Exploring Antibacterial Properties of Mechanochemically Synthesized MgAl2O4 Spinel Nanoparticles for Dental and Medical Applications
Abstract
1. Introduction
2. Results
2.1. Synthesis and Characterization of MgAl2O4/S-NPs
2.2. Antibacterial Test
3. Discussion
4. Materials and Methods
4.1. Synthesis and Characterization of MgAl2O4/S-NPs
4.2. Antibacterial Test
4.2.1. Bacterial Strains and Culture Conditions
4.2.2. Preparation of Antibiotic Stock Solutions
4.2.3. Preparation of Bacterial Inocula
4.2.4. Preparation and Dilution of MgAl2O4/S-NPs
4.2.5. Antimicrobial Susceptibility Assay (Broth Microdilution Method)
4.2.6. Recovery and Assessment of Cell Viability
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Biswas, P.; Sharma, A.; Krishnan, M.; Johnson, R.; Mohan, M.K. Fabrication of MgAl2O4 spinel scaffolds and sonochemical synthesis and deposition of hydroxyapatite nanorods. J. Am. Ceram. Soc. 2016, 99, 1544–1549. [Google Scholar] [CrossRef]
- Mroz, T.; Goldman, L.M.; Gledhill, A.D.; Li, D.; Padture, N.P. Nanostructured, infrared-transparent magnesium-aluminate spinel with superior mechanical properties. Int. J. Appl. Ceram. Technol. 2012, 9, 83–90. [Google Scholar] [CrossRef]
- Lu, T.; Chang, X.; Qi, J.; Luo, X. Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl. Phys. Lett. 2006, 88, 117579. [Google Scholar] [CrossRef]
- Moshafi, M.H.; Rajaei, P.; Ranjbar, M. Eco-friendly synthesis of MgO/MgAl2O4 core/shell nanostructures and their antimicrobial evaluation against pathogenic microbial strains. Iran. J. Chem. Chem. Eng. 2023, 42, 1126–1133. [Google Scholar] [CrossRef]
- Strickertsson, J.A.; Desler, C.; Martin-Bertelsen, T.; Machado, A.M.D.; Wadstrøm, T.; Winther, O.; Rasmussen, L.J.; Friis-Hansen, L. Enterococcus faecalis infection causes inflammation, intracellular OXPHOS-independent ROS production, and DNA damage in human gastric cancer cells. PLoS ONE 2013, 8, e63147. [Google Scholar] [CrossRef] [PubMed]
- Naguib, G.H.; Hosny, K.M.; Hassan, A.H.; Al Hazmi, F.; Al Dharrab, A.; Alkhalidi, H.M.; Hamed, M.T.; Alnowaiser, A.M.; Pashley, D.H. Zein-based magnesium oxide nanoparticles: Assessment of antimicrobial activity for dental implications. Pak. J. Pharm. Sci. 2018, 31, 245–250. [Google Scholar]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Stan, G.E.; Buton, N. Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions. Nanomaterials 2019, 9, 1295. [Google Scholar] [CrossRef]
- Vega-Jiménez, A.L.; Vázquez-Olmos, A.R.; Acosta-Gío, E.; Álvarez-Pérez, M.A. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. In Nanoemulsions—Properties, Fabrications and Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Nizami, M.Z.I.; Xu, V.W.; Yin, I.X.; Yu, O.Y.; Chu, C.-H. Metal and metal oxide nanoparticles in caries prevention: A review. Nanomaterials 2021, 11, 3446. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.-P.; Vega-Jiménez, A.L.; Vázquez-Olmos, A.R.; Ortega-Maldonado, M.; Ximenez-Fyvie, L.-A. Antibacterial properties in vitro of magnesium oxide nanoparticles for dental applications. Nanomaterials 2023, 13, 502. [Google Scholar] [CrossRef]
- Vega-Jiménez, A.L.; González-Alva, P.; Rodríguez-Hernández, A.-P.; Vázquez-Olmos, A.R.; Paz-Díaz, B. Oxide nanoparticles based on magnesium as a potential dental tool to inhibit bacterial activity and promote osteoblast viability. Dent. Mater. J. 2024, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Mohd Zain, Z.; Siddiqui, Z.; Khan, W.; Aabid, A.; Baig, M.; Malik, M.A. Development of magnesium aluminate (MgAl2O4) nanoparticles for refractory crucible application. PLoS ONE 2024, 19, e0296793. [Google Scholar] [CrossRef]
- Chitra, V.P.; Vasantharani, P.; Sivakumar, G.; Santhamoorthy, M.; Guganathan, L.; Devanesan, S.; AlSalhi, M.S.; Palaniappan, S.K. Preparation and characterization of MgAl2O4 nanoparticles by hydrothermal method and their photocatalytic and antibacterial activity applications. Ceram. Int. 2024, 50, 32737–32747. [Google Scholar] [CrossRef]
- Yeşiltepe-Özçelik, D.; Burgun, U.; Kaya, F.; Uysal, E.; Derin, B.; Schaefer, A.; Carlsson, P.-A.; Gümüşlü-Gür, G.; Sarıoğlan, A.; Gürmen, S. Synthesis of MgAl2O4 by sol–gel method and investigation of catalytic performances in CO2 methanation. J. Sol-Gel Sci. Technol. 2025; in press. [Google Scholar] [CrossRef]
- Winter, R.; Quinten, M.; Dierstein, A.; Hempelmann, R.; Altherr, A.; Veith, M. Agglomeration of nano-MgAl2O4 spinel from microemulsion and CVD techniques. J. Appl. Crystallogr. 2000, 33, 507–510. [Google Scholar] [CrossRef]
- Andrades Ortega, M. Prevalencia de la Colonización de Helicobacter Pylori en Estudiantes de Odontología. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2010. [Google Scholar]
- Todd Rose, F.O.; Darnell, R.L.; Morris, S.M.; Rose, O.E.; Paxie, O.; Campbell, G.; Cook, G.M.; Gebhard, S. The two-component system CroRS acts as a master regulator of cell envelope homeostasis to confer antimicrobial tolerance in Enterococcus faecalis. Mol. Microbiol. 2023, 120, 408–424. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef]
- Vázquez-Olmos, A.R.; Vega-Jiménez, A.L.; Paz-Díaz, B. Mecanosíntesis y efecto antimicrobiano de óxidos metálicos nanoestructurados. Mundo Nano 2018, 11, 29–44. [Google Scholar] [CrossRef]
- Atehortúa-Rendón, J.D.; Martínez, A.; Pérez-Cala, T.L. Descripción de la resistencia de Helicobacter pylori a seis antibióticos de uso frecuente en Colombia. Rev. Colomb. Gastroenterol. 2020, 35, 351–361. [Google Scholar] [CrossRef]
- Adón, A.Y.; Echavarría, H.M. Enterococcus Faecalis: Factores de Virulencia e Importancia Clínica en el Área Odontológica; Universidad Nacional Pedro Henríquez Ureña: Santo Domingo, Dominican Republic, 2021. [Google Scholar]
- Bhargavi, K.; Bose, A. Synthesis of TiO2 and MgAl2O4 nanocomposites for the enhancement of antibacterial applications. J. Mines Met. Fuels 2023, 71, 1068–1073. [Google Scholar] [CrossRef]
- Ahón-Ríos, K.A.; Rengifo-Méndez, F.; Iglesias-Osores, S.; Mercado-Martínez, P.E. Actividad antibacterial de nanopartículas de óxido de zinc sobre Listeria monocytogenes ATCC 7644. Rev. Cuerpo Méd. Hosp. Nac. Almanzor Aguinaga Asenjo 2022, 15, 71–75. [Google Scholar] [CrossRef]
- Elabbasy, M.T.; El Bayomi, R.M.; Abdelkarim, E.A.; Hafez, A.E.-S.E.; Othman, M.S.; Ghoniem, M.E.; Samak, M.A.; Alshammari, M.H.; Almarshadi, F.A.; Elsamahy, T.; et al. Antibacterial and antibiofilm activity of green-synthesized zinc oxide nanoparticles against multidrug-resistant Escherichia coli isolated from retail fish. Molecules 2025, 30, 768. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.J.; Ali, S.M.; Khedr, M.A.; Emara, M.; Hamed, S. Assessment of MgO, ZnO, chitosan hydroxyapatite and silver hydroxyapatite nanoparticles against carbapenem-resistant Gram-negative Egyptian clinical isolates. BMC Microbiol. 2025, 25, 632. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.D.; Shamsudee, S.P.; Kumar, R.G.K. Studies on the structure and antimicrobial activity of MgAl2O4:Tb3+ nanophosphors synthesized by polymerised sol–gel method. Biol. Forum 2023, 15, 939–942. [Google Scholar]
- Yin, Z.; Li, S.; Liu, Z.; Yu, C.; Wang, A.; Wang, Y.; Zhang, S.; Ma, C. Microwave-assisted green synthesis of Mg0.95K0.05O nanoparticles: An effective strategy for enhanced antimicrobial activity. Ceram. Int. 2025, 51, 54914–54927. [Google Scholar] [CrossRef]
- Yin, Z.; Li, X.; Li, S.; Yu, C.; Wang, A.; Wang, Y.; Zhang, S.; Ma, C. Investigation of fuel type on the microstructure and antibacterial activity of Li-doped MgO nanoparticles. Ceram. Int. 2024, 50, 1633–1642. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Ren, L.; Tu, B.; Wang, W.; Fu, Z. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part I: Optical and dielectric. J. Am. Ceram. Soc. 2021, 104, 5099–5109. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Ren, L.; Tu, B.; Wang, W.; Fu, Z. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part II: Mechanical and thermophysical. J. Am. Ceram. Soc. 2021, 104, 6455–6466. [Google Scholar] [CrossRef]
- Pajares García, J.; Pajares-Villarroya, R.; Gisbert, J. Helicobacter pylori: Resistencia a los antibióticos. Rev. Esp. Enferm. Dig. 2007, 99, 63–70. [Google Scholar] [CrossRef]
- Medell, M.; Hart, M.; Batista, M.L. Sensibilidad antimicrobiana in vitro en aislamientos de Enterococcus faecalis y Enterococcus faecium obtenidos de pacientes hospitalizados. Biomédica 2014, 34, 50–57. [Google Scholar] [CrossRef]
- Gronwald, B.; Kozłowska, L.; Kijak, K.; Lietz-Kijak, D.; Skomro, P.; Gronwald, K.; Gronwald, H. Nanoparticles in dentistry—Current literature review. Coatings 2023, 13, 102. [Google Scholar] [CrossRef]
- Li, J.; Cheng, F.; Wei, X.; Bai, Y.; Wang, Q.; Li, B.; Zhou, Y.; Zhai, B.; Zhou, X.; Wang, W.; et al. Methicillin-resistant Staphylococcus aureus (MRSA): Resistance, prevalence, and coping strategies. Antibiotics 2025, 14, 771. [Google Scholar] [CrossRef] [PubMed]





| H. pylori | Media | SEM | Sig. t-S | Agar Viability CFU |
| C (-) H. p | 0.483 | 0.006 | 0.6039 | (+) |
| Amoxi 1000 µg/mL + H. p | 0.035 | 0 | 0.0005 | (-) |
| MgAl2O4/S-NPs 30,000 µg/mL | 0 | 0 | 0.0004 | (+) |
| MgAl2O4/S-NPs 300 µg/mL | 0 | 0 | 0.0549 | (+) |
| MgAl2O4/S-NPs 30 µg/mL | 0.016 | 0.004 | 0.0005 | 3 |
| MgAl2O4/S-NPs 15 µg/mL | 0.034 | 0.007 | 0.0005 | (-) |
| MgAl2O4/S-NPs 5 µg/mL | 0.015 | 0.008 | 0.0005 | (+) |
| E. faecalis | Media | SEM | Sig. t-S | Agar Viability CFU |
| C (-) E. f | 0.558 | 0.011 | 0.0704 | (+) |
| Amoxi 1000 µg/mL + E. f | 0.046 | 0 | 0.0002 | (-) |
| MgAl2O4/S-NPs 30,000 µg/mL | 0 | 0.019 | 0.0000 | (+) |
| MgAl2O4/S-NPs 300 µg/mL | 0 | 0 | 0.0081 | 2 |
| MgAl2O4/S-NPs 30 µg/mL | 0.076 | 0.005 | 0.0003 | 1 |
| MgAl2O4/S-NPs 15 µg/mL | 0 | 0 | 0.0001 | (-) |
| MgAl2O4/S-NPs 5 µg/mL | 0 | 0.007 | 0.0003 | (-) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vega Jiménez, A.L.; Rodríguez-Hernández, A.-P.; Vázquez-Olmos, A.R.; Luna-Ramírez, R.E.; Sato-Berrú, R.Y.; Calderón-Olvera, R.M. Exploring Antibacterial Properties of Mechanochemically Synthesized MgAl2O4 Spinel Nanoparticles for Dental and Medical Applications. Int. J. Mol. Sci. 2026, 27, 438. https://doi.org/10.3390/ijms27010438
Vega Jiménez AL, Rodríguez-Hernández A-P, Vázquez-Olmos AR, Luna-Ramírez RE, Sato-Berrú RY, Calderón-Olvera RM. Exploring Antibacterial Properties of Mechanochemically Synthesized MgAl2O4 Spinel Nanoparticles for Dental and Medical Applications. International Journal of Molecular Sciences. 2026; 27(1):438. https://doi.org/10.3390/ijms27010438
Chicago/Turabian StyleVega Jiménez, Alejandro L., Adriana-Patricia Rodríguez-Hernández, América R. Vázquez-Olmos, Roberto E. Luna-Ramírez, Roberto Y. Sato-Berrú, and Roxana Marisol Calderón-Olvera. 2026. "Exploring Antibacterial Properties of Mechanochemically Synthesized MgAl2O4 Spinel Nanoparticles for Dental and Medical Applications" International Journal of Molecular Sciences 27, no. 1: 438. https://doi.org/10.3390/ijms27010438
APA StyleVega Jiménez, A. L., Rodríguez-Hernández, A.-P., Vázquez-Olmos, A. R., Luna-Ramírez, R. E., Sato-Berrú, R. Y., & Calderón-Olvera, R. M. (2026). Exploring Antibacterial Properties of Mechanochemically Synthesized MgAl2O4 Spinel Nanoparticles for Dental and Medical Applications. International Journal of Molecular Sciences, 27(1), 438. https://doi.org/10.3390/ijms27010438

