Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focus Countries
2.2. Analysis of the Tree Seed Systems
- i.
- Selection and innovation
- ii.
- Seed harvesting and production
- iii.
- Market access, supply and demand
- iv.
- Quality control
- v.
- Enabling environment
- i.
- ‘independent’: A group of self-sufficient, often project-based systems
- ii.
- ‘state-run’: A centralised system managed by the government
- iii.
- ‘incentives-led’: A network of independent actors responding to government incentives
- iv.
- ‘market-driven’: A network of independent actors responding to demand
3. Results
3.1. Analysis of the National Tree Seed Systems
3.1.1. Philippines
Selection and Innovation
Seed Harvesting and Production
Market Access, Supply and Demand
Quality Control
Enabling Environment
3.1.2. Indonesia
Selection and Innovation
Seed Harvesting and Production
Market Access, Supply and Demand
Quality Control
Enabling Environment
3.1.3. Malaysia
Selection and Innovation
Seed Harvesting and Production
Market Access, Supply and Demand
Quality Control
Enabling Environment
3.1.4. India
Selection and Innovation
Seed Harvesting and Production
Market Access, Supply and Demand
Quality Control
Enabling Environment
3.2. Assessment of Challenges for FLR Practitioners in Acquiring Seed
4. Discussion
4.1. Adequate Seed Supply to Meet Growing Demand for Native Species in Terms of Quality and Quantity
4.2. Effective Quality Control for Seed of Native Species
4.3. Research into the Effects of Climate Change on Native Species to Support Seed Sourcing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP/FAO. Factsheet: The UN Decade on Ecosystem Restoration 2021–2030. Available online: https://www.unep.org/ (accessed on 6 November 2021).
- NYDF Assessment Partners. Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report. Available online: Forestdeclaration.org (accessed on 6 November 2021).
- Climate Focus. Progress on the New York Declaration on Forests—An Assessment Framework and Initial Report; Prepared by Climate Focus, in collaboration with Environmental Defense Fund, Forest Trends, The Global Alliance for Clean Cookstoves, and The Global Canopy Program; Climate Focus: Amsterdam, The Netherlands, 2015. [Google Scholar]
- IUCN. About the Bonn Challenge Goal. Available online: https://www.bonnchallenge.org/about-the-goal#I (accessed on 24 July 2020).
- Chazdon, R.; Brancalion, P.; Lamb, D.; Laestadius, L.; Calmon, M.; Kumar, C. A Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conserv. Lett. 2017, 10, 125–132. [Google Scholar] [CrossRef]
- Mansourian, S.; Dudley, N.; Vallauri, D. Forest Landscape Restoration: Progress in the last decade and remaining challenges. Ecol. Restor. 2017. [Google Scholar] [CrossRef]
- IUCN. What is FLR? Available online: https://infoflr.org/index.php/what-flr (accessed on 13 July 2020).
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 1148p.
- Lewis, S.; Wheeler, C.; Mitchard, E.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef]
- Philipson, C.; Cutler, M.; Brodrick, P.; Asner, G.; Boyd, D.; Costa, P.; Fiddes, J.; Foody, G.; van der Heijden, G.; Ledo, A.; et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 2020, 369, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Guariguata, M.; Raneri, J.; Ickowitz, A.; Chiriboga-Arroyo, F.; Quaedvlieg, J.; Kettle, C. Food for thought: The underutilized potential of tropical tree-sourced foods for 21st century sustainable food systems. People Nat. 2020, 2, 1006–1020. [Google Scholar] [CrossRef]
- Gregorio, N.; Herbohn, J.; Harrison, S.; Pasa, A.; Ferraren, A. Regulating the Quality of Seedlings for Forest Restoration: Lessons from the National Greening Program in the Philippines. Small-Scale For. 2017, 16, 83–102. [Google Scholar] [CrossRef]
- Coleman, E.A.; Schultz, B.; Ramprasad, V.; Fischer, H.; Rana, P.; Filippi, A.M.; Güneralp, B.; Ma, A.; Rodriguez Solorzano, C.; Guleria, V.; et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 2021. [Google Scholar] [CrossRef]
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Chang. Biol. 2021, 27, 1328–1348. [Google Scholar] [CrossRef] [PubMed]
- Duguma, L.; Minang, P.; Betemariam, E.; Carsan, S.; Nzyoka, J.; Bah, A.; Jamnadass, R. From Tree Planting to Tree Growing: Rethinking Ecosystem Restoration Through Trees; World Agroforestry: Nairobi, Kenya, 2020. [Google Scholar]
- Roshetko, J.; Dawson, I.; Urquiola, J.; Lasco, R.D.; Leimona, B.; Weber, J.; Bozzano, M.; Lillesø, J.B.L.; Graudal, L.; Jamnadass, R. To what extent are genetic resources considered in environmental service provision? A case study based on trees and carbon sequestration. Clim. Dev. 2018, 10, 755–768. [Google Scholar] [CrossRef]
- Jalonen, R.; Valette, M.; Boshier, D.; Duminil, J.; Thomas, E. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conserv. Lett. 2018, 11, e12424. [Google Scholar] [CrossRef]
- Broadhurst, L.; Driver, M.; Guja, L.; North, T.; Vanzella, B.; Fifield, G.; Bruce, S.; Taylor, D.; Bush, D. Seeding the future—The issues of supply and demand in restoration in Australia. Ecol. Manag. Restor. 2015, 16, 29–32. [Google Scholar] [CrossRef]
- Thomas, E.; Jalonen, R.; Loo, J.; Boshier, D.; Gallo, L.; Cavers, S.; Bordács, S.; Smith, P.; Bozzano, M. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manag. 2014, 333, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, R.I.; Fady, B.; Vendramin, G.G.; Dawson, I.K.; Fleming, R.A.; Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Murdock, T.; Vinceti, B.; Navarro, C.M.; et al. The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For. Ecol. Manag. 2014, 333, 76–87. [Google Scholar] [CrossRef]
- Nyoka, B.; Roshetko, J.; Jamnadass, R.; Muriuki, J.; Antoine, K.; Lillesø, J.-P.B.; Beedy, T.; Cornelius, J. Tree Seed and Seedling Supply Systems: A Review of the Asia, Africa and Latin America Models. Small-Scale For. 2014, 14, 171–191. [Google Scholar] [CrossRef]
- Schmidt, I.B.; de Urzedo, D.I.; Pina-Rodrigues, F.C.M.; Vieira, D.L.M.; de Rezende, G.M.; Sampaio, A.B.; Junqueira, R.G.P. Community-based native seed production for restoration in Brazil—The role of science and policy. Plant Biol 2019, 21, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Havens, K.; Vitt, P.; Still, S.; Kramer, A.; Fant, J.; Schatz, K. Seed Sourcing for Restoration in an Era of Climate Change. Nat. Areas J. 2015, 35, 122–133. [Google Scholar] [CrossRef]
- Thomas, E.; Alcázar Caicedo, C.; Moscoso, H.L.G.; Vásquez Peinado, Á.; Osorio, F.; Negret, B.; Gonzalez, M.; Parra Quijano, M.; Bozzano, M.; Loo, J.; et al. The Importance of Species Selection and Seed Sourcing in Forest Restoration for Enhancing Adaptive Capacity to Climate Change: Colombian tropical dry forest as a model. CBD Tech. Ser. 2017, 89, 122–132. [Google Scholar]
- Atkinson, R.; Cornelius, J.; Zamora, R.; Chuaire, M.F. Fit for Purpose Seed Supply Systems for the Implementation of Landscape Restoration under Initiative 20x20: An Analysis of National Seed Systems in Mexico; World Resources Institute, Bioversity International, ICRAF: Lima, Peru, 2018. [Google Scholar]
- Mijangos, J.L.; Pacioni, C.; Spencer, P.B.S.; Craig, M.D. Contribution of genetics to ecological restoration. Mol. Ecol. 2015, 24, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, N.; Doydora, U.; Harrison, S.; Herbohn, J.; Sebua, J. Inventory and assessment of mother trees of indigenous timber species on Leyte Island, The Philippines. In Proceedings of the Improving the Effectiveness and Efficiency of the Philippines Tree Nursery Sector, Baybay, Philippines, 13 February 2009. [Google Scholar]
- Dawson, I.; Guariguata, M.; Loo, J.; Weber, J.; Lengkeek, A.; Bush, D.; Cornelius, J.; Guarino, L. What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? A review. Biodivers. Conserv. 2013, 22, 301–324. [Google Scholar] [CrossRef]
- Koskela, J.; Vinceti, B.; Dvorak, W.; Bush, D.; Dawson, I.K.; Loo, J.; Kjaer, E.D.; Navarro, C.; Padolina, C.; Bordács, S.; et al. Utilization and transfer of forest genetic resources: A global review. For. Ecol. Manag. 2014, 333, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Almeyda Zambrano, A.M.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, P.H.; Gereau, R.E.; Phillipson, P.B.; Chatelain, C.; Jenkins, C.N.; Ulloa Ulloa, C. The distribution of biodiversity richness in the tropics. Sci. Adv. 2020, 6, eabc6228. [Google Scholar] [CrossRef] [PubMed]
- Kettle, C.J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 2010, 19, 1137–1151. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Sodhi, N.S.; Posa, M.R.C.; Lee, T.; Bickford, D.; Koh, L.; Brook, B. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 2010, 19, 317–328. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- DENR. Enhanced National Greening Program. In Executive Order No. 26 (2011) and No. 193 (2015); DENR: Quezon City, Philippines, 2019. [Google Scholar]
- DENR. Executive Order No. 193: Expanding the Coverage of the National Greening Program; DENR: Quezon City, Philippines, 2015.
- Nawir, A.A.; Murniati; Rumboko, L. Forest Rehabilitation in Indonesia: Where to After Three Decades? Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2007. [Google Scholar]
- MoEF; Nomor, P. 105/MENLHK/SETJEN/KUM.1/12/2018 Tentang Tata Cara Pelaksanaan, Kegiatan Pendukung, Pemberian Insentif, Serta Pembinaan Dan Pengendalian Kegiatan Rehabilitasi Hutan Dan Lahan; Ministry of Environment and Forests: New Delhi, India, 2018.
- Wijaya, A.; Samadhi, T.N.K.; Juliane, R. Indonesia Is Reducing Deforestation, but Problem Areas Remain. Available online: https://www.wri.org/insights/indonesia-reducing-deforestation-problem-areas-remain (accessed on 24 October 2021).
- Government of Indonesia. Indonesia Long-Term Strategy for Low Carbon and Climate Resilience 2050 (Indonesia LTS-LCCR 2050); Government of Indonesia: Jakarta, Indonesia, 2021.
- MoEF. Updated Nationally Determined Contribution (NDC), Republic of Indonesia; Directorate General of Climate Change: Jakarta, Indonesia, 2021.
- Ministry of Energy and Natural Resources. 100 Million Tree Planting Campagin in the Malaysian Greening Program. Available online: https://www.100jutapokok.gov.my/ (accessed on 12 September 2021).
- Kementerian Tenaga dan Sumber Asli. Dasar Perhutanan Malaysia; Kementerian Tenaga dan Sumber Asli: Putrajaya, Malaysia, 2021.
- Yayasan Hasanah. Central Forest Spine—Issue Brief; Foundation of Khazanah Nasional Research Institute: Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Department of Town and County Planning Peninsular Malaysia. Final Report Central Forest Spine I: Master Plan for Ecological Linkages; Regional Planning Division: Kuala Lumpur, Malaysia, 2009.
- Worldbank. Forest Area (% of Land Area). Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS (accessed on 6 November 2021).
- Kumari, J.; Philip, E. Joint Forest Management in India: Challenges and Opportunities. Int. J. All Res. Writ. 2020, 1, 1–4. [Google Scholar]
- UNCCD. World Leaders Call for Global Action to Restore Degraded Land. Available online: https://www.unccd.int/news-events/world-leaders-call-global-action-restore-degraded-land (accessed on 6 November 2021).
- BGCI. GlobalTreeSearch Online Database. Available online: www.bgci.org/globaltree_search.php (accessed on 28 August 2020).
- MoEF. Laporan Kinerja 2020. Kerja Keras, Kerja Cerdas, Kerja Ikhlas, Berkarya Melestarikan Alam; Directorate General of Watershed Control and Protected Forests: Jakarta, Indonesia; Ministry of Environment and Forestry: New Delhi, India, 2020.
- Godefroid, S.; Piazza, C.; Rossi, G.; Buord, S.; Stevens, A.D.; Aguraiuja, R.; Weekley, C.; Vogg, G.; Iriondo, J.; Johnson, I.; et al. How successful are plant species reintroductions? Biol Cons. Biol. Conserv. 2011, 144, 672–682. [Google Scholar] [CrossRef]
- Atkinson, R.; Thomas, E.; Roscioli, F.; Cornelius, J.P.; Zamora-Cristales, R.; Chuaire, M.F.; Alcázar, C.; Mesén, F.; Lopez, H.; Ipinza, R.; et al. Seeding resilient restoration: An indicator system for the analysis of tree seed systems. Diversity 2021, 13, 367. [Google Scholar] [CrossRef]
- Valette, M.; Vinceti, B.; Gregorio, N.; Bailey, A.; Thomas, E.; Jalonen, R. Beyond fixes that fail: Identifying sustainable improvements to tree seed supply and farmer participation in forest and landscape restoration. Ecol. Soc. 2020, 25. [Google Scholar] [CrossRef]
- DENR. DENR Administrative Order No. 2010-11: Revised Regulations Governing Forest Tree Seed and Seedling Production, Collection and Disposition; DENR: Quezon City, Philippines, 2010.
- DENR. DENR Administrative Order No. 2017-11. Subject: Updated National List of Threatened Philippine Plants and Their Categories; DENR: Quezon City, Philippines, 2017.
- ERDB. Philippine Country Report on Forest Genetic Resources; Ecosystems Research and Development Bureau: Laguna, Philippines, 2012.
- DENR. DENR Memorandum Circular: Guidelines and Procedures in the Implementation of the National Greening Program; DENR: Quezon City, Philippines, 2011.
- DENR. DENR Memorandum Circular No. 2012-01 Establishing the Implementation of the National Greening Programme; DENR: Quezon City, Philippines, 2012.
- DENR. DENR Memorandum: Forest Management Bureau Technical Bulletin No.19 Guidelines in the Establishment and Management of an Arboretum of Native/Endemic Trees; DENR: Quezon City, Philippines, 2015.
- Peque, D.P.; Hölscher, D. Rare tree species in nurseries across the Visayas, Philippines. Int. J. Biodivers. Conserv. 2014, 6, 589–599. [Google Scholar] [CrossRef]
- ESSC. Species Highly Recommended for Planting. Available online: https://essc.org.ph/content/view/100/ (accessed on 6 May 2021).
- Tinio, C.; Finkeldey, R.; Prinz, K.; Fernando, E. Genetic variation in natural and planted populations of Shorea guiso (Dipterocarpaceae) in the Philippines revealed by microsatellite DNA markers. Asia Life Sci. 2014, 23, 75–91. [Google Scholar]
- Delo, M.; Magpantay, G.; Cagalawan, A.; Lapis, A.; Calinawan, N. Assessment of Genetic Diversity of Narra (Pterocarpus indicus Willd.) Populations From Various Seed Sources in the Philippines Using RAPD. J. Environ. Sci. Manag. 2016, 192, 54–63. [Google Scholar]
- Borja, A.; Renato, L. Tanael JR.; Lourdes, A. Breva; Nolie, A. Molina; Adrian, A. Lansigan; Orpia, M.K.P. Production of quality planting material through clonal technology. Canopy Int. 2017, 43. [Google Scholar]
- ERDB. Genetic Diversity: A Key Component for Conserving Philippine Forest Trees to the Ever-Changing Environments. Available online: https://erdb.denr.gov.ph/2018/11/05/genetic-diversity-a-key-component-for-conserving-philippine-forest-trees-to-the-ever-changing-environments/ (accessed on 21 April 2021).
- Von Kleist, K.; Herbohn, J.; Baynes, J.; Gregorio, N. How improved governance can help achieve the biodiversity conservation goals of the Philippine National Greening Program. Land Use Policy 2019, 104312. [Google Scholar] [CrossRef]
- Garcia, K.; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 2013, 44, 12–22. [Google Scholar] [CrossRef]
- Pang, S.; De Alban, J.D.; Webb, E. Effects of climate change and land cover on the distributions of a critical tree family in the Philippines. Sci. Rep. 2021, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Gaisberger, H.; Kettle, C.; Vinceti, B.; Fremout, T.; Kemalasari, D.; Kanchanarak, T.; Thomas, E.; APFORGIS Partners; Jalonen, R. Tropical Asia’s valued tree species under threat. Conserv. Biol. 2021. in review. [Google Scholar]
- DOST-PCAARRD. Mindanao Tree Seed Center to Produce Improved Forest Tree Seeds. Available online: http://www.pcaarrd.dost.gov.ph/home/portal/index.php/quick-information-dispatch/3680-mindanao-tree-seed-center-to-produce-improved-forest-tree-seeds (accessed on 16 May 2021).
- DENR. ERDB-WWRRC Operationalizes the Northern Luzon Forest Tree Seed Center. Available online: http://erdb.denr.gov.ph/2018/04/06/erdb-wwrrc-operationalizes-the-northern-luzon-forest-tree-seed-center/ (accessed on 18 May 2021).
- COA. Performance Audit Report: National Greening Program; Comission on Audit, Republic of the Philippines, Department of Environment and Natural Resources: Quezon City, Philippines, 2019.
- Gregorio, N.; Herbohn, J.; Tripoli, R.; Pasa, A. A Local Initiative to Achieve Global Forest and Landscape Restoration Challenge-Lessons Learned from a Community-Based Forest Restoration Project in Biliran Province, Philippines. Forests 2020, 11, 475. [Google Scholar] [CrossRef] [Green Version]
- MoEF. Rencana Strategis KLHK Tahun 2020-2024; Ministry of Environment and Forestry of the Republic of Indonesia: New Delhi, India, 2020.
- Tropenbos. Conserving Germplasms of Indonesia’s Native Tree Species. Available online: https://www.tropenbos.org/news/conserving+germplasms+of+indonesia%E2%80%99s+native+tree+species (accessed on 23 August 2021).
- MoEF. Nomor SK.707/MENHUT-II/2013 Penetapan Jenis Tanaman Hutan Yang Benihnya Wajib Diambil Dari Sumber Benih Bersertifikat; Ministry of Environment and Forests: New Delhi, India, 2013.
- MoEF. Nomor SK.396/MENLHK/PDASHL/DAS.2/8/2017 Penetapan Jenis Tanaman Hutan Yang Benihnya Wajib Diambil Dari Sumber Benih Bersertifikat; Ministry of Environment and Forests: New Delhi, India, 2017.
- Pratiwi, D.; Gintings, A.N. Atlas Jenis-Jenis Phon Andalan Setempat Untuk Rehabilitasi Hutan Dan Lahan di Indonesia; Forda Press: Bogor, Indonesia, 2014. [Google Scholar]
- Cahyani, R.W. Analisis vegetasi tegakan benih pada tiga areal HPH di Kalimantan Timur. Pros Sem Nas Masy Biodiv Indon 2015, 1, 597–601. [Google Scholar] [CrossRef]
- Cao, C.-P.; Gailing, O.; Siregar, I.; Siregar, U.; Finkeldey, R. Genetic variation in nine Shorea species (Dipterocarpaceae) in Indonesia revealed by AFLPs. Tree Genet. Genomes 2009, 5, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Nurtjahjaningsih, I.L.G.; Sukartiningsih; Kurokochi, H.; Saito, Y.; Ide, Y. Genetic Structure of the Tropical Tree Eusideroxylon zwageri in Indonesia Revealed by Chloroplast DNA Phylogeography. Forests 2017, 8, 229. [Google Scholar] [CrossRef]
- Nugroho, A.; Matra, D.; Siregar, I.; Haneda, N.F.; Istikorini, Y.; Rahmawati, R.; Amin, Y.; Siregar, U. Early growth evaluation and estimation of heritability in a sengon (Falcataria moluccana) progeny testing at Kediri, East Java, Indonesia. Biodiversitas 2021, 22, 2728–2736. [Google Scholar] [CrossRef]
- Setiadi, D.; Leksono, B. Evaluasi Awal Kombinasi Uji Spesies-Provenan Jenis-Jenis Shorea Penghasil Tengkawang Di Gunung Dahu, Bogor, Jawa Barat. J. Penelit. Hutan Tanam. 2014, 11, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Widiyatno; Hidayati, F.; Hardiwinoto, S.; Indrioko, S.; Purnomo, S.; Jatmoko; Tani, N.; Naiem, M. Selection of dipterocarp species for enrichment planting in a secondary tropical rainforest. For. Sci. Technol. 2020, 16, 206–215. [Google Scholar] [CrossRef]
- Cahyaningsih, R.; Phillips, J.; Magos Brehm, J.; Gaisberger, H.; Maxted, N. Climate change impact on medicinal plants in Indonesia. Glob. Ecol. Conserv. 2021, 30. [Google Scholar] [CrossRef]
- Purwanto; Harjadi, B.; Nugroho, N.P.; Sari, D.R.K. Kerentanan Hutan Tropis Akibat Perubahan Iklim dan Cuaca Ekstrem. In Sintesis Penelitian Integratif Adaptasi Bioekologi Dan Social Ekonomi Budaya Masyarakat Terhadap Perubahan Iklim, Cetakan Kedua; Sakuntaladewei, N., Sari, D.R.K., Eds.; Pusat Penelitian dan Pengembangan Perubahan Iklim dan Kebijakan, Badan Penelitian dan Pengembangan Kehutanan—Kementerian Kehutanan: Bogor, Indonesia, 2015; pp. 25–49. [Google Scholar]
- Ratnaningrum, Y.W.N.; Indrioko, S. Response of Flowering and Seed Production of Sandalwood (Santalum Album Linn., Santalaceae) to Climate Changes. Procedia Environ. Sci. 2015, 28, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Hendrati, R.L. Adaptasi tanaman terhadap kekeringan akibat perubahan iklim. In Sintesis Penelitian Integratif Adaptasi Bioekologi Dan Social Ekonomi Budaya Masyarakat Terhadap Perubahan Iklim, Cetakan Kedua; Sakuntaladewi, N., Sari, D.R.K., Eds.; Badan Penelitian, Pengembangan dan Inovasi—Kementerian Lingkungan Hidup dan Kehutanan; Pusat Penelitian dan Pengembangan Sosial, Ekonomi, Kebijakan dan Perubahan Iklim: Bogor, Indonesia, 2015; pp. 51–64. [Google Scholar]
- Bramasto, Y.; Rustam, E.; Megawati, M.; Mindawati, N. Respon Pertumbuhan Bibit Bambang Lanang (Michelia champaca) Terhadap Cekaman. J. Penelit. Hutan Tanam. 2015, 12, 81–91. [Google Scholar] [CrossRef]
- Sudrajat, D.; Bramasto, Y. Morphological responses, sensitivity and tolerance indices of four tropical trees species to drought and waterlogging. Biodiversitas J. Biol. Divers. 2016, 17, 110–115. [Google Scholar] [CrossRef]
- Irawan, A.; Hidayah, H.; Mindawati, N. Effect of drought stress treatment towards growth of seedlings of cempaka wasian, nantu, and mahoni. J. Penelit. Kehutan. Wallacea 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- MoEF. Nomor, P.3/MENLHK/SETJEN/KUM.1/1/2020 Penyelenggaraan Perbenihan Tanaman Hutan; Ministry of Environment and Forestry: New Delhi, India, 2020.
- Yulianti. Pentingnya Standar Mutu Benih Tanaman Hutan di Indonesia; Ministry of Environment and Forestry: Bogor, Indonesia, 2020.
- Imanuddin, R.; Hidayat, A.; Rachmat, H.; Turjaman, M.; Pratiwi, P.; Nurfatriani, F.; Indrajaya, Y.; Susilowati, A. Reforestation and Sustainable Management of Pinus merkusii Forest Plantation in Indonesia: A Review. Forests 2020, 11, 1235. [Google Scholar] [CrossRef]
- Kartikawati, N.; Rimbawanto, A.; Prastyono, P.; Sumardi, S. Introducing genetically improved Melaleuca cajuputi subsp cajuputi to increase farmers’s welfare: A success story in Papua. IOP Conf. Ser. Earth Environ. Sci. 2020, 449, 012038. [Google Scholar] [CrossRef]
- MoEF. The State of Indonesia’s Forests 2020; Ministry of Environment and Forestry: Jakarta, Indonesia, 2020.
- MoEF. Petunjuk Pelaksanaan Standar Sumber Benih Cetakan Kedua; Ministry of Environment and Forestry: Jakarta, Indonesia, 2016; p. 105.
- Nirsatmanto, A.; Sunarti, S. Regulatory Challenges of Forest Tree Seed Source and Certification in Indonesia: Documentative versus Productivity Perspectives. In Proceedings of the International Conference of INAFOR, Jakarta, Indonesia, 7–8 September 2021. [Google Scholar]
- MoEF. Petunjuk Tekhnis Penilaian Mutu Bibit Tanaman Hutan; Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2009; p. 53.
- Mafira, T.; Mecca, B.; Muluk, S. Indonesia Environmental Fund: Bridging the Financial Gap in Environmental Programs; Climate Policy Initiative (CPI): Jakarta, Indonesia, 2020. [Google Scholar]
- WWF Malaysia. Forest Restoration Mitigates Climate Change For The Benefit Of Nature And People. Available online: https://www.wwf.org.my/?28625/Forest-Restoration-Mitigates-Climate-Change-For-The-Benefit-Of-Nature-And-People (accessed on 3 April 2021).
- Akita, M. Mitsubishi corporation’s tropical forest regeneration experimental projects. In Proceedings of the Proceedings of International Symposium on Rehabilitation of Tropical Rainforest Ecosystems, Kuala Lumpur, Malaysia, 24–25 October 2011. [Google Scholar]
- IUCN Asia. ASEAN’s Leadership in Forest Landscape Restoration. Supporting the Bonn Challenge and the New York Declaration on Forests: Workshop Summary Report; International Union for Conservation of Nature and Natural Resources: Bangkok, Thailand, 2019; 25p. [Google Scholar]
- Maniam, A.; Singaravelloo, K. Impediments to Linking Forest Islands to Central Forest Spine in Johor, Malaysia. Int. J. Soc. Sci. Humanit. 2015, 5, 22–28. [Google Scholar] [CrossRef] [Green Version]
- The Borneo Post. On Track towards Planting 35 Million Trees under 12MP. Available online: https://www.theborneopost.com/2021/03/22/on-track-towards-planting-35-mln-trees-under-12mp/ (accessed on 15 April 2021).
- Jumin, R. Sabah: A Malaysian Success Story on Forest Restoration. Available online: https://www.dailyexpress.com.my/read/4187/sabah-a-malaysian-success-story-on-forest-restoration/ (accessed on 9 June 2021).
- Sarawak Government Gazette. The Forest Ordinance, Forests (Nursery) Rules. Available online: https://forestry.sarawak.gov.my/modules/web/pages.php?mod=download&id=2056&menu_id=0&sub_id=428 (accessed on 13 June 2021).
- Said, A.H.; Zaki, H.; Zahari, I.; Nazre, M.; Arifin, A.; Adnan, A.M.; Abdul-Hamid, H. Identification of potential species to be planted in poor forests of the Central Forest Spine (CFS) wildlife corridor Gerik, Perak. Malays. For. 2014, 77, 147–160. [Google Scholar]
- Shono, K.; Davies, S.J.; Chua, Y.K. Performance of 45 Native Tree Species on Degraded Lands in Singapore. J. Trop. For. Sci. 2007, 19, 25–34. [Google Scholar]
- Hails, C.J.; Kavanagh, M. Bring back the birds! Planning for trees and other plants to support Southeast Asian wildlife in urban areas. Raffles Bull. Zool. 2013, 29, 245–260. [Google Scholar]
- Forest Research Institute Malaysia. Proceedings of the National Seminar on Mangrove and Coastal Forest 2019; Forest Research Institute Malaysia (FRIM): Kepong, Malaysia, 2020.
- Salleh, Y.D.M.B.M.; Hwai, Y.D.; Budin, T.H.K.b.A.; Ibrahim, T.H.Z.b.; Salleh, T.H.S.b.; Abdullah, E.M.R.C.b.; Mat, T.H.R.b.; Ibrahim, P.T.M.b.T.; Yahya, C.J.b.; Sueet, T.H.S.b.; et al. Panduan Penanaman Karas; Jabatan Perhutanan Semenanjung Malaysia: Kuala Lumpur, Malaysia, 2012.
- Lee, S.; Ng, K.; Saw, L.; Lee, C.; Muhammad, N.; Tani, N.; Tsumura, Y.; Koskela, J. Linking the gaps between conservation research and conservation management of rare dipterocarps: A case study of Shorea lumutensis. Biol. Conserv. 2006, 131, 72–92. [Google Scholar] [CrossRef]
- Ng, K.K.; Lee, S.L.; Koh, C.L. Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Mol. Ecol. 2004, 13, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Tnah, L.H.; Lee, S.L.; Ng, K.K.; Lee, C.T.; Bhassu, S.; Othman, R.Y. Phylogeographical pattern and evolutionary history of an important Peninsular Malaysian timber species, Neobalanocarpus heimii (Dipterocarpaceae). J. Hered. 2013, 104, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Wickneswari, R.; Ho, W.-S. Determination of genetic relatedness of selected individual trees of Shorea leprosula Miq. and Dipterocarpus cornutus Dyer in forest seed production areas. Tropics 2003, 13, 139–149. [Google Scholar] [CrossRef]
- Kaur, A.; Jong, K.; Sands, V.; Soepadmo, E. Cytoembryology of some Malaysian dipterocarps, with some evidence of apomixis. Bot. J. Linn. Soc. 2008, 92, 75–88. [Google Scholar] [CrossRef]
- Tani, N.; Muhammad, N.; Lee, S.L.; Hong, N.C.; NG, K.K.S.; Lee, C.T.; Zakaria, N.F.; Tsumura, Y. Methods to establish transfer zones of forest reproductive materials in Peninsular Malaysia. Jpn. Int. Res. Cent. Agric. Sci. 2014. [Google Scholar]
- Ab Shukor, N.; Awang, K.; Venkateswarlu, P.; Abdul-Latib, S. Three-year Performance of Acacia auriculiformis Provenances at Serdang, Malaysia. Pertanika J. Trop. Agric. Sci. 1994, 17, 95–102. [Google Scholar]
- Kumar, M.; Namasivayam, P.; Chin, C.; Baharum, Z.; Olalekan, K.; Ab Shukor, N. Selection and Screening of Superior Genotypes for Quality Planting Stock Based on Vegetative Growth Performance of Some Selected 12-Year-Old Acacia Species. Open J. For. 2016, 06, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Chaix, G.; Monteuuis, O.; Garcia, C.; Alloysius, D.; Gidiman, J.; Bacilieri, R.; Goh, D.K.S. Genetic variation in major phenotypic traits among diverse genetic origins of teak (Tectona grandis L.f.) planted in Taliwas, Sabah, East Malaysia. Ann. For. Sci. 2011, 68, 1015. [Google Scholar] [CrossRef]
- Hector, A.; Philipson, C.; Saner, P.; Chamagne, J.; Dzulkifli, D.; O’Brien, M.; Snaddon, J.; Ulok, P.; Weilenmann, M.; Reynolds, G.; et al. The Sabah Biodiversity Experiment: A long-term test of the role of tree diversity in restoring tropical forest structure and functioning. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2011, 366, 3303–3315. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, E.P.; Grady, K.C.; Lardizabal, M.L.T.; Nair, I.B.S.; Rinus, D.; Ilstedt, U. A pre-adaptive approach for tropical forest restoration during climate change using naturally occurring genetic variation in response to water limitation. Restor. Ecol. 2020, 28, 156–165. [Google Scholar] [CrossRef]
- Lepun, P.; Heng, R.K.J. Floristic and forest structure of hill mixed Dipterocarp forest at Bukit Kana National Park, Sarawak, Malasyia. Malays. For. 2020, 83, 259–280. [Google Scholar]
- Ling, C.Y.; Sang, J. Diversity of the tree flora in Semenggoh Arboretum, Sarawak, Borneo. Gard. Bull. Singap. 2012, 64, 139–169. [Google Scholar]
- Ali, S.I.b.S. Manual for Establishment of Seed Production Areas in Dipterocarp Forests in Peninsular Malaysia; Malaysia—International Tropical Timber Organisation Joint Project: Kuala Lumpur, Malaysia, 2006. [Google Scholar]
- Alias, N.; Azman, N.Z.N.; Hassan, N.A.; Nadzri, N.S.; Mustapha, N.R. Forest Seed Science and Management for Plantations. Int. J. Agric. For. Plant. 2021, 11, 143–146. [Google Scholar]
- MARDI. Country Report on the State of Plant Genetic Resources for Food and Agriculture in Malaysia (1997–2007); Malaysian Agricultural Research and Development Institute (MARDI): Serdang, Malaysia, 2007.
- Forestry Department of Peninsular Malaysia. Circular of the Director General of Forestry in Peninsular Malaysia Number 16 of 2020; Forestry Department of Peninsular Malaysia: Kuala Lumpur, Malaysia, 2020.
- Bernama. A million trees to be planted in FTs this year. New Straits Times, 4 April 2021. [Google Scholar]
- The Star. Malaysia has a few seed centres. The Star, 18 April 2018. [Google Scholar]
- Borah, B.; Bhattacharjee, A.; Ishwar, N.M. Bonn Challenge and India: Progress on Restoration Efforts across States and Landscapes; IUCN and MoEFCC, Government of India: New Delhi, India, 2018.
- Sharma, M.K. Regional Update for India—Prepared for the Twelfth Session of the FAO Panel of Experts on Forest Gene Resources; FAO: Rome, Italy, 2002. [Google Scholar]
- Forest Survey of India. Chapter 4: Forest Types and Biodiversity. In India State of Forest Report 2019; Ministry of Environment, Forest and Climate Change: Uttarakhand, India, 2019; pp. 65–85. [Google Scholar]
- Kumar, N.K.; Raghunath, T.P.; Jayaraj, R.S.C.; Anandalakshmi, R.; Warrier, R.R. State of Forest Genetic Resources in India: A Country Report; Indian Council of Forestry Research and Education: Coimbatore, India, 2012; 133p.
- Gera, M.; Awadhiya, A.; Gera, N. Provenance Trial of Dalbergia sissoo Roxb. Indian For. 2016, 142, 213–220. [Google Scholar]
- Barner, H.; Willan, R.L. Seed Collection Units: 1. Seed Zones Technical Note No. 16; Danida Forest Seed Centre: Humlebaek, Denmark, 1983; (Re-issued 1995). [Google Scholar]
- Balakrishnan, S.; Dev, S.A.; Sakthi, A.R.; Vikashini, B.; Bhasker, T.R.; Magesh, N.S.; Ramasamy, Y. Gene-ecological zonation and population genetic structure of Tectona grandis L.f. in India revealed by genome-wide SSR markers. Tree Genet. Genomes 2021, 17, 33. [Google Scholar] [CrossRef]
- Chakraborty, A.; Joshi, P.K.; Sachdeva, K. Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecol. Eng. 2016, 97, 593–609. [Google Scholar] [CrossRef]
- Pramanik, M.; Paudel, U.; Mondal, B.; Chakraborti, S.; Deb, P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018, 19, 94–105. [Google Scholar] [CrossRef]
- Sharma, S. India’s first seed bank of native trees species for Thar desert to be set up in Jodhpur. Times of India, 17 March 2019. [Google Scholar]
- Ministry of Environment and Forests. National Working Plan Code For Sustainable Management of Forests and Biodiversity in India; Ministry of Environment & Forests, Government of India: New Delhi, India, 2014.
- Dobriyal, M. Forest Reproductive Material Legislation. In Forest Seed Science and Management; Shukla, G., Pala, N.A., Chakravarty, S., Eds.; New India Publishing Agency: New Delhi, India, 2016; pp. 177–207. [Google Scholar]
- GoI. Strategy for Increasing Green Cover Outside Recorded Forest Areas—Expert Committee Report; Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India, 2018; p. 229.
- Kukreti, I. Green India Mission Grossly Underfunded: Parliament Panel. Available online: https://www.downtoearth.org.in/news/forests/green-india-mission-grossly-underfunded-parliament-panel-63291 (accessed on 6 November 2021).
- Oldfield, S.; Lusty, C.; MacKinven, A. The World List of Threatened Trees. Available online: https://www.iucnredlist.org/resources/oldfield1998 (accessed on 19 May 2021).
- De Urzedo, D.I.; Fisher, R.; Piña-Rodrigues, F.C.M.; Freire, J.M.; Junqueira, R.G.P. How policies constrain native seed supply for restoration in Brazil. Restor. Ecol. 2019, 27, 768–774. [Google Scholar] [CrossRef]
- Höhl, M.; Ahimbisibwe, V.; Stanturf, J.A.; Elsasser, P.; Kleine, M.; Bolte, A. Forest Landscape Restoration—What Generates Failure and Success? Forests 2020, 11, 938. [Google Scholar] [CrossRef]
- Murcia, C.; Guariguata, M.R.; Andrade, Á.; Andrade, G.I.; Aronson, J.; Escobar, E.M.; Etter, A.; Moreno, F.H.; Ramírez, W.; Montes, E. Challenges and Prospects for Scaling-up Ecological Restoration to Meet International Commitments: Colombia as a Case Study. Conserv. Lett. 2016, 9, 213–220. [Google Scholar] [CrossRef]
- Erbaugh, J.; Pradhan, N.; Adams, J.; Oldekop, J.; Agrawal, A.; Brockington, D.; Pritchard, R.; Chhatre, A. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 2020, 4, 1–5. [Google Scholar] [CrossRef]
- Urzedo, D.; Pedrini, S.; Vieira, D.L.M.; Sampaio, A.B.; Souza, B.D.F.; Campos-Filho, E.M.; Piña-Rodrigues, F.C.M.; Schmidt, I.B.; Junqueira, R.G.P.; Dixon, K. Indigenous and local communities can boost seed supply in the UN decade on ecosystem restoration. Ambio 2021. [Google Scholar] [CrossRef]
- Brundu, G.; Richardson, D. Planted forests and invasive alien trees in Europe: A Code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. Neobiota 2016, 30, 5–47. [Google Scholar] [CrossRef]
- Shaw, T.E. Species diversity in restoration plantings: Important factors for increasing the diversity of threatened tree species in the restoration of the Araucaria forest ecosystem. Plant Divers. 2019, 41, 84–93. [Google Scholar] [CrossRef]
- Lillesø, J.-P.B.; Harwood, C.; Derero, A.; Kindt, R.; Moestrup, S.; Omondi, W.; Holtne, N.; Breugel, P.; Dawson, I.; Jamnadass, R.; et al. Why Institutional Environments for Agroforestry Seed Systems Matter. Dev. Policy Rev. 2018, 36, 089–0112. [Google Scholar] [CrossRef] [Green Version]
- Fremout, T.; Thomas, E.; Taedoumg, H.; Briers, S.; Gutiérrez-Miranda, C.E.; Alcázar-Caicedo, C.; Lindau, A.; Kpoumie, H.M.; Vinceti, B.; Kettle, C.; et al. Diversity For Restoration (D4R): Guiding tree species and seed selection for climate-resilient restoration of tropical forest landscapes. Accept. Publ. J. Appl. Ecol. 2021. [Google Scholar] [CrossRef]
- Bloomfield, G.; Meli, P.; Brancalion, P.H.S.; Terris, E.; Guariguata, M.R.; Garen, E. Strategic Insights for Capacity Development on Forest Landscape Restoration: Implications for Addressing Global Commitments. Trop. Conserv. Sci. 2019, 12, 1940082919887589. [Google Scholar] [CrossRef]
- Kettle, C.J.; Ghazoul, J.; Ashton, P.; Cannon, C.H.; Chong, L.; Diway, B.; Faridah, E.; Harrison, R.; Hector, A.; Hollingsworth, P.; et al. Seeing the fruit for the trees in Borneo. Conserv. Lett. 2011, 4, 184–191. [Google Scholar] [CrossRef]
- Roos, M.; Kessler, P.J.A.; Gradstein, S.; Baas, P. Species diversity and endemism of five major Malesian islands: Diversity-area relationships. J. Biogeogr. 2004, 31, 1893–1908. [Google Scholar] [CrossRef]
- Welzen, P.C.; Slik, F.; Alahuhta, J. Plant distribution patterns and plate tectonics in Malesia. Biol. Skr. 2005, 55, 199–217. [Google Scholar]
- Nef, D.P.; Gotor, E.; Wiederkehr Guerra, G.; Zumwald, M.; Kettle, C.J. Initial Investment in Diversity Is the Efficient Thing to Do for Resilient Forest Landscape Restoration. Front. For. Glob. Chang. 2021, 3. [Google Scholar] [CrossRef]
- Zinnen, J.; Broadhurst, L.M.; Gibson-Roy, P.; Jones, T.A.; Matthews, J.W. Seed production areas are crucial to conservation outcomes: Benefits and risks of an emerging restoration tool. Biodivers. Conserv. 2021, 30, 1233–1256. [Google Scholar] [CrossRef]
- Leon, P.; Bustamante Sánchez, M.; Nelson, C.; Alarcón, D.; Hasbun, R.; Way, M.; Pritchard, H.; Armesto, J.J. Lack of adequate seed supply is a major bottleneck for effective ecosystem restoration in Chile: Friendly amendment to Bannister et al. (2018). Restor. Ecol. 2020, 28, 277–281. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Gaisberger, H.; Van Meerbeek, K.; Muenchow, J.; Briers, S.; Gutierrez-Miranda, C.E.; Marcelo-Peña, J.L.; Kindt, R.; Atkinson, R.; et al. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Glob. Chang. Biol. 2020, 26, 3552–3568. [Google Scholar] [CrossRef] [PubMed]
- Prober, S.; Byrne, M.; McLean, E.; Steane, D.; Potts, B.; Vaillancourt, R.; Stock, W. Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Breed, M.F.; Stead, M.G.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv. Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Toledo, M.; Peña-Claros, M.; Bongers, F.; Alarcón, A.; Balcázar, J.; Chuviña, J.; Leaño, C.; Licona, J.C.; Poorter, L. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 2012, 100, 253–263. [Google Scholar] [CrossRef]
Philippines | Indonesia | Malaysia | India | |
---|---|---|---|---|
Governmental restoration commitments | 7.1 Mha by 2028 | 14 Mha by 2030 | 100 million trees by 2025 and 0.4 Mha (CFS) | 26 Mha by 2030 |
Total forested area in 2020 [36] | 7.2 Mha | 92 Mha | 19 Mha | 72 Mha |
% forest area of total land area in 2020 [48] | 24% | 49% | 58% | 24% |
Number of native tree species in the country [51] | 2258 | 5703 | 5490 | 2616 |
Framework 1 ‘Independent’ | Framework 2 ‘State-Run’ | Framework 3 ‘Incentives-Led’ | Framework 4 ‘Market-Driven’ | |
---|---|---|---|---|
Leading implementers of FLR | Civil society-led organisations, community groups, private businesses, individual government-led projects | Central and regional government | Wide range of implementers (community groups, private enterprises and academia) who respond to government incentives | Civil society-led organisations, community groups, private businesses, individual government-led projects |
Supply system | Directly for own projects | From centralised and regional nurseries | From private nurseries, suppliers and government nurseries | From harvesters, suppliers or nurseries, user-driven choice |
(Potential) role of the government | Coordination, information transfer and quality control | Responsible for implementing all aspects of the seed system | Providing incentives, managing sections of the seed supply chain and controlling quality of seed | Limited role, possibly quality and price control |
Characteristics | Philippines | Indonesia | Malaysia | India |
---|---|---|---|---|
Underlying framework of seed system | Mix of ‘state-run’ and ‘incentives-led’ | Mix of ‘state-run’, ‘incentives-led’ and ‘independent’ | Mix of ‘independent’ and ‘market driven’ | ‘state-run’ |
Leading implementers of FLR efforts | Government (through eNGP) and People’s Organisations | Government, to smaller extents also private sectors and communities | Civil society organisations, government agencies, State Forestry Departments, Forest Research Institute Malaysia (FRIM) | Government agencies |
Region | Philippines | Indonesia | Malaysia | India | ||
---|---|---|---|---|---|---|
Responses (% Projects) | 61 | 11 | 24 | 10 | 19 | |
Project leader | Government organisation | 44% | 25% | 75% | 30% | 20% |
Civil society organisation | 34% | 33% | 13% | 50% | 60% | |
Academic or research org. | 15% | 33% | 4% | 20% | 13% | |
Nursery or other | 7% | 9% | 8% | 0% | 7% | |
Main purpose * | Habitat restoration | 59% | 25% | 50% | 90% | 67% |
Conserve species | 36% | 25% | 50% | 50% | 13% | |
Seed sourcing strategy | Collecting all seed | 39% | 58% | 33% | 30% | 40% |
Buying all seed | 18% | 9% | 21% | 30% | 13% | |
Buying and collecting | 43% | 33% | 46% | 40% | 47% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosshard, E.; Jalonen, R.; Kanchanarak, T.; Yuskianti, V.; Tolentino, E., Jr.; Warrier, R.R.; Krishnan, S.; Dzulkifli, D.; Thomas, E.; Atkinson, R.; et al. Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries. Diversity 2021, 13, 575. https://doi.org/10.3390/d13110575
Bosshard E, Jalonen R, Kanchanarak T, Yuskianti V, Tolentino E Jr., Warrier RR, Krishnan S, Dzulkifli D, Thomas E, Atkinson R, et al. Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries. Diversity. 2021; 13(11):575. https://doi.org/10.3390/d13110575
Chicago/Turabian StyleBosshard, Ennia, Riina Jalonen, Tania Kanchanarak, Vivi Yuskianti, Enrique Tolentino, Jr., Rekha R. Warrier, Smitha Krishnan, Dzaeman Dzulkifli, Evert Thomas, Rachel Atkinson, and et al. 2021. "Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries" Diversity 13, no. 11: 575. https://doi.org/10.3390/d13110575
APA StyleBosshard, E., Jalonen, R., Kanchanarak, T., Yuskianti, V., Tolentino, E., Jr., Warrier, R. R., Krishnan, S., Dzulkifli, D., Thomas, E., Atkinson, R., & Kettle, C. J. (2021). Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries. Diversity, 13(11), 575. https://doi.org/10.3390/d13110575