématodes entomopathogénes de la famille des Heterorhabditidae. Am. J. Innov. Res. Appl. Sci. 2017, 5, 19–25. [Google Scholar]
- García-Perera, D.; Enrique, R.; López, L.; Hernández-Ochandía, D.; Miranda, I.; Calabuche-Gómez, G.; Pino, O.; Pupiro, L.; Rodríguez, M.G. Susceptibilidad de adultos de Cosmopolites sordidus (Germar) a Heterorhabditis amazonensis Andaló et al. cepa HC1. Rev. Prot. Veg. 2019, 34, 1–8. [Google Scholar]
- Griffin, C.T.; Chaerani, R.; Fallon, D.; Reid, A.P.; Downes, M.J. Occurrence and distribution of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis indica in Indonesia. J. Helminthol. 2000, 74, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.P.; Griffin, C.T.; Chaerani, R. Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda:Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology 2004, 6, 401–412. [Google Scholar] [CrossRef]
- Hatting, J.; Stock, S.P.; Hazir, S. Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. J. Invertebr. Pathol. 2009, 102, 120–128. [Google Scholar] [CrossRef]
- Shahina, F.; Tabassum, K.A. Steinernema carpocapsae (Nematoda: Steinernematidae), a new entomopathogenic nematode isolate from Pakistan. Pak. J. Nematol. 2010, 28, 59–64. [Google Scholar]
- Mwaitulo, S.; Haukeland, S.; Sæthre, M.-G.; Laudisoit, A.; Maerere, A.P. First report of entomopathogenic nematodes from Tanzania and their virulence against larvae and adults of the banana weevil Cosmopolites sordidus (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 2011, 31, 154–161. [Google Scholar] [CrossRef]
- Razia, M.; Padmanaban, R.; Karthik, R.R.; Chellapandi, P.; Sivaramakrishnan. Monitoring entomopathogenic nematodes as ecological indicators in the cultivated lands of Karur District, Tamil Nadu: A survey report. Electron. J. Biol. 2011, 7, 16–19. [Google Scholar]
- Seenivasan, N.; Prabhu, S.; Makesh, S.; Sivakumar, M. Natural occurrence of entomopathogenic nematode species (Rhabditida: Steinernematidae and Heterorhabditidae) in cotton fields of Tamil Nadu, India. J. Nat. Hist. 2012, 46, 2829–2843. [Google Scholar] [CrossRef]
- Morales, N.; Morales-Montero, P.; Puza, V.; San-Blas, E. First Report of Heterorhabditis amazonensis from Venezuela and characterization of three populations. J. Nematol. 2016, 48, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Noujeim, E.; Sakr, J.; Fanelli, E.; Troccoli, A.; Pages, S.; Tarasco, E.; De Luca, F. Phylogenetic relationships of entomopathogenic nematodes and their bacterial symbionts from coastal areas in Lebanon. REDIA 2016, 99, 127–137. [Google Scholar] [CrossRef]
- Puza, V.; Mrácek, Z. Seasonal dynamics of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis as a response to abiotic factors and abundance of insect hosts. J. Invertebr. Pathol. 2005, 89, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Xun, Y.; Waweru, B.; Xuehong, Q.; Hategekimana, A.; Kajuga, J.; Hongmei, L.; Edgington, S.; Umulisa, C.; Richou, H.; Toepfer, S. New entomopathogenic nematodes from semi-natural and small-holder farming habitats of Rwanda. Biocontrol Sci. Technol. 2016, 26, 820–834. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Gómez-Ros, J.M.; Escuer, M.; Cuadra, L.; Barrios, L.; Gutiérrez, C. Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biol. Biochem. 2008, 40, 1474–1484. [Google Scholar] [CrossRef]
- Hummel, R.L.; Walgenbach, J.F.; Barbercheck, M.E.; Kennedy, G.G.; Hoyt, G.D.; Arellano, C. Effects of production practices on soil-borne entomopathogens in western North Carolina vegetable systems. Environ. Entomol. 2002, 31, 84–91. [Google Scholar] [CrossRef]
- Leite, L.G.; Schmidt, F.S.; Harakava, R.; Filho, A.B.; Giometti, F.H.C.; Pietrobon, T.C.; Chacon-Orozco, J. The influence of mulch on the persistence of Steinernema brazilense (Nematoda: Steinernematidae) in sugarcane fields. Rev. Colomb. Entomol. 2015, 41, 176–179. [Google Scholar]
- Shapiro-Ilan, D.; Obrycki, J.J.; Lewis, L.C.; Jackson, J.J. Effects of crop residue on the persistence of Steinernema carpocapsae. J. Nematol. 1999, 31, 517–519. [Google Scholar]
- Rodrigues, R.S.D.; Aguillera, M.M.; Gobbi, N.; Pizano, M.A. Influencia de diferentes doses de torta de filtro no solo sobre migracao e persistencia de Steinernema glaseri Steiner, 1929 (Nematoda:Rhabditidae). Holos Environ. 2005, 5, 52–64. [Google Scholar] [CrossRef]
- Hummer, K.E.; Janick, J. Rosaceae: Taxonomy, economic importance, genomics. In Genetics and Genomics of Rosaceae; Springer: New York, NY, USA, 2009; pp. 1–17. [Google Scholar] [CrossRef]
- Birkhofer, K.; Addison, M.F.; Arvidsson, F.; Bazelet, C.; Bengtsson, J.; Booysen, R.; Conlong, D.; Haddad, C.; Janion-Scheepers, C.; Kapp, C.; et al. Effects of ground cover management on biotic communities, ecosystem services and disservices in organic deciduous fruit orchards in South Africa. Front. Sustain. Food Syst. 2019, 3, 107. [Google Scholar] [CrossRef]
- Samnegård, U.; Alins, G.; Boreux, V.; Bosch, J.; García, D.; Happe, A.K.; Klein, A.M.; Miñarro, M.; Mody, K.; Porcel, M.; et al. Management trade-offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. J. Appl. Ecol. 2019, 56, 802–811. [Google Scholar] [CrossRef]
- Reganold, J.P.; Glover, J.D.; Andrews, P.K.; Hinman, H.R. Sustainability of three apple production systems. Nature 2001, 410, 926–930. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of cover crops on the soil microbiome of tree crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Kapp, C.; Storey, S.G.; Malan, A.P. Organic vs conventional: Soil nematode community structure and function. Commun. Agric. Appl. Biol. Sci. 2014, 79, 297–300. [Google Scholar] [PubMed]
- Pokharel, R.R.; Zimmerman, R. Impact of organic and conventional peach and apple production practices on soil microbial populations and plant nutrients. Org. Agric. 2016, 6, 19–30. [Google Scholar] [CrossRef]
- Forge, T.A.; Hogue, E.; Neilsen, G.; Neilsen, D. Effects of organic mulches on soil microfauna in the root zone of apple: Implications for nutrient fluxes and functional diversity of the soil food web. Appl. Soil Ecol. 2003, 22, 39–54. [Google Scholar] [CrossRef]
- Forge, T.; Neilsen, G.; Neilsen, D.; O’Gorman, D.; Hogue, E.; Angers, D. Organic orchard soil management practices affect soil biology and organic matter. In II International Symposium on Organic Matter Management and Compost Use in Horticulture. Acta Hortic. 2015, 1076, 77–84. [Google Scholar] [CrossRef]
- Kanfra, X.; Liu, B.; Beerhues, L.; Sørensen, S.J.; Heuer, H. Free-living nematodes together with associated microbes play an essential role in apple replant disease. Front. Plant Sci. 2018, 16, 1666. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M.; Manici, L.M. Apple replant disease: Role of microbial ecology in cause and control. Ann. Rev. Phytopathol. 2012, 50, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, T.; Smalla, K.; Amelung, W.; Baab, G.; Grunewaldt-Stöcker, G.; Kanfra, X.; Meyhöfer, R.; Reim, S.; Schmitz, M.; Vetterlein, D.; et al. Apple replant disease: Causes and mitigation strategies. Curr. Issues Mol. Biol. 2019, 30, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Tewoldemedhin, Y.T.; Mazzola, M.; Labuschagne, I.; McLeod, A. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biol. Biochem. 2011, 43, 1917–1927. [Google Scholar] [CrossRef]
- Jaffee, B.A.; Abawi, G.S.; Mai, W.F. Role of soil microflora and Pratylenchus penetrans in an apple replant disease. Phytopathology 1982, 72, 247–251. [Google Scholar] [CrossRef]
- Lemanceau, P.; Maron, P.A.; Mazurier, S.; Mougel, C.; Pivato, B.; Plassart, P.; Ranjard, L.; Revellin, C.; Tardy, V.; Wipf, D. Understanding and managing soil biodiversity: A major challenge in agroecology. Agron. Sustain. Dev. 2015, 35, 67–81. [Google Scholar] [CrossRef]
Nematode Trophic Groups | Functions * | |||
---|---|---|---|---|
Plant Production | Pests or Pathogens Regulation | Disease Transmission | C and Nutrient Cycling | |
Bacterial feeders | +/− (vectors of beneficial/harmful bacteria) | + (feeding on harmful bacteria) | + | |
Fungal feeders | + (feeding on pathogenic fungi) | + | ||
Herbivores | +/− (weed control/plant parasitism) | + (virus vectors) | + | |
Predators | + (PPN preying) | + | ||
Omnivorous | + (PPN preying) | + | ||
Entomopathogens | + (insect killing) | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarova, S.; Coyne, D.; G. Rodríguez, M.; Peteira, B.; Ciancio, A. Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. Diversity 2021, 13, 64. https://doi.org/10.3390/d13020064
Lazarova S, Coyne D, G. Rodríguez M, Peteira B, Ciancio A. Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. Diversity. 2021; 13(2):64. https://doi.org/10.3390/d13020064
Chicago/Turabian StyleLazarova, Stela, Danny Coyne, Mayra G. Rodríguez, Belkis Peteira, and Aurelio Ciancio. 2021. "Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review" Diversity 13, no. 2: 64. https://doi.org/10.3390/d13020064
APA StyleLazarova, S., Coyne, D., G. Rodríguez, M., Peteira, B., & Ciancio, A. (2021). Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review. Diversity, 13(2), 64. https://doi.org/10.3390/d13020064