Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climatic Variables and Vegetation along the Elevational Gradient
3.2. Taxonomic Composition of Vascular Epiphyte Assemblages
3.3. α-Diversity along the Elevational Gradient
3.4. β-Diversity along the Elevational Gradient
3.5. Ordination Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacDicken, J.; Jonsson, Ö.; Adikari, Y.; Garzuglia, M.; Lindquist, E.; Reams, G.; D’Annunzio, R. Global Forest Resources Assesment 2015: How are the World’s Forests Changing? Taylor, D., Miller, D., Eds.; FAO: Rome, Italy, 2016. [Google Scholar]
- Pimm, S.L.; Raven, P. Extinction by numbers. Nature 2000, 403, 843–845. [Google Scholar] [CrossRef] [PubMed]
- FAO. El Estado de los Bosques del Mundo 2016. Los Bosques y la Agricultura: Desafíos y Oportunidades en Relación Con el Uso de la Tierra; FAO: Rome, Italy, 2016. [Google Scholar]
- Gibson, L.; Ming Lee, T.; Pin Koh, L.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.E.; Chapin III, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global diversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Harvey, C.A.; Komar, O.; Griffith, D.M.; Ferguson, B.G.; Martinez-Ramos, M.; Morales, H.; Nigh, R.; Soto-Pinto, L.; Breugel, M.; et al. Beyond reserves: A research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 2009, 41, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-C.; Horng, F.-W.; Kuo, C.-M. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. J. Trop. Ecol. 2002, 18, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Krömer, T.; Kessler, M.; Gradstein, S.R.; Acebey, A. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J. Biogeogr. 2005, 32, 1799–1809. [Google Scholar] [CrossRef]
- Einzmann, H.J.R.; Döcke, L.; Zotz, G. Epiphytes in human settlements in rural Panama. Plant Ecol. Divers. 2016, 9, 277–287. [Google Scholar] [CrossRef]
- Catchpole, D.J.; Kirkpatrick, J.B. The outstandingly speciose epiphytic flora of a single strangler fig (Ficus crassiuscula) in a Peruvian montane cloud forest. In Tropical Montane Cloud Forests: Science for Conservation and Management; Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., Eds.; Cambridge University Press New York: New York, NY, USA, 2010; pp. 142–146. [Google Scholar]
- Einzmann, H.J.R.; Zotz, G. How diverse are epiphyte assemblages in plantations and secondary forests in tropical lowlands? Trop. Conserv. Sci. 2016, 9, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Werner, F.A.; Köster, N.; Kessler, M.; Gradstein, S.R. Is the resilience of epiphyte assemblages to human disturbance a function of local climate? Ecotropica 2011, 17, 15–20. [Google Scholar]
- Manning, A.D.; Fischer, J.; Lindenmayer, D.B. Scattered trees are keystone structures – Implications for conservation. Biol. Conserv. 2006, 132, 311–321. [Google Scholar] [CrossRef]
- Ozolins, A.; Brack, C.; Freudenberger, D. Abundance and decline of isolated trees in the agricultural landscapes of central New South Wales, Australia. Pac. Conserv. Biol. 2001, 7, 195–203. [Google Scholar] [CrossRef]
- Poltz, K.; Zotz, G. Vascular epiphytes on isolated pasture trees along a rainfall gradient in the lowlands of Panama. Biotropica 2011, 43, 165–172. [Google Scholar] [CrossRef]
- Johansson, D. Ecology of vascular epiphytes in west African rain forest. Suec. Acta Phytogeogr. 1974, 59, 1–136. [Google Scholar]
- Krömer, T.; Gradstein, S.R.; Acebey, A. Diversidad y ecología de epífitas vasculares en bosques montanos primarios y secundarios de Bolivia. Ecol. Boliv. 2007, 42, 23–33. [Google Scholar]
- Küper, W.; Kreft, H.; Nieder, J.; Köster, N.; Barthlott, W. Large-scale diversity patterns of vascular epiphytes in neotropical montane rain forests. J. Biogeogr. 2004, 31, 1477–1487. [Google Scholar] [CrossRef]
- Wolf, J.H.D.; Flamenco-S, A. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J. Biogeogr. 2003, 30, 1689–1707. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Olmsted, I.C. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 1992, 24, 402–407. [Google Scholar] [CrossRef]
- Flores-Palacios, A.; García-Franco, J.G. The relationship between tree size and epiphyte species richness: Testing four different hypotheses. J. Biogeogr. 2006, 33, 323–330. [Google Scholar] [CrossRef]
- Flores-Palacios, A.; García-Franco, J.G. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodivers. Conserv. 2008, 17, 191–207. [Google Scholar] [CrossRef]
- Nöske, N.M.; Hilt, N.; Werner, F.A.; Brehm, G.; Fiedler, K.; Sipman, H.J.M.; Gradstein, S.R. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 2008, 9, 4–12. [Google Scholar] [CrossRef]
- Werner, F.A. Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl. Ecol. 2011, 12, 172–181. [Google Scholar] [CrossRef]
- Werner, F.A.; Homeier, J.; Gradstein, S.R. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 2005, 11, 21–40. [Google Scholar]
- Gentry, A.H.; Dodson, C.H. Diversity and biogeography of neotropical vascular epiphytes. Ann. Mo. Bot. Gard. 1987, 74, 205–233. [Google Scholar] [CrossRef] [Green Version]
- Rahbek, C. The elevational gradient of species richness: A uniform pattern? Ecography 1995, 18, 200–205. [Google Scholar] [CrossRef]
- Hietz, P.; Hietz-Seifert, U. Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J. Veg. Sci. 1995, 6, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Tosi, J.A., Jr. Inventariación y Demostraciones Forestales, Panamá. Zonas de vida: Una Base Ecológica Para Investigaciones Silvícolas e Inventariación Forestal en la República de Panamá; FAO: Rome, Italy, 1971. [Google Scholar]
- Andersen, K.M.; Turner, B.L.; Dalling, J.W. Soil-based habitat partitioning in understorey palms in lower montane tropical forests. J. Biogeogr. 2010, 37, 278–292. [Google Scholar] [CrossRef]
- Sanford, W.W. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. J. Ecol. 1968, 56, 697–705. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants. The Biology of Vascular Epiphytes; Springer Nature: Cham, Switzerland, 2016; p. 282. [Google Scholar] [CrossRef]
- Perry, D.R. A method of access into the crowns of emergent and canopy trees. Biotropica 1978, 10, 155–157. [Google Scholar] [CrossRef]
- Davidse, G.; Sousa, M.; Knapp, S. (Eds.) Flora Mesoamericana Volumen 1. Psilotaceae a Salvinaceae; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1995. [Google Scholar]
- Hammel, B.E.; Grayum, M.; Herrera, C.; Zamora, N.A. Manual de plantas de Costa Rica, Volumen III: Monocotiledóneas (Orchidaceae-Zingiberaceae). In Monographs in Systematic Botany from the Missouri Botanical Garden; Hollowell, V.C., McPherson, A., Gunter, D., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; Volume 93. [Google Scholar]
- Lellinger, D.B. The ferns and fern-allies of Costa Rica, Panama, and the Chocó (Part I: Psilotaceae through Dicksoniaceae); American Fern Society: Washington, DC, USA, 1989. [Google Scholar]
- Woodson, R.E.; Schery, R.W. Flora of Panama. Annals of the Missouri Botanical Garden; Missouri Botanical Garden: St. Louis, MO, USA, 1943. [Google Scholar]
- The Plant List Version 1. Available online: http://www.theplantlist.org/ (accessed on 23 March 2019).
- Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L.; Chiang, S.C.; Jiang, Y.H.; Chazdon, R.L. A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 2008, 64, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Jost, L.; Chao, A.; Chazdon, R.L. Compositional similarity and ß (beta) diversity. In Biological Dversity: Frontiers in Measurement and Assesment; Magurran, A.E., McGill, B.J., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 66–84. [Google Scholar]
- Chao, A.; Chiu, C.-H.; Hsie, T.C. Proposing a resolution to debates on diversity partitioning. Ecology 2012, 93, 2037–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendieta-Leiva, G.; Zotz, G. A conceptual framework for the analysis of vascular epiphyte assemblages. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 510–521. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Version 4.0.2; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 12 January 2021).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, R.; et al. Vegan: Community Ecology Package, Version 2.5-6 from CRAN. R Topics Documented. 2019. Available online: https://rdrr.io/cran/vegan/ (accessed on 7 January 2021).
- Charney, N.; Record, S. Jost diversity measure for community data. Package ‘vegetarian’ R Package 2015, 2, 3. [Google Scholar]
- Colwell, R.K.; Lees, D.C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 2000, 15, 70–76. [Google Scholar] [CrossRef]
- Flenley, J.R. Tropical montane cloud forests. In Cloud Forest, the Massenerhebung Effect, and Ultraviolet Insolation; Hamilton, L.S., Juvik, J.O., Scatena, N.E., Eds.; Springer: New York, NY, USA, 1994; pp. 150–155. [Google Scholar]
- Sanders, N.J.; Lessard, J.P.; Fitzpatrick, M.C.; Dunn, R.R. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 2007, 16, 640–649. [Google Scholar] [CrossRef]
- Laube, S.; Zotz, G. A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra. J. Veg. Sci. 2007, 18, 613–624. [Google Scholar] [CrossRef]
- Spruch, L.; Hellwig, J.; Zotz, G.; Blasius, B. Modeling community assembly on growing habitat “islands”: A case study on trees and their vascular epiphyte communities. Theor. Ecol. 2019, 12, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Einzmann, H.J.R.; Zotz, G. “No signs of saturation”: Long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodivers. Conserv. 2017, 26, 1393–1410. [Google Scholar] [CrossRef]
Elevation (m a.s.l.) | T (°C) | RH (%) | Surrounding Forest Cover (%) | DBH (cm) | Tree Density (Trees ha−1) | Total Richness | Chao Richness | Total Abundance | Abundance Per host | Richness Per Host | Shannon Index Per Host |
---|---|---|---|---|---|---|---|---|---|---|---|
140 | 28.3 | 87 ± 10 | 4 | 41.9 ± 18.6 | 22 | 28 | 48 ± 15 | 610 | 61 ± 53 | 7 ± 5 | 1.0 ± 0.7 |
240 | 27.6 | 87 ± 10 | 3 | 50.9 ± 20.9 | 23 | 25 | 36 ± 12 | 416 | 42 ± 35 | 9 ± 5 | 1.5 ± 0.9 |
390 | 26.6 | 89 ± 9 | 14 | 36.4 ± 14.7 | 20 | 21 | 35 ± 15 | 404 | 40 ± 52 | 7 ± 4 | 1.4 ± 0.6 |
510 | 26.3 | 91 ± 9 | 6 | 30.8 ± 6.7 | 37 | 24 | 26 ± 2 | 814 | 81 ± 27 | 10 ± 2 | 1.8 ± 0.2 |
590 | 26.3 | 91 ± 9 | 7 | 48.0 ± 28.6 | 25 | 31 | 65 ± 27 | 758 | 76 ± 61 | 9 ± 5 | 1.6 ± 0.5 |
730 | 24.1 | 92 ± 9 | 8 | 37.9 ± 13.8 | 17 | 30 | 39 ± 7 | 554 | 55 ± 42 | 10 ± 4 | 1.8 ± 0.3 |
800 | 23.7 | 92 ± 8 | 21 | 38.9 ± 19.2 | 20 | 36 | 59 ± 16 | 728 | 73 ± 98 | 9 ± 6 | 1.6 ± 0.5 |
870 | 23.3 | 89 ± 9 | 30 | 26.8 ± 19.7 | 17 | 16 | 22 ± 5 | 184 | 18 ± 25 | 3 ± 3 | 0.7 ± 0.6 |
1050 | 22.4 | 90 ± 11 | 27 | 33.8 ± 10.0 | 19 | 28 | 41 ± 9 | 497 | 50 ± 55 | 6 ± 5 | 0.9 ± 0.7 |
1240 | 21.2 | 97 ± 3 | 51 | 35.9 ± 16.8 | 12 | 82 | 107 ± 11 | 911 | 91 ± 38 | 21 ± 7 | 2.7 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez Quiel, C.; Zotz, G. Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama. Diversity 2021, 13, 49. https://doi.org/10.3390/d13020049
Rodríguez Quiel C, Zotz G. Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama. Diversity. 2021; 13(2):49. https://doi.org/10.3390/d13020049
Chicago/Turabian StyleRodríguez Quiel, Calixto, and Gerhard Zotz. 2021. "Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama" Diversity 13, no. 2: 49. https://doi.org/10.3390/d13020049
APA StyleRodríguez Quiel, C., & Zotz, G. (2021). Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama. Diversity, 13(2), 49. https://doi.org/10.3390/d13020049