PAK1 (p21-Activated Kinase 1) and Its Role in Neurodevelopmental Disorders—New Case Report and a Comprehensive Review
Abstract
1. Introduction
2. Detailed Case Description
2.1. Patient
2.2. DNA Analysis
2.3. Functional Analysis
2.4. Clinical and Neurological Evaluation of the Patient
2.5. Results of DNA Analysis
3. Discussion
3.1. PAK1 Structure
3.2. PAK1 Functions
3.3. PAK1 Kinase in Neurodevelopment
3.4. PAK1-Related Neurodegenerative Disorders
3.4.1. Variants in Autoinhibitory Domain
3.4.2. Functional Impact of Pathogenic Variants in the PAK1 Autoinhibitory Domain

3.4.3. Variants in Kinase Domain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental Disorders-the History and Future of a Diagnostic Concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Brunet, T.; Jech, R.; Brugger, M.; Kovacs, R.; Alhaddad, B.; Leszinski, G.; Riedhammer, K.M.; Westphal, D.S.; Mahle, I.; Mayerhanser, K.; et al. De Novo Variants in Neurodevelopmental Disorders—Experiences from a Tertiary Care Center. Clin. Genet. 2021, 100, 14–28. [Google Scholar] [CrossRef]
- Luo, R.; Sanders, S.J.; Tian, Y.; Voineagu, I.; Huang, N.; Chu, S.H.; Klei, L.; Cai, C.; Ou, J.; Lowe, J.K.; et al. Genome-Wide Transcriptome Profiling Reveals the Functional Impact of Rare de Novo and Recurrent CNVs in Autism Spectrum Disorders. Am. J. Hum. Genet. 2012, 91, 38–55. [Google Scholar] [CrossRef]
- Gillentine, M.A.; Wang, T.; Eichler, E.E. Estimating the Prevalence of De Novo Monogenic Neurodevelopmental Disorders from Large Cohort Studies. Biomedicines 2022, 10, 2865. [Google Scholar] [CrossRef]
- Reichard, J.; Zimmer-Bensch, G. The Epigenome in Neurodevelopmental Disorders. Front. Neurosci. 2021, 15, 776809. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. Morb. Mortal. Wkly. Rep. Surveill. Summ. Wash. DC 2002, 2023, 72. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Stawiński, P.; Płoski, R. Genebe.Net: Implementation and Validation of an Automatic ACMG Variant Pathogenicity Criteria Assignment. Clin. Genet. 2024, 106, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.2 List for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing: A Policy Statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. Off. J. Am. Coll. Med. Genet. 2023, 25, 100866. [Google Scholar] [CrossRef] [PubMed]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef]
- Fowler, A. DECoN: A Detection and Visualization Tool for Exonic Copy Number Variants. Methods Mol. Biol. 2022, 2493, 77–88. [Google Scholar] [CrossRef]
- Montanucci, L.; Brünger, T.; Boßelmann, C.M.; Ivaniuk, A.; Pérez-Palma, E.; Lhatoo, S.; Leu, C.; Lal, D. Evaluating Novel in Silico Tools for Accurate Pathogenicity Classification in Epilepsy-Associated Genetic Missense Variants. Epilepsia 2024, 65, 3655–3663. [Google Scholar] [CrossRef]
- Kumar, R.; Sanawar, R.; Li, X.; Li, F. Structure, Biochemistry, and Biology of PAK Kinases. Gene 2017, 605, 20–31. [Google Scholar] [CrossRef]
- Bokoch, G.M. Biology of the P21-Activated Kinases. Annu. Rev. Biochem. 2003, 72, 743–781. [Google Scholar] [CrossRef]
- Manser, E.; Loo, T.H.; Koh, C.G.; Zhao, Z.S.; Chen, X.Q.; Tan, L.; Tan, I.; Leung, T.; Lim, L. PAK Kinases Are Directly Coupled to the PIX Family of Nucleotide Exchange Factors. Mol. Cell 1998, 1, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.C.; Sanders, L.C.; Bokoch, G.M.; Gill, G.N. Activation of LIM-Kinase by PAK1 Couples Rac/Cdc42 GTPase Signalling to Actin Cytoskeletal Dynamics. Nat. Cell Biol. 1999, 1, 253–259. [Google Scholar] [CrossRef]
- Lei, M.; Lu, W.; Meng, W.; Parrini, M.C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an Autoinhibited Conformation Reveals a Multistage Activation Switch. Cell 2000, 102, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.L.; Chernoff, J. Mouse Models of PAK Function. Cell. Logist. 2012, 2, 84–88. [Google Scholar] [CrossRef]
- Horn, S.; Au, M.; Basel-Salmon, L.; Bayrak-Toydemir, P.; Chapin, A.; Cohen, L.; Elting, M.W.; Graham, J.M.; Gonzaga-Jauregui, C.; Konen, O.; et al. De Novo Variants in PAK1 Lead to Intellectual Disability with Macrocephaly and Seizures. Brain J. Neurol. 2019, 142, 3351–3359. [Google Scholar] [CrossRef]
- Pirruccello, M.; Sondermann, H.; Pelton, J.G.; Pellicena, P.; Hoelz, A.; Chernoff, J.; Wemmer, D.E.; Kuriyan, J. A Dimeric Kinase Assembly Underlying Autophosphorylation in the P21 Activated Kinases. J. Mol. Biol. 2006, 361, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Rennefahrt, U.E.E.; Deacon, S.W.; Parker, S.A.; Devarajan, K.; Beeser, A.; Chernoff, J.; Knapp, S.; Turk, B.E.; Peterson, J.R. Specificity Profiling of Pak Kinases Allows Identification of Novel Phosphorylation Sites. J. Biol. Chem. 2007, 282, 15667–15678. [Google Scholar] [CrossRef] [PubMed]
- Mirzaiebadizi, A.; Shafabakhsh, R.; Ahmadian, M.R. Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets. Biomolecules 2025, 15, 242. [Google Scholar] [CrossRef]
- Bagheri-Yarmand, R.; Mazumdar, A.; Sahin, A.A.; Kumar, R. LIM Kinase 1 Increases Tumor Metastasis of Human Breast Cancer Cells via Regulation of the Urokinase-Type Plasminogen Activator System. Int. J. Cancer 2006, 118, 2703–2710. [Google Scholar] [CrossRef]
- Rajah, A.; Boudreau, C.G.; Ilie, A.; Wee, T.-L.; Tang, K.; Borisov, A.Z.; Orlowski, J.; Brown, C.M. Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and βPIX. Sci. Rep. 2019, 9, 11430. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Li, C.; Rajoka, M.S.R.; He, Z.; Huang, J.; Wang, J.; Zhang, J. P21-Activated Kinase 1: Emerging Biological Functions and Potential Therapeutic Targets in Cancer. Theranostics 2020, 10, 9741–9766. [Google Scholar] [CrossRef]
- Javed, A.; Yarmohammadi, M.; Korkmaz, K.S.; Rubio-Tomás, T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 2848. [Google Scholar] [CrossRef] [PubMed]
- Zaldua, N.; Llavero, F.; Artaso, A.; Gálvez, P.; Lacerda, H.M.; Parada, L.A.; Zugaza, J.L. Rac1/P21-Activated Kinase Pathway Controls Retinoblastoma Protein Phosphorylation and E2F Transcription Factor Activation in B Lymphocytes. FEBS J. 2016, 283, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, M.; Onishi, K.; Kikuchi, C.; Gotoh, Y. Scaffolding Function of PAK in the PDK1-Akt Pathway. Nat. Cell Biol. 2008, 10, 1356–1364. [Google Scholar] [CrossRef]
- Ye, D.Z.; Field, J. PAK Signaling in Cancer. Cell. Logist. 2012, 2, 105–116. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Li, W.; Zhang, Q.; Zhang, C. PAK1 Overexpression Promotes Cell Proliferation in Cutaneous T Cell Lymphoma via Suppression of PUMA and P21. J. Dermatol. Sci. 2018, 90, 60–67. [Google Scholar] [CrossRef]
- Schürmann, A.; Mooney, A.F.; Sanders, L.C.; Sells, M.A.; Wang, H.G.; Reed, J.C.; Bokoch, G.M. P21-Activated Kinase 1 Phosphorylates the Death Agonist Bad and Protects Cells from Apoptosis. Mol. Cell. Biol. 2000, 20, 453–461. [Google Scholar] [CrossRef]
- Alavi, A.; Hood, J.D.; Frausto, R.; Stupack, D.G.; Cheresh, D.A. Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli. Science 2003, 301, 94–96. [Google Scholar] [CrossRef]
- Iyer, S.C.; Gopal, A.; Halagowder, D. Myricetin Induces Apoptosis by Inhibiting P21 Activated Kinase 1 (PAK1) Signaling Cascade in Hepatocellular Carcinoma. Mol. Cell. Biochem. 2015, 407, 223–237. [Google Scholar] [CrossRef]
- Woo, T.-G.; Yoon, M.-H.; Hong, S.-D.; Choi, J.; Ha, N.-C.; Sun, H.; Park, B.-J. Anti-Cancer Effect of Novel PAK1 Inhibitor via Induction of PUMA-Mediated Cell Death and P21-Mediated Cell Cycle Arrest. Oncotarget 2017, 8, 23690–23701. [Google Scholar] [CrossRef]
- Hawley, E.; Gehlhausen, J.; Karchugina, S.; Chow, H.-Y.; Araiza-Olivera, D.; Radu, M.; Smith, A.; Burks, C.; Jiang, L.; Li, X.; et al. PAK1 Inhibition Reduces Tumor Size and Extends the Lifespan of Mice in a Genetically Engineered Mouse Model of Neurofibromatosis Type 2 (NF2). Hum. Mol. Genet. 2021, 30, 1607–1617. [Google Scholar] [CrossRef]
- Davis, R.T.; Simon, J.N.; Utter, M.; Mungai, P.; Alvarez, M.G.; Chowdhury, S.A.K.; Heydemann, A.; Ke, Y.; Wolska, B.M.; Solaro, R.J. Knockout of P21-Activated Kinase-1 Attenuates Exercise-Induced Cardiac Remodelling through Altered Calcineurin Signalling. Cardiovasc. Res. 2015, 108, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Taglieri, D.M.; Monasky, M.M.; Knezevic, I.; Sheehan, K.A.; Lei, M.; Wang, X.; Chernoff, J.; Wolska, B.M.; Ke, Y.; Solaro, R.J. Ablation of P21-Activated Kinase-1 in Mice Promotes Isoproterenol-Induced Cardiac Hypertrophy in Association with Activation of Erk1/2 and Inhibition of Protein Phosphatase 2A. J. Mol. Cell. Cardiol. 2011, 51, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Jokl, E.; Mullan, A.F.; Simpson, K.; Birchall, L.; Pearmain, L.; Martin, K.; Pritchett, J.; Raza, S.; Shah, R.; Hodson, N.W.; et al. PAK1-Dependent Mechanotransduction Enables Myofibroblast Nuclear Adaptation and Chromatin Organization during Fibrosis. Cell Rep. 2023, 42, 113414. [Google Scholar] [CrossRef]
- Chang, H.; He, K.; Li, C.; Ni, Y.; Li, M.; Chen, L.; Hou, M.; Zhou, Z.; Xu, Z.; Ji, M. P21 Activated Kinase-1 (PAK1) in Macrophages Is Required for Promotion of Th17 Cell Response during Helminth Infection. J. Cell. Mol. Med. 2020, 24, 14325–14338. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Xu, H.; Wang, K.; Gao, F.; Xu, X.; He, H. P-21 Activated Kinases in Liver Disorders. Cancers 2023, 15, 551. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Yang, F.; Frautschy, S.A.; Cole, G.M. PAK in Alzheimer Disease, Huntington Disease and X-Linked Mental Retardation. Cell. Logist. 2012, 2, 117–125. [Google Scholar] [CrossRef]
- den Broeke, C.V.; Radu, M.; Chernoff, J.; Favoreel, H.W. An Emerging Role for P21-Activated Kinases (Paks) in Viral Infections. Trends Cell Biol. 2010, 20, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Dios-Esponera, A.; Melis, N.; Subramanian, B.C.; Weigert, R.; Samelson, L.E. PAK1 Kinase Promotes Activated T Cell Trafficking by Regulating the Expression of L-Selectin and CCR7. Front. Immunol. 2019, 10, 370. [Google Scholar] [CrossRef]
- Wang, K.; Zhan, Y.; Huynh, N.; Dumesny, C.; Wang, X.; Asadi, K.; Herrmann, D.; Timpson, P.; Yang, Y.; Walsh, K.; et al. Inhibition of PAK1 Suppresses Pancreatic Cancer by Stimulation of Anti-Tumour Immunity through down-Regulation of PD-L1. Cancer Lett. 2020, 472, 8–18. [Google Scholar] [CrossRef]
- Delorme, V.; Machacek, M.; DerMardirossian, C.; Anderson, K.L.; Wittmann, T.; Hanein, D.; Waterman-Storer, C.; Danuser, G.; Bokoch, G.M. Cofilin Activity Downstream of PAK1 Regulates Cell Protrusion Efficiency by Organizing Lamellipodium and Lamella Actin Networks. Dev. Cell 2007, 13, 646–662. [Google Scholar] [CrossRef]
- Hayashi, K.; Ohshima, T.; Hashimoto, M.; Mikoshiba, K. PAK1 Regulates Dendritic Branching and Spine Formation. Dev. Neurobiol. 2007, 67, 655–669. [Google Scholar] [CrossRef]
- Pan, X.; Chang, X.; Leung, C.; Zhou, Z.; Cao, F.; Xie, W.; Jia, Z. PAK1 Regulates Cortical Development via Promoting Neuronal Migration and Progenitor Cell Proliferation. Mol. Brain 2015, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Vadlamudi, R.K.; Barnes, C.J.; Rayala, S.; Li, F.; Balasenthil, S.; Marcus, S.; Goodson, H.V.; Sahin, A.A.; Kumar, R. P21-Activated Kinase 1 Regulates Microtubule Dynamics by Phosphorylating Tubulin Cofactor B. Mol. Cell. Biol. 2005, 25, 3726–3736. [Google Scholar] [CrossRef] [PubMed]
- Sells, M.A.; Knaus, U.G.; Bagrodia, S.; Ambrose, D.M.; Bokoch, G.M.; Chernoff, J. Human P21-Activated Kinase (PAK1) Regulates Actin Organization in Mammalian Cells. Curr. Biol. 1997, 7, 202–210. [Google Scholar] [CrossRef]
- Nikolić, M. The PAK1 Kinase: An Important Regulator of Neuronal Morphology and Function in the Developing Forebrain. Mol. Neurobiol. 2008, 37, 187–202. [Google Scholar] [CrossRef]
- Asrar, S.; Meng, Y.; Zhou, Z.; Todorovski, Z.; Huang, W.W.; Jia, Z. Regulation of Hippocampal Long-Term Potentiation by P21-Activated Protein Kinase 1 (PAK1). Neuropharmacology 2009, 56, 73–80. [Google Scholar] [CrossRef]
- Hussain, N.K.; Thomas, G.M.; Luo, J.; Huganir, R.L. Regulation of AMPA Receptor Subunit GluA1 Surface Expression by PAK3 Phosphorylation. Proc. Natl. Acad. Sci. USA 2015, 112, E5883–E5890. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Z.; Asrar, S.; Henkelman, M.; Xie, W.; Jia, Z. P21-Activated Kinases 1 and 3 Control Brain Size through Coordinating Neuronal Complexity and Synaptic Properties. Mol. Cell. Biol. 2011, 31, 388–403. [Google Scholar] [CrossRef]
- Manabe, R.; Kovalenko, M.; Webb, D.J.; Horwitz, A.R. GIT1 Functions in a Motile, Multi-Molecular Signaling Complex That Regulates Protrusive Activity and Cell Migration. J. Cell Sci. 2002, 115, 1497–1510. [Google Scholar] [CrossRef]
- Slack-Davis, J.K.; Eblen, S.T.; Zecevic, M.; Boerner, S.A.; Tarcsafalvi, A.; Diaz, H.B.; Marshall, M.S.; Weber, M.J.; Parsons, J.T.; Catling, A.D. PAK1 Phosphorylation of MEK1 Regulates Fibronectin-Stimulated MAPK Activation. J. Cell Biol. 2003, 162, 281–291. [Google Scholar] [CrossRef]
- Zhou, G.-L.; Zhuo, Y.; King, C.C.; Fryer, B.H.; Bokoch, G.M.; Field, J. Akt Phosphorylation of Serine 21 on PAK1 Modulates Nck Binding and Cell Migration. Mol. Cell. Biol. 2003, 23, 8058–8069. [Google Scholar] [CrossRef]
- Parrini, M.C.; Lei, M.; Harrison, S.C.; Mayer, B.J. PAK1 Kinase Homodimers Are Autoinhibited in Trans and Dissociated upon Activation by Cdc42 and Rac1. Mol. Cell 2002, 9, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhou, Z.; Jia, Z. PAK1 Regulates Inhibitory Synaptic Function via a Novel Mechanism Mediated by Endocannabinoids. Small GTPases 2016, 9, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.K.; Helbig, I.; Metcalf, C.S.; Lubbers, L.S.; Isom, L.L.; Demarest, S.; Goldberg, E.M.; George, A.L.; Lerche, H.; Weckhuysen, S.; et al. Precision Medicine for Genetic Epilepsy on the Horizon: Recent Advances, Present Challenges, and Suggestions for Continued Progress. Epilepsia 2022, 63, 2461–2475. [Google Scholar] [CrossRef] [PubMed]
- Civiero, L.; Greggio, E. PAKs in the Brain: Function and Dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 444–453. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Fan, T.; Zeng, C.; Sun, Z.S. The P21-Activated Kinases in Neural Cytoskeletal Remodeling and Related Neurological Disorders. Protein Cell 2022, 13, 6–25. [Google Scholar] [CrossRef]
- Dobrigna, M.; Poëa-Guyon, S.; Rousseau, V.; Vincent, A.; Toutain, A.; Barnier, J.-V. The Molecular Basis of P21-Activated Kinase-Associated Neurodevelopmental Disorders: From Genotype to Phenotype. Front. Neurosci. 2023, 17, 1123784. [Google Scholar] [CrossRef]
- Lindy, A.S.; Stosser, M.B.; Butler, E.; Downtain-Pickersgill, C.; Shanmugham, A.; Retterer, K.; Brandt, T.; Richard, G.; McKnight, D.A. Diagnostic Outcomes for Genetic Testing of 70 Genes in 8565 Patients with Epilepsy and Neurodevelopmental Disorders. Epilepsia 2018, 59, 1062–1071. [Google Scholar] [CrossRef]
- Savatt, J.M.; Myers, S.M. Genetic Testing in Neurodevelopmental Disorders. Front. Pediatr. 2021, 9, 526779. [Google Scholar] [CrossRef] [PubMed]
- Ohori, S.; Mitsuhashi, S.; Ben-Haim, R.; Heyman, E.; Sengoku, T.; Ogata, K.; Matsumoto, N. A Novel PAK1 Variant Causative of Neurodevelopmental Disorder with Postnatal Macrocephaly. J. Hum. Genet. 2020, 65, 481–485. [Google Scholar] [CrossRef]
- Corriveau, M.L.; Amaya, S.I.; Koebel, M.C.; Lerma, V.C.; Michener, S.L.; Turner, A.; Schultz, R.J.; Seto, E.S.; Diaz-Medina, G.E.; Craigen, W.J.; et al. PAK1 c.1409 T > a (p. Leu470Gln) de Novo Variant Affects the Protein Kinase Domain, Leading to Epilepsy, Macrocephaly, Spastic Quadriplegia, and Hydrocephalus: Case Report and Review of the Literature. Am. J. Med. Genet. Part A 2023, 191, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, C.; Li, J.; Zhou, Z.; Ju, X.; Xia, S.; Li, Y.; Liu, A.; Teng, H.; Zhang, K.; et al. PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep. 2018, 24, 2029–2041. [Google Scholar] [CrossRef] [PubMed]
- Scorrano, G.; D’Onofrio, G.; Accogli, A.; Severino, M.; Buchert, R.; Kotzaeridou, U.; Iapadre, G.; Farello, G.; Iacomino, M.; Dono, F.; et al. A PAK1 Mutational Hotspot Within the Regulatory CRIPaK Domain Is Associated With Severe Neurodevelopmental Disorders in Children. Pediatr. Neurol. 2023, 149, 84–92. [Google Scholar] [CrossRef]
- Harms, F.L.; Kloth, K.; Bley, A.; Denecke, J.; Santer, R.; Lessel, D.; Hempel, M.; Kutsche, K. Activating Mutations in PAK1, Encoding P21-Activated Kinase 1, Cause a Neurodevelopmental Disorder. Am. J. Hum. Genet. 2018, 103, 579–591. [Google Scholar] [CrossRef]
- Kernohan, K.D.; McBride, A.; Hartley, T.; Rojas, S.K.; Care4Rare Canada Consortium; Dyment, D.A.; Boycott, K.M.; Dyack, S. P21 Protein-Activated Kinase 1 Is Associated with Severe Regressive Autism, and Epilepsy. Clin. Genet. 2019, 96, 449–455. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Xu, L.; Wang, J.; Hong, Y.; Wang, Y.; Zhu, Q.; Wang, D.; Zhang, X.-Y.; Liu, C.-Y.; Fang, K.-H.; et al. DSCAM/PAK1 Pathway Suppression Reverses Neurogenesis Deficits in iPSC-Derived Cerebral Organoids from Patients with Down Syndrome. J. Clin. Investig. 2021, 131, e135763. [Google Scholar] [CrossRef] [PubMed]



| Autoregulatory Domain | Kinase Domain | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Feature | Blek et al. | Patient 1 [69] | Patient 2 [19] | [70] | [65] | Patient 1 [68] | Patient 2 [68] | Patient 3 [68] | [66] | Patient 1 [19] | Patient 2 [69] |
| Age/Sex | 5 y/F | 2 y/F | 17 y/M | 24 y/F | 8 y/M | 11 y/F | 4 y/F | 5 y/M | 13 y/M | 4 y/F | 5 y/M |
| Intellectual Disability | Mild | Severe | Profound | Severe | Severe | Moderate | Severe | Severe | Profound | Moderate to severe | Severe |
| Speech | Delayed, 2–3 word sentences | Non-verbal | Non-verbal | No meaningful conversation | Non-verbal | Delayed, no active speech | Severe speech delay | Severe speech delay | Non-verbal | Non-verbal | Single words |
| Macrocephaly | +2.2 SD | +3.96 SD | +2.07 SD | +3.28 SD | +4.93 SD | >P99 | Present | Present | Present | +3.80 SD | +4.1 SD |
| Seizures | Onset 2y, tonic–clonic, myoclonic | Onset 13m | Atonic, tonic–clonic | Generalized tonic–clonic | Focal | Atypical absences, tonic–clonic, focal | Generalized, febrile, infection-triggered | Febrile convulsion, focal seizures | Medically refractory | Onset 19m | Myoclonic, intractable |
| EEG | Focal epileptiform activity | Abnormal | Paroxysmal discharges | N/A | Sharp waves | Multifocal epileptic discharges | N/A | N/A | Diffuse multifocal epileptic encephalopathy | Abnormal | N/A |
| MRI Findings | Choroid plexus cyst | Thin corpus callosum, ventriculomegaly | Thin corpus callosum, cerebellar atrophy | Minimal generalized atrophy | Thick corpus callosum | Thick corpus callosum, cerebellar dysplasia | Nonspecific WM signal anomalies | Delayed myelinization | White matter hyperintensities | Thin corpus callosum, ventriculomegaly | White matter hyperintensities |
| Gait | Mild ataxia | No independent walking | No walking | N/A | Ataxic, unstable | Ataxic | N/A | N/A | Non-ambulatory | Unstable | Ataxic |
| Hypotonia | Present | Present | Initial hypotonia, later spastic quadriplegia | N/A | Present | Present | Present | Present | Spastic quadriplegia | Present | N/A |
| Visual Issues | Myopia, convergent strabismus | N/A | N/A | N/A | Strabismus | N/A | N/A | N/A | Cortical blindness | N/A | Strabismus |
| Sleep Disturbances | Present | N/A | N/A | Present | N/A | N/A | N/A | N/A | Present | N/A | N/A |
| Other Features | Neck/lumbar hemangiomas, wide sandal gap | N/A | N/A | N/A | N/A | Cerebellar heterotopia | Cervical hydromyelia | N/A | Cleft palate, horseshoe kidney | N/A | Gastroesophageal reflux |
| PAK1 Variant | c.396C>A (p.Asn132Lys) | c.392A>G (p.Tyr131Cys) | c.397T>C (p.Ser133Pro) | c.362C>T (p.Pro121Leu) | c.328T>A (p.Ser110Thr) | c.392A>G (p.Tyr131Cys) | c.428T>C (p.Met143Thr) | c.428T>A (p.Met143Lys) | c.1409T>A (p.Leu470Gln) | c.1409T>G (p.Leu470Arg) | c.1286A>G (p.Tyr429Cys) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Blek, N.; Pielas, M.; Kharytonov, V.; Rutkowska, K.; Rusecka, J.; Lewicki, S.; Płoski, R.; Zwoliński, P. PAK1 (p21-Activated Kinase 1) and Its Role in Neurodevelopmental Disorders—New Case Report and a Comprehensive Review. Int. J. Mol. Sci. 2026, 27, 439. https://doi.org/10.3390/ijms27010439
Blek N, Pielas M, Kharytonov V, Rutkowska K, Rusecka J, Lewicki S, Płoski R, Zwoliński P. PAK1 (p21-Activated Kinase 1) and Its Role in Neurodevelopmental Disorders—New Case Report and a Comprehensive Review. International Journal of Molecular Sciences. 2026; 27(1):439. https://doi.org/10.3390/ijms27010439
Chicago/Turabian StyleBlek, Natasza, Mikołaj Pielas, Volodymyr Kharytonov, Karolina Rutkowska, Joanna Rusecka, Sławomir Lewicki, Rafał Płoski, and Piotr Zwoliński. 2026. "PAK1 (p21-Activated Kinase 1) and Its Role in Neurodevelopmental Disorders—New Case Report and a Comprehensive Review" International Journal of Molecular Sciences 27, no. 1: 439. https://doi.org/10.3390/ijms27010439
APA StyleBlek, N., Pielas, M., Kharytonov, V., Rutkowska, K., Rusecka, J., Lewicki, S., Płoski, R., & Zwoliński, P. (2026). PAK1 (p21-Activated Kinase 1) and Its Role in Neurodevelopmental Disorders—New Case Report and a Comprehensive Review. International Journal of Molecular Sciences, 27(1), 439. https://doi.org/10.3390/ijms27010439

