Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = nematode community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 718 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
33 pages, 872 KiB  
Review
Implications of Fertilisation on Soil Nematode Community Structure and Nematode-Mediated Nutrient Cycling
by Lilian Salisi Atira and Thomais Kakouli-Duarte
Crops 2025, 5(4), 50; https://doi.org/10.3390/crops5040050 - 30 Jul 2025
Viewed by 209
Abstract
Soil nematodes are essential components of the soil food web and are widely recognised as key bioindicators of soil health because of their sensitivity to environmental factors and disturbance. In agriculture, many studies have documented the effects of fertilisation on nematode communities and [...] Read more.
Soil nematodes are essential components of the soil food web and are widely recognised as key bioindicators of soil health because of their sensitivity to environmental factors and disturbance. In agriculture, many studies have documented the effects of fertilisation on nematode communities and explored their role in nutrient cycling. Despite this, a key gap in knowledge still exists regarding how fertilisation-induced changes in nematode communities modify their role in nutrient cycling. We reviewed the literature on the mechanisms by which nematodes contribute to nutrient cycling and on how organic, inorganic, and recycling-derived fertilisers (RDFs) impact nematode communities. The literature revealed that the type of organic matter and its C:N ratio are key factors shaping nematode communities in organically fertilised soils. In contrast, soil acidification and ammonium suppression have a greater influence in inorganically fertilised soils. The key sources of variability across studies include differences in the amount of fertiliser applied, the duration of the fertiliser use, management practices, and context-specific factors, all of which led to differences in how nematode communities respond to both fertilisation regimes. The influence of RDFs on nematode communities is largely determined by the fertiliser’s origin and its chemical composition. While fertilisation-induced changes in nematode communities affect their role in nutrient cycling, oversimplifying experiments makes it difficult to understand nematodes’ functions in these processes. The challenges and knowledge gaps for further research to understand the effects of fertilisation on soil nematodes and their impact on nutrient cycling have been highlighted in this review to inform sustainable agricultural practices. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Influence of Golden Moles on Nematode Diversity in Kweek Grassland, Sovenga Hills, Limpopo Province, South Africa
by Ebrahim Shokoohi, Jonathan Eisenback and Peter Masoko
Agriculture 2025, 15(15), 1634; https://doi.org/10.3390/agriculture15151634 - 28 Jul 2025
Viewed by 295
Abstract
This study investigates the impact of golden moles (Amblysomus sp.) on the abundance, diversity, and community structure of nematodes in kweek grass (Cynodon dactylon) within the Sovenga Hills of Limpopo Province, South Africa. Eight sites were sampled: four with active [...] Read more.
This study investigates the impact of golden moles (Amblysomus sp.) on the abundance, diversity, and community structure of nematodes in kweek grass (Cynodon dactylon) within the Sovenga Hills of Limpopo Province, South Africa. Eight sites were sampled: four with active moles (sites: M1–M4), and four without (sites: T1–T4). Eighty soil samples were collected, and nematodes were extracted. A total of 23 nematode genera were identified, including 3 plant-parasitic and 20 free-living genera. The frequency of occurrence (FO) data showed that Aphelenchus sp. and Acrobeles sp. were the most prevalent nematodes, each occurring in 87.5% of the samples. In contrast, Eucephalobus sp., Tripylina sp., Discolaimus sp., and Tylenchus sp. had the lowest FO, appearing in only 12.5% of samples. The diversity indices (the Shannon index, the maturity index, and the plant-parasitic index) showed significant differences between the two environments. The Shannon index (H′) and maturity index were the most effective indicators of ecosystem disturbance. The lowest H′ was found at T4 (1.7 ± 0.2), compared with a higher value at M1 (2.4 ± 0.1). The principal component analysis (PCA) results revealed a positive correlation between Ditylenchus and the clay in the soil. In addition, Cervidellus was associated with soil pH. Network analysis revealed increased complexity in the nematode community structure at mole-affected sites. These findings suggest that mole activity alters soil properties and indirectly affects nematode diversity and trophic structure. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 5140 KiB  
Article
How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?
by Juliana M. M. de Melo, Elvira Maria R. Pedrosa, Iug Lopes, Thais Fernanda da S. Vicente, Thayná Felipe de Morais and Mário Monteiro Rolim
Diversity 2025, 17(8), 514; https://doi.org/10.3390/d17080514 - 25 Jul 2025
Viewed by 264
Abstract
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their [...] Read more.
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their food chains in different environments. The objective of this study was to analyze the spatial and dynamic distributions of nematode communities and soil properties in two riparian areas of the Caatinga biome: one with native vegetation and the other with a history of agricultural use (modified). The study was carried out in a semi-arid region of Brazil in Parnamirim, PE. In both areas, sampling grids of 60 m × 40 m were established to obtain data on soil moisture, organic matter, particle size, electrical conductivity, and pH, as well as metabolic activity and ecological indices of nematode communities. There was a greater abundance and diversity of nematodes in riparian soils with native vegetation compared to in the modified area due to agricultural use and the dominance of exotic and invasive species. In both areas, bacterivores and plant-parasitic nematodes were dominant, with the genus Acrobeles and Tylenchorhynchus as the main contributors to the community. In the modified area, soil variables (fine sand, clay, and pH) positively influenced Fu4 and PP4 guilds, while in the area with native vegetation, moisture and organic matter exerted a greater influence on Om4, PP5, and Ba3 guilds. Kriging maps showed the soil variables were more concentrated in the center in the areas with native vegetation, in contrast to the area with modified vegetation, where they concentrated more on the margins. The functional guilds in the native vegetation did not exhibit a gradual increase towards the regions close to the riverbank, unlike in the modified area. The presence of plant-parasitic nematodes, especially of the genus Tylenchorhynchus, indicates the need for greater attention in the management of these ecosystems. The study contributes to understanding the interactions between nematode communities and soil in riparian areas of the Caatinga biome, emphasizing the importance of preserving native vegetation to maintain the diversity and balance of this ecosystem, in addition to highlighting the need for appropriate management practices in areas with a history of agricultural use, aiming to conserve soil biodiversity. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Figure 1

17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 832
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1388 KiB  
Article
The Impact of Different Agricultural Practices on Nematode Biodiversity on Tomato- and Lettuce-Growing Periods Across Two Consecutive Years
by Giada d’Errico and Silvia Landi
Diversity 2025, 17(8), 501; https://doi.org/10.3390/d17080501 - 22 Jul 2025
Viewed by 265
Abstract
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an [...] Read more.
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an organic amendment on soil nematode biodiversity compared to two years of fumigation. The plot-trial was conducted on tomato and lettuce plants under greenhouse, and free-living nematodes were used as bio-indicators of soil health. Treatments included a soil fumigant (applied once or twice over time), water control, and an organic substance. Soil samplings were carried out to determine the Meloidogyne incognita reproduction factor and the soil nematode community analysis using soil biological indicators. Data showed that soil fumigation clearly made the soil increasingly dependent on chemicals. Furthermore, fumigants suppressed pests and pathogens as well as their natural antagonists, causing a lack of biodiversity. While soils treated with organic matter respond slowly to stressors, they are progressively more suppressive thanks to biodiversity enrichment. Nematodes have proven to be useful indicators of the soil biota in response to biotic or abiotic disturbances. Their species richness and functional diversity make them valid bioindicators of soil management impact. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Graphical abstract

18 pages, 1595 KiB  
Article
An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems
by Ewa M. Furmanczyk, Dawid Kozacki, Morgane Ourry, Samuel Bickel, Expedito Olimi, Sylvie Masquelier, Sara Turci, Anne Bohr, Heinrich Maisel, Lorenzo D’Avino and Eligio Malusà
Soil Syst. 2025, 9(3), 77; https://doi.org/10.3390/soilsystems9030077 - 14 Jul 2025
Viewed by 218
Abstract
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic [...] Read more.
The analysis of soil nematode communities provides information on their impact on soil quality and the health of different agricultural cropping systems and soil management practices, which is necessary to evaluate their sustainability. Here, we evaluated the status of nematode communities and trophic groups’ abundance in fifteen fields hosting different cropping systems and managed according to organic or conventional practices. The nematode population densities differed significantly across cropping systems and management types covering various European climatic zones (spanning 121 to 799 individuals per sample). Population density was affected by the duration of the cropping system, with the lowest value in the vegetable cropping system (on average about 300 individuals) and the highest in the long-term fruiting system (on average more than 500 individuals). The occurrence and abundance of the different trophic groups was partly dependent on the cropping system or the management method, particularly for the bacteria, fungal and plant feeders. The taxonomical classification of a subset of samples allowed us to identify 22 genera and one family (Dorylaimidae) within the five trophic groups. Few taxa were observed in all fields and samples (i.e., Rhabditis and Cephalobus), while Aphelenchoides or Pratylenchus were present in the majority of samples. Phosphorus content was the only soil chemical parameter showing a positive correlation with total nematode population and bacterial feeders’ absolute abundance. Based on the nematological ecological indices, all three cropping systems were characterized by disturbed soil conditions, conductive and dominated by bacterivorous nematodes. This knowledge could lead to a choice of soil management practices that sustain a transition toward healthy soils. Full article
Show Figures

Figure 1

29 pages, 2090 KiB  
Review
Nematode Pheromones as Key Mediators of Behavior, Development, and Ecological Interactions
by Xi Zheng, Junjie Liu and Xin Wang
Biomolecules 2025, 15(7), 981; https://doi.org/10.3390/biom15070981 - 9 Jul 2025
Viewed by 525
Abstract
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode [...] Read more.
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode pheromones are essential chemicals signaling intraspecies and interspecies communication, regulating development, reproduction, and social behavior. Their structural diversity enables ecological adaptation and cross-kingdom interactions, influencing fungal predation and plant immunity. This review focuses on the classification, function, and regulatory mechanisms of nematode pheromones, interspecific signal transmission, and biosynthesis pathways. We pay special attention to their potential as environmentally friendly biological control agents as well as the challenges currently encountered in their application. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

19 pages, 1653 KiB  
Article
Combined Metagenomic and Metabolomic Analysis to Evaluate the Comprehensive Effects of Trichoderma and 6PP on Vineyard Ecosystems
by Irene Dini, Giada d’Errico, Elisa Troiano, Claudio Gigliotti, Anastasia Vassetti, Daria Lotito, Alessia Staropoli, Giuseppe Parrella, Francesco P. d’Errico, Matteo Lorito and Francesco Vinale
Agriculture 2025, 15(13), 1441; https://doi.org/10.3390/agriculture15131441 - 4 Jul 2025
Viewed by 282
Abstract
Viticulture is vital to Italy’s agricultural sector, since it significantly contributes to the global wine industry. Microflora and microfauna are considered important factors for soil quality, improving grapevine growth, and promoting resistance to biotic and abiotic stresses. This study examined the impact of [...] Read more.
Viticulture is vital to Italy’s agricultural sector, since it significantly contributes to the global wine industry. Microflora and microfauna are considered important factors for soil quality, improving grapevine growth, and promoting resistance to biotic and abiotic stresses. This study examined the impact of selected Trichoderma strains (T. harzianum M10 and T. afroharzianum T22) and their secondary metabolite 6-pentyl-α-pyrone (6PP) on the soil microbiome, the metabolome, and physiological changes of grapevines. Before treatment application, low levels of plant-parasitic nematodes (Rotylenchulus spp., Xiphinema pachtaicum) were found in the soil, together with pathogens (Fusarium spp., Neonectria spp.) and beneficial microbes (Clonostachys rosea, Pseudomonas spp.). Metagenomic analysis revealed significant treatment impacts in the soil microbiome, with T22 and 6PP treatments increasing Proteobacteria abundance, while slight variations of fungal communities and no significant differences in nematofauna were found. Metabolomic analysis showed that treatments induced grapevines to produce antioxidant secondary metabolites able to boost plant defense against abiotic and biotic stresses and increase nutraceutical grapes’ value. Finally, T22 treatment increased the grapes’ winemaking value, raising their Brix grade. Our results demonstrate that microbial or metabolite-based treatments could affect the soil microbiome composition, grapevine health and resilience, and grapes’ oenological and nutraceutical properties. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

13 pages, 2746 KiB  
Article
The Influence of Microbial Community on Soybean Cyst Nematode Under the Condition of Suppressive Soil
by Jie Song, Meiqi Liu, Qin Yao, Xiaoyu Zhang, Zhiming Zhang, Fengjuan Pan and Yanli Xu
Agronomy 2025, 15(6), 1496; https://doi.org/10.3390/agronomy15061496 - 19 Jun 2025
Viewed by 404
Abstract
Disease-suppressive soils confer fitness advantages to plants after a disease outbreak due to the subsequent assembly of protective microbiota in natural environments. However, the role of ecological effects on the assemblage of a protective soil microbiome is largely elusive. In this study, we [...] Read more.
Disease-suppressive soils confer fitness advantages to plants after a disease outbreak due to the subsequent assembly of protective microbiota in natural environments. However, the role of ecological effects on the assemblage of a protective soil microbiome is largely elusive. In this study, we investigated the composition of parasitic microbes and their relationships with soybean cyst nematodes in suppressive soil. The results showed that parasitic microbial assembly along soybean cyst nematodes was shaped predominantly by the density of soybean cyst nematodes. We also found soybean continuous cropping increased the number of parasitic microbes of soybean cyst nematodes with the order of Ss > Sr > Sc, while it decreased the population of soybean cyst nematodes, resulting in a natural decline in the number of soybean cyst nematodes. These findings indicate that the population of soybean cyst nematodes accumulated parasitic microorganisms against this soil-borne disease under soybean long-term continuous cropping. Moreover, the metabolic activity of cyst parasitic microbes was increased by two years of continuous cropping (Sc) of soybean, and total carbon and total nitrogen of soil were the main impact factors in this short-term continuous cropping for metabolic patterns of the cyst parasitic microbes. In summary, the results highlight that the interaction of plants and disease shape the soil microbiome, recruit a group of disease resistance-inducing microbes, and modulate their beneficial traits to protect the plant. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 2024 KiB  
Article
Co-Inoculating Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W Reduced Meloidogyne incognita Infestation of Tomato Plants
by Yanqing Jiang, Wenzhe Li, Jishun Li, Jindong Hu, Yanli Wei, Yilian Wang, Hetong Yang, Yi Zhou, Yuanzheng Wu and Shanshan Zhang
Microorganisms 2025, 13(6), 1337; https://doi.org/10.3390/microorganisms13061337 - 9 Jun 2025
Viewed by 415
Abstract
Root-knot nematodes (RKNs; Meloidogyne incognita) pose a significant threat to tomato crops, necessitating sustainable control methods. This study investigated the inoculation efficacy of co-cultured Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W compared with single-strain treatments for RKNs suppression and their influence on the [...] Read more.
Root-knot nematodes (RKNs; Meloidogyne incognita) pose a significant threat to tomato crops, necessitating sustainable control methods. This study investigated the inoculation efficacy of co-cultured Burkholderia vietnamiensis B418 and Trichoderma harzianum T11W compared with single-strain treatments for RKNs suppression and their influence on the structure and function of the rhizosphere microbiome. Co-inoculation with B418 + T11W achieved a 71.42% reduction in the disease index, significantly outperforming single inoculations of B418 (54.46%) and T11W (58.93%). Co-inoculation also increased plant height by 38.51% and fresh weight by 76.02% compared to the RKNs infested plants control, promoting robust tomato growth. Metagenomic analysis reveals that co-inoculation enhanced bacterial diversity, with 378 unique bacterial species and a high Shannon index, while fungal diversity decreased with Trichoderma dominance (83.31% abundance). Actinomycetota (46.42%) and Ascomycota (97.92%) were enriched in the co-inoculated rhizosphere, showing negative correlations with RKNs severity. Functional analysis indicates enriched metabolic pathways, including streptomycin and unsaturated fatty acid biosynthesis, enhancing microbial antagonism. Single inoculations altered pathways like steroid degradation (B418) and terpenoid biosynthesis (T11W), but co-inoculation uniquely optimized the rhizosphere microenvironment. These findings highlight co-inoculation with B418 + T11W effectively suppressing RKNs and fostering plant health by reshaping microbial communities and functions, offering a promising approach for sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 2948 KiB  
Article
The Effects of Polymer–Nitrogen Fertilizer on Biomes in Drip-Irrigated Wheat Soil
by Yan Sun, Chunying Wei, Shenglin Zhang, Hua Fan, Dashuang Hong, Hong Huang and Kaiyong Wang
Microorganisms 2025, 13(6), 1334; https://doi.org/10.3390/microorganisms13061334 - 9 Jun 2025
Viewed by 497
Abstract
Polymer application combined with nitrogen (N) fertilization can increase soil N transformation efficiency. However, the mechanism of polymer influencing soil biocommunity characteristics and nitrogen transformation is still unclear. In this field experiment, a self-developed water-soluble polymer material (PPM, a mixture of anionic polyacrylamide, [...] Read more.
Polymer application combined with nitrogen (N) fertilization can increase soil N transformation efficiency. However, the mechanism of polymer influencing soil biocommunity characteristics and nitrogen transformation is still unclear. In this field experiment, a self-developed water-soluble polymer material (PPM, a mixture of anionic polyacrylamide, polyvinyl alcohol, and manganese sulfate) was combined with N fertilization N100 (300 kg/hm2 of N), PN100 (PPM + 300 kg/hm2 of N), and PN80 (PPM + 240 kg/hm2 of N) to investigate soil biodiversity, enzyme activities, and metabolomics. The results showed that under the application of PPM, the contents of soil total nitrogen (TN), alkali hydrolyzable nitrogen (ANS), nitrate nitrogen, organic carbon (SOC), and microbial biomass nitrogen (MBN) increased with a decrease in the N application rate, while soil bulk density, pH, and EC (electrical conductivity) decreased. The Chao 1 index of soil bacterial and nematode communities of the PN80 treatment was 30.6% and 10.7% higher than that of the N100 treatment, respectively, and the Shannon index was 2.72% and 2.64% higher than that of the N100 treatment, respectively. In the short term, the application of PPM affected the structure and composition of soil bacterial and nematode communities. In particular, the relative abundances of omnivorous (Aporcelaimellus) and bacterivorous (Prismatolaimus) nematodes were significantly higher than those of the N100 treatment. These changes further regulated the soil metabolites, promoting soil nitrogen transformation. This study will provide a scientific basis for nitrogen reduction in drip-irrigated wheat planting in arid regions. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling)
Show Figures

Figure 1

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 1 | Viewed by 959
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

8 pages, 219 KiB  
Article
Baylisascaris procyonis (Chromadorea Ascarididae): Case Study of the Little-Known Human Health Threat That Is Literally in Your Backyard
by Scott E. Henke
Trop. Med. Infect. Dis. 2025, 10(6), 156; https://doi.org/10.3390/tropicalmed10060156 - 2 Jun 2025
Viewed by 766
Abstract
Baylisascariasis is a debilitating and potentially lethal zoonotic disease caused by a nematode parasite that has a worldwide distribution. Baylisascaris spp. are carried by a variety of mammalian definitive hosts, and their larvae can infect a large diversity of paratenic hosts including birds [...] Read more.
Baylisascariasis is a debilitating and potentially lethal zoonotic disease caused by a nematode parasite that has a worldwide distribution. Baylisascaris spp. are carried by a variety of mammalian definitive hosts, and their larvae can infect a large diversity of paratenic hosts including birds and mammals, and even humans. Herein, the potential exposure risk of this zoonotic parasite is demonstrated through the study of a suburban American community with a population of Baylisascaris procyonis—infected raccoons (Procyon lotor) as a case study for any location with Baylisascaris spp., definitive hosts, and proximity to humans. Soil from 100 properties within neighborhoods of southern Corpus Christi, TX, USA, was surveyed to determine if viable B. procyonis eggs were present. In total, 27% of the residential properties were contaminated. Positive soil samples, on average, contained 31,287 B. procyonis eggs/gram of soil; of these samples, 92% of the B. procyonis eggs had motile larvae. Sites with contaminated soils appeared random within residential properties; frequency of contaminated sites was similar between known raccoon defecation sites and random sites. Suggestions for the reduction in risks of exposure to this potentially debilitating parasite are offered to residents of Baylisascaris-contaminated properties. Full article
15 pages, 1996 KiB  
Article
Characteristics of Soil Nematode Communities in Pure Populus hopeiensis Forests in the Loess Hilly Region and Their Responses to Precipitation
by Yani Hu, Jiahao Shi, Fangfang Qiang, Changhai Liu and Ning Ai
Agronomy 2025, 15(6), 1341; https://doi.org/10.3390/agronomy15061341 - 30 May 2025
Viewed by 445
Abstract
To clarify the response mechanisms of soil nematodes as bioindicators of ecosystem health to precipitation variations in loess hilly forests, this study investigated soil nematodes in pure Populus hopeiensis forests across different precipitation gradients in Wuqi County. Through soil physicochemical analysis and high-throughput [...] Read more.
To clarify the response mechanisms of soil nematodes as bioindicators of ecosystem health to precipitation variations in loess hilly forests, this study investigated soil nematodes in pure Populus hopeiensis forests across different precipitation gradients in Wuqi County. Through soil physicochemical analysis and high-throughput sequencing of soil nematodes, we analyzed the characteristics of soil nematode communities and their responses to precipitation variation. The results demonstrated the following: (1) Dominant genera and trophic groups of soil nematodes were significantly influenced by precipitation, with Acrobeloides prevailing across all gradients while Paratylenchus reached maximum abundance (26.8%) in moderate precipitation zones. (2) Bacterivorous nematodes prevailed in both low- and high-precipitation zones, while herbivorous nematodes constituted the highest proportion in moderate precipitation zones. The abundances of herbivorous and fungivorous nematodes exhibited an initial increase followed by a decrease with rising precipitation, whereas predatory–omnivorous nematodes displayed the opposite trend. (3) The Chao1 and Shannon indices of soil nematodes initially increased and then decreased with increasing precipitation, reaching a peak in the Jinfoping site. Moreover, there were significant differences in nematode community structure among different precipitation gradients. (4) Redundancy analysis and PLS-PM modeling identified soil water content (SWC), total nitrogen (TN), and capillary water holding capacity (CWHC) as key drivers of nematode communities. Precipitation indirectly regulated nematode functionality by modifying soil physicochemical properties and microbial activity. (5) Ecological function analysis revealed bacterial-dominated organic matter decomposition (Nematode Channel Ratio, NCR > 0.75) in the Changcheng and Baibao sites, contrasting with fungal channel predominance (NCR < 0.75) in Jinfoping. This research elucidates the mechanism whereby precipitation drives nematode community divergence through regulating soil physicochemical properties and microbial activity. The findings provide scientific basis for soil biodiversity conservation and ecological restoration benefit assessment in regional ecological restoration projects, and soil health management and sustainable land use in agricultural ecosystems. Full article
(This article belongs to the Special Issue Soil Health and Properties in a Changing Environment)
Show Figures

Figure 1

Back to TopTop