Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Stream Habitat Sampling
2.4. Stream Community Sampling
2.5. Data Analysis
3. Results
3.1. Stream Habitat
3.2. Periphyton
3.3. Macroinvertebrates
3.4. Amphibians
3.5. Fish
4. Discussion
4.1. Effects of Restoration Strategy on Stream Habitat
4.2. Effects of Stream Restoration Strategy on Stream Community
4.3. Mechanisms Contributing to Different Ecological Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Variable | 2006 | 2007 | ||||||
---|---|---|---|---|---|---|---|---|
Downstream | HH-Reach | LH-Reach | Upstream | Downstream | HH-Reach | LH-Reach | Upstream | |
CURRENT (cm/s) | 0.049 | 0.060 | 0.095 | 0.063 | 0.065 | 0.090 | 0.136 | 0.063 |
UNDERCUT (% shoreline) | 0.933 | 0.000 | 0.000 | 0.290 | 0.500 | 0.000 | 0.000 | 0.396 |
Substrate size (mm) | 0.075 | 0.110 | 0.065 | 0.081 | 0.055 | 0.093 | 0.057 | 0.097 |
Sediment (% transect covered) | - | - | - | - | 0.273 | 0.440 | 0.126 | 0.227 |
Substrate embeddedness (% buried) | 0.112 | 0.135 | 0.077 | 0.090 | 0.090 | 0.140 | 0.133 | 0.055 |
LWD (% coverage) | 0.660 | 0.000 | 0.000 | 0.286 | 0.267 | 1.000 | 0.533 | 0.300 |
ORGANIC (L·m−2) | 0.167 | 0.190 | 0.182 | 0.313 | 0.556 | 0.385 | 0.182 | 0.406 |
COVER (%) | 0.300 | 0.600 | 0.000 | 0.107 | 0.243 | 0.600 | 0.000 | 0.228 |
LIGHT (kW·m−2·h−1) | 0.042 | 0.015 | 0.014 | 0.096 | 0.063 | 0.015 | 0.014 | 0.092 |
Average | 0.292 | 0.139 | 0.054 | 0.166 | 0.235 | 0.307 | 0.131 | 0.207 |
Average (excluding variables with mean = 0) | 0.292 | 0.185 | 0.087 | 0.166 | 0.235 | 0.345 | 0.169 | 0.207 |
Appendix D
References
- Bernhardt, E.S.; Palmer, M.; Allan, J.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J. Synthesizing U. S. river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Flávio, H.M.; Ferreira, P.; Formigo, N.; Svendsen, J.C. Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive. Sci. Total Environ. 2017, 596, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Sudduth, E.B.; Palmer, M.A.; Allan, J.D.; Meyer, J.L.; Alexander, G.; Follastad-Shah, J.; Hassett, B.; Jenkinson, R.; Lave, R. Restoring rivers one reach at a time: Results from a survey of US river restoration practitioners. Restor. Ecol. 2007, 15, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Roni, P.; Hanson, K.; Beechie, T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, D.K.; Jepsen, N.; Nielsen, J.; Rasmussen, J.J. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans. Sci. Total Environ. 2018, 613, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Knutson, K.C.; DPyke, A.; Wirth, T.A.; Arkle, R.S.; Pilliod, D.S.; Brooks, M.L.; Chambers, J.C.; Grace, J.B. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 2014, 51, 1414–1424. [Google Scholar] [CrossRef]
- Brabec, M.M.; Germino, M.J.; Shinneman, D.J.; Pilliod, D.S.; McIlroy, S.K.; Arkle, R.S. Challenges of establishing big sagebrush (Artemisia tridentata) in rangeland restoration: Effects of herbicide, mowing, whole-community seeding, and sagebrush seed sources. Rangel. Ecol. Manag. 2015, 68, 432–435. [Google Scholar] [CrossRef]
- Shriver, R.K.; Andrews, C.M.; Pilliod, D.S.; Arkle, R.S.; Welty, J.L.; Germino, M.J.; Duniway, M.C.; Pyke, D.A.; Bradford, J.B. Adapting management to a changing world: Warming temperatures, dry soil, and inter-annual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 2018, 24, 4972–4982. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S.; Hanser, S.E.; Brooks, M.L.; Chambers, J.C.; Grace, J.B.; Knutson, K.C.; Pyke, D.A.; Welty, J.L.; Wirth, T.A. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 2014, 5, 1–32. [Google Scholar] [CrossRef]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Kristensen, E.A.; Kronvang, B.; Wiberg-Larsen, P.; Thodsen, H.; Nielsen, C.; Amor, E.; Friberg, N.; Pedersen, M.L.; Baattrup-Pedersen, A. 10 years after the largest river restoration project in Northern Europe: Hydromorphological changes on multiple scales in River Skjern. Ecol. Eng. 2014, 66, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs. anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Schluter, D. Species Diversity in Ecological Communities: Historical and Geographical Perspectives; University of Chicago Press: Chicago, IL, USA, 1993. [Google Scholar]
- Sundermann, A.; Stoll, S.; Haase, P. River restoration success depends on the species pool of the immediate surroundings. Ecol. Appl. 2011, 21, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Lake, P.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Kail, J.; Hering, D.; Muhar, S.; Gerhard, M.; Preis, S. The use of large wood in stream restoration: Experience from 50 projects in Germany and Austria. J. Appl. Ecol. 2007, 44, 1145–1155. [Google Scholar] [CrossRef]
- Brudvig, L.A. Toward prediction in the restoration of biodiversity. J. Appl. Ecol. 2017, 54, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Germino, M.J.; Barnard, D.; Davidson, B.; Arkle, R.S.; Pilliod, D.S.; Fisk, M.; Applestein, C. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 2018, 33, 1177–1194. [Google Scholar] [CrossRef]
- Dovick, M.A.; Kulp, T.R.; Arkle, R.S.; Pilliod, D.S. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem impacted by mine drainage. Environ. Chem. 2016, 13, 149–159. [Google Scholar] [CrossRef]
- Dovick, M.A.; Arkle, R.S.; Kulp, T.R.; Pilliod, D.S. Extreme arsenic and antimony uptake and tolerance in toad tadpoles during development in highly contaminated wetlands. Environ. Sci. Technol. 2020, 54, 7983–7991. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective. For. Ecol. Manag. 2010, 259, 893–903. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S.; Strickler, K. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities. Freshw. Biol. 2010, 55, 299–314. [Google Scholar] [CrossRef]
- Merritt, R.W.; Cummins, K.W. An Introduction to the Aquatic Insects of North America; Kendall Hunt: Dubuque, IA, USA, 1996. [Google Scholar]
- Pilliod, D.S.; Arkle, R.S. Performance of quantitative vegetation sampling methods across gradients of cover in Great Basin plant communities. Rangel. Ecol. Manag. 2013, 66, 634–647. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data. Version 6.09; MjM Software: Gleneden Beach, OR, USA, 2011. [Google Scholar]
- McCune, B.; Mefford, M.J. HyperNiche. Multiplicative Habitat Modeling. Version 2.22; MjM Software: Glenden Beach, OR, USA, 2009. [Google Scholar]
- Arkle, R.S.; Pilliod, D.S. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA. Ecol. Evol. 2015, 5, 3704–3724. [Google Scholar] [CrossRef] [PubMed]
- Korsu, K. Response of benthic invertebrates to disturbance from stream restoration: The importance of bryophytes. Hydrobiologia 2004, 523, 37–45. [Google Scholar] [CrossRef]
- Ward, A.K.; Dahm, C.N.; Cummins, K.W. Nostoc (Cyanophyta) productivity in Oregon stream ecosystems: Invertebrate influences and differences between morphological types. J. Phycol. 1985, 21, 223–227. [Google Scholar] [CrossRef]
- Dodds, W.K. Photosynthesis of two morphologies of Nostoc parmelioides (Cyanobacteria) as related to current velocities and diffusion patterns. J. Phycol. 1989, 25, 258–262. [Google Scholar] [CrossRef]
- Dudley, T.L.; Cooper, S.D.; Hemphill, N. Effects of macroalgae on a stream invertebrate community. J. N. Am. Benthol. Soc. 1986, 5, 93–106. [Google Scholar] [CrossRef]
- Englund, G. Effects of disturbance on stream moss and invertebrate community structure. J. N. Am. Benthol. Soc. 1991, 10, 143–153. [Google Scholar] [CrossRef]
- Spänhoff, B.; Arle, J. Setting Attainable Goals of Stream Habitat Restoration from a Macroinvertebrate View. Restor. Ecol. 2007, 15, 317–320. [Google Scholar] [CrossRef]
- Brock, E.M. Mutualism between the midge Cricotopus and the alga Nostoc. Ecology 1960, 41, 474–483. [Google Scholar] [CrossRef]
- Dudley, T.L.; D’antonio, C.M. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 1991, 72, 297–309. [Google Scholar] [CrossRef]
- Wootton, J.T.; Parker, M.S.; Power, M.E. Effects of disturbance on river food webs. Science 1996, 273, 1558–1560. [Google Scholar] [CrossRef]
- Hawkins, C.P.; Gottschalk, L.J.; Brown, S.S. Densities and habitat of tailed frog tadpoles in small streams near Mt. St. Helens following the 1980 eruption. J. N. Am. Benthol. Soc. 1988, 7, 246–252. [Google Scholar] [CrossRef]
- Welsh, H.H.; Ollivier, L.M. Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecol. Appl. 1998, 8, 1118–1132. [Google Scholar] [CrossRef]
- Corn, P.S.; Bury, R.B. Logging in western Oregon: Responses of headwater habitats and stream amphibians. For. Ecol. Manag. 1989, 29, 39–57. [Google Scholar] [CrossRef]
- Feminella, J.W.; Resh, V.H. Herbivorous caddisflies, macroalgae, and epilithic microalgae: Dynamic interactions in a stream grazing system. Oecologia 1991, 87, 247–256. [Google Scholar] [CrossRef]
- Opsahl, R.W.; Wellnitz, T.; Poff, N.L. Current velocity and invertebrate grazing regulate stream algae: Results of an in situ electrical exclusion. Hydrobiologia 2003, 499, 135–145. [Google Scholar] [CrossRef]
- Gradwell, N. Ascaphus tadpole: Experiments on the suction and gill irrigation mechanisms. Can. J. Zool. 1971, 49, 307–332. [Google Scholar] [CrossRef]
- Cooper, S.D.; Barmuta, L.; Sarnelle, O.; Kratz, K.; Diehl, S. Quantifying spatial heterogeneity in streams. J. N. Am. Benthol. Soc. 1997, 16, 174–188. [Google Scholar] [CrossRef]
- Maki-Petäys, A.; Muotka, T.; Huusko, A.; Tikkanen, P.; Kreivi, P. Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a northern boreal river. Can. J. Fish. Aquat. Sci. 1997, 54, 520–530. [Google Scholar]
- Riley, S.C.; Fausch, K.D. Trout population response to habitat enhancement in six northern Colorado streams. Can. J. Fish. Aquat. Sci. 1995, 52, 34–53. [Google Scholar] [CrossRef]
- Pretty, J.; Harrison, S.; Shepherd, D.; Smith, C.; Hildrew, A.; Hey, R. River rehabilitation and fish populations: Assessing the benefit of instream structures. J. Appl. Ecol. 2003, 40, 251–265. [Google Scholar] [CrossRef]
- Lepori, F.; Palm, D.; Brännäs, E.; Malmqvist, B. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol. Appl. 2005, 15, 2060–2071. [Google Scholar] [CrossRef]
- Follstad Shah, J.J.; Dahm, C.N.; Gloss, S.P.; Bernhardt, E.S. River and riparian restoration in the Southwest: Results of the National River Restoration Science Synthesis Project. Restor. Ecol. 2007, 15, 550–562. [Google Scholar] [CrossRef]
Variable | 2006 | 2007 | ||||||
---|---|---|---|---|---|---|---|---|
Downstream | HH-Reach | LH-Reach | Upstream | Downstream | HH-Reach | LH-Reach | Upstream | |
Proportion HIGHGRAD habitat | 0.3 | 0 | 0 | 0.1 | 0.2 | 0 | 0 | 0.1 |
Proportion LOWGRAD habitat | 0.6 | 0.9 | 0.2 | 0.6 | 0.6 | 1.0 | 0.1 | 0.8 |
Proportion GLIDE habitat | 0.1 | 0.1 | 0.8 | 0.3 | 0.2 | 0 | 0.9 | 0.1 |
CURRENT (cm/s) | 75.6 ± 3.7 (a) | 81.6 ± 4.9 (a) | 42.1 ± 4.0 (e) | 72.8 ± 4.6 (a,b) | 61.6 ± 4.0 (b,c) | 56.7 ± 5.1 (c,d) | 31.7 ± 4.3 (e) | 49.0 ± 3.1 (d) |
UNDERCUT (% shoreline) | 0.75 ± 0.7 (c) | 0.00 (c) | 0.00 (c) | 29.0 ± 8.4 (a) | 11.0 ± 5.5 (b,c) | 0.00 (c) | 0.00 (c) | 23.5 ± 9.3 (a) |
Substrate size (mm) | 100 ± 7.5 (b,c) | 67.4 ± 7.4 (d) | 97.3 ± 6.3 (c) | 70.1 ± 5.7 (d) | 124 ± 6.8 (a,b) | 129 ± 12 (a) | 109 ± 6.2 (a,b,c) | 70.9 ± 6.9 (d) |
Sediment (% transect covered) | - | - | - | - | 3.3 ± 0.9 (b,c) | 2.5 ± 1.1 (c) | 9.5 ± 1.2 (a) | 7.5 ± 1.7 (a,b) |
Substrate embeddedness (% buried) | 21.4 ± 2.4 (a,b) | 12.6 ± 1.7 (d) | 24.7 ± 1.9 (a) | 14.5 ± 1.3 (c,d) | 18.8 ± 1.7 (b,c) | 5.0 ± 0.7 (e) | 12.8 ± 1.7 (d) | 16.3 ± 0.9 (c,d) |
Proportion SOLID substrate | 0.3 | 0 | 0.2 | 0.1 | 0.6 | 0 | 0 | 0.1 |
Proportion RESISTANT substrate | 0.7 | 0 | 0.7 | 0.1 | 0.4 | 0.2 | 0.9 | 0.3 |
Proportion LOOSE substrate | 0 | 1.0 | 0.1 | 0.8 | 0 | 0.8 | 0.1 | 0.6 |
LWD (% coverage) | 0.50 ± 0.33 (b) | 0.00 (b) | 0.00 (b) | 5.25 ± 1.5 (a) | 1.50 ± 0.4 (b) | 0.25 ± 0.25 (b) | 0.75 ± 0.4 (b) | 6.0 ± 1.8 (a) |
ORGANIC (L·m−2) | 0.12 ± 0.02 (c) | 0.21 ± 0.04 (b,c) | 0.55 ± 0.1 (a) | 0.64 ± 0.2 (a) | 0.18 ± 0.1 (b,c) | 0.26 ± 0.1 (b,c) | 0.55 ± 0.1 (a) | 0.32 ± 0.13 (a) |
COVER (%) | 7.00 ± 2.1 (b) | 0.50 ± 0.3 (c) | 0.00 (c) | 28.0 ± 3.0 (a) | 5.75 ± 1.4 (b) | 0.50 ± 0.3 (c) | 0.00 (c) | 34.2 ± 7.8 (a) |
LIGHT (kW·m−2·h−1) | 4.72 ± 0.2 (b) | 6.61 ± 0.1 (a) | 6.98 ± 0.1 (a) | 3.14 ± 0.3 (c) | 4.76 ± 0.3 (b) | 6.65 ± 0.1 (a) | 6.96 ± 0.1 (a) | 3.16 ± 0.29 (c) |
Temperature > 16 °C (h/yr) | 78 | - | - | 0 | 171 | - | - | 0 |
Temperature maximum (°C) | 18.5 | - | - | 13.5 | 20.25 | - | - | 14.5 |
Variable | 2006 | 2007 | ||||||
---|---|---|---|---|---|---|---|---|
Downstream | HH-Reach | LH-Reach | Upstream | Downstream | HH-Reach | LH-Reach | Upstream | |
PERIPHYTON (g 0.1 m−2) | 0.03 ± 0.01 (c) | 0.03 ± 0.01 (c) | 5.15 ± 1.2 (a) | 1.83 ± 0.63 (b) | 0.01 ± 0.001 (c) | 0.02 ± 0.009 (c) | 7.15 ± 1.6 (a) | 2.74 ± 0.6 (b) |
Proportion FILM dominant | 1 | 1 | 0.1 | 0.3 | 1 | 1 | 0 | 0.3 |
Proportion ALGAE dominant | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 |
Proportion MOSS dominant | 0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 0.7 |
Proportion NOSTOC dominant | 0 | 0 | 0.9 | 0 | 0 | 0 | 0.9 | 0 |
Prop. FILM, ALGAE, MOSS, NOSTOC dominated | 1/0/0/0 | 1/0/0/0 | 0.1/0/0/0.9 | 0.3/0/0.7/0 | 1/0/0/0 | 1/0/0/0 | 0/0.1/0/0.9 | 0.3/0/0.7/0 |
Macroinvertebrate DENSITY (ind 0.1 m−2) | 83.4 ± 13 (c) | 85.2 ± 14 (c) | 1094 ± 268 (a) | 37.8 ± 10 (d) | 204 ± 32 (b) | 252 ± 51 (b) | 1373 ± 91 (a) | 24.2 ± 5.8 (d) |
Non-Chironomid density (ind 0.1 m−2) | 67.2 ± 11 (b,c) | 72.4 ± 12 (b) | 34.2 ± 10 (d) | 35.4 ± 8 (c,d) | 184 ± 32 (a) | 240 ± 51 (a) | 75.2 ± 15 (b) | 22.4 ± 5.8 (d) |
Macroinvertebrate RICHNESS | 11.6 ± 0.9 (a,b) | 9.4 ± 0.7 (a,b) | 10.0 ± 1.9 (a,b) | 9.8 ± 1.4 (a,b) | 11.8 ± 1.3 (a,b) | 12.8 ± 1.0 (a) | 10.4 ± 1.1 (a,b) | 8.0 ± 0.9 (b) |
Macroinvertebrate EVENNESS (E) | 0.77 ± 0.01 (a,b) | 0.66 ± 0.01 (b) | 0.21 ± 0.15 (c) | 0.88 ± 0.01 (a) | 0.66 ± 0.04 (b) | 0.67 ± 0.03 (b) | 0.12 ± 0.01 (c) | 0.87 ± 0.03 (a) |
Taxon | Grp. 1 | Mobile and | 2006 | 2007 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Not Incased | Down-Stream | HH-Reach | LH-Reach | Up-Stream | Down-Stream | HH-Reach | LH-Reach | Up-Stream | ||
Cinygmula | Sc | y | 54 ** | 10 | 7 | 6 | 16 | 70 *** | 7 | 1 |
Drunella | Sc, P | y | 22 | 54 * | 8 | 2 | 9 | 65 ** | 22 | 0 |
Epeorus | Sc, CG | y | 52 * | 28 | 1 | 12 | 33 | 65 * | 0 | 0 |
Skwala | P | y | 20 | 0 | 0 | 0 | 5 | 68 ** | 0 | 0 |
Yoroperla | Sh, Sc | y | 0 | 0 | 28 | 52* | 0 | 3 | 3 | 53 * |
Chironomidae | M | n | 1 | 1 | 97 *** | 0 | 2 | 1 | 97 *** | 0 |
Simulium | CF | n | 7 | 0 | 18 | 29 | 68 * | 3 | 0 | 5 |
Anagapetus | Sc | n | 15 | 7 | 2 | 20 | 80 *** | 10 | 0 | 1 |
Brachycentrus | CF, Sc | n | - | - | - | - | 0 | 60 * | 0 | 0 |
Rhyacophila | Ch | n | 14 | 7 | 26 | 45 | 20 | 9 | 48 * | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkle, R.S.; Pilliod, D.S. Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site. Diversity 2021, 13, 48. https://doi.org/10.3390/d13020048
Arkle RS, Pilliod DS. Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site. Diversity. 2021; 13(2):48. https://doi.org/10.3390/d13020048
Chicago/Turabian StyleArkle, Robert S., and David S. Pilliod. 2021. "Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site" Diversity 13, no. 2: 48. https://doi.org/10.3390/d13020048
APA StyleArkle, R. S., & Pilliod, D. S. (2021). Stream Restoration Is Influenced by Details of Engineered Habitats at a Headwater Mine Site. Diversity, 13(2), 48. https://doi.org/10.3390/d13020048