Predicted T-Cell and B-Cell Epitopes of NIS: Where Do Sjögren’s Syndrome and Hashimoto’s Thyroiditis Converge?
Abstract
1. Introduction
2. Results
2.1. Linear T-Cell Epitopes of NIS
2.2. Linear B-Cell Epitopes of NIS
2.3. Conformational B-Cell Epitopes of NIS
2.4. Comparative Analysis of T-Cell and B-Cell NIS Epitopes Versus TPO and Ro60
2.4.1. Linear T-Cell Epitopes of TPO
2.4.2. Linear B-Cell Epitopes of TPO
2.4.3. Conformational B-Cell Epitopes of TPO
2.4.4. Linear T-Cell Epitopes of Ro60
2.4.5. Linear B-Cell Epitopes of Ro60
2.4.6. Conformational B-Cell Epitopes of Ro60
2.4.7. HLA Class II Binding of NIS, TPO and Ro60 T-Cell Epitopes
3. Discussion
4. Materials and Methods
4.1. HLA Allele Selection
4.2. Predictive Analysis of Linear T-Cell Epitopes
4.3. Predictive Analysis of Linear B-Cell Epitopes
4.4. Predictive Analysis of Conformational B-Cell Epitopes
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| APC | Antigen-presenting cell |
| BAFF | B-cell activating factor |
| CCP | Complement Control Protein |
| CD | Cluster of differentiation |
| cDC | Classical dendritic cell |
| ELISA | Enzyme-linked immunosorbent assay |
| HLA | Human leukocyte antigen |
| HT | Hashimoto’s Thyroiditis |
| IDR | Immune Domain Region |
| IEDB | Immune Epitope Database |
| IFN | Interferon |
| IL | Interleukin |
| M-CSF | Macrophage colony-stimulating factor |
| MPO | Myeloperoxidase |
| NA | Not available |
| NIS | Sodium-iodide symporter |
| PDB | Protein Data Bank |
| pDC | Plasmacytoid dendritic cell |
| RA | Rheumatoid arthritis |
| Ro60 | Ro60 Y RNA-binding protein |
| TCR | T-cell receptor |
| Tfh | T helper follicular cell |
| TG | Thyroglobulin |
| TGF | Transforming growth factor |
| TNF | Tumor necrosis factor |
| Th | T helper cell |
| TPO | Thyroid peroxidase |
| TSH-R | Thyroid-stimulating hormone receptor |
| Treg | T regulatory cell |
| TROVE | TAR RNA-binding protein and oxidative stress response-related |
| SLE | Systemic lupus erythematosus |
| SD | Standard deviation |
| SS | Sjögren’s syndrome |
| VWFA | Von Willebrand Factor A |
References
- Negrini, S.; Emmi, G.; Greco, M.; Borro, M.; Sardanelli, F.; Murdaca, G.; Indiveri, F.; Puppo, F. Sjögren’s Syndrome: A Systemic Autoimmune Disease. Clin. Exp. Med. 2022, 22, 9–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.-Q.; Yang, J.-Y.; Liao, J.-H.; Wu, T.-H.; Yu, X.-B.; Huang, Z.-W.; He, Q.; Wang, Q.; Song, W.-J.; et al. Sex Difference in Primary Sjögren Syndrome: A Medical Records Review Study. J. Clin. Rheumatol. 2023, 29, e78–e85. [Google Scholar] [CrossRef]
- Cafaro, G.; Perricone, C.; Ronconi, G.; Calabria, S.; Dondi, L.; Dondi, L.; Pedrini, A.; Esposito, I.; Gerli, R.; Bartoloni, E.; et al. Primary Sjögren’s Syndrome in Italy: Real-World Evidence of a Rare Disease through Administrative Healthcare Data. Eur. J. Intern. Med. 2024, 124, 122–129. [Google Scholar] [CrossRef]
- Cafaro, G.; Bursi, R.; Chatzis, L.G.; Fulvio, G.; Ferro, F.; Bartoloni, E.; Baldini, C. One Year in Review 2021: Sjögren’s Syndrome. Clin. Exp. Rheumatol. 2021, 39, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Manfrè, V.; Chatzis, L.G.; Cafaro, G.; Fonzetti, S.; Calvacchi, S.; Fulvio, G.; Navarro Garcia, I.C.; La Rocca, G.; Ferro, F.; Perricone, C.; et al. Sjögren’s Syndrome: One Year in Review 2022. Clin. Exp. Rheumatol. 2022, 40, 2211–2224. [Google Scholar] [CrossRef]
- Perzyńska-Mazan, J.; Maślińska, M.; Gasik, R. Neurological Manifestations of Primary Sjögren’s Syndrome. Reumatologia 2018, 56, 99–105. [Google Scholar] [CrossRef]
- Baldini, C.; Ferro, F.; Mosca, M.; Fallahi, P.; Antonelli, A. The Association of Sjögren Syndrome and Autoimmune Thyroid Disorders. Front. Endocrinol. 2018, 9, 121. [Google Scholar] [CrossRef]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto Thyroiditis: Clinical and Diagnostic Criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Khachaturov, M.; Goulis, D.G.; Perros, P. Hashimoto’s Thyroiditis-What’s in a Name? Hormones 2025, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ziros, P.G.; Chartoumpekis, D.V.; Psarias, G.; Duntas, L.; Zuo, X.; Li, X.; Ding, Z.; Sykiotis, G.P. Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants 2024, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Giuffrida, G.; Campennì, A. Autoimmune Endocrine Diseases. Minerva Endocrinol. 2018, 43, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Li, D.; Ostrov, D.A.; Nguyen, C.Q. Epitope Mapping of Pathogenic Autoantigens on Sjögren’s Syndrome-Susceptible Human Leukocyte Antigens Using In Silico Techniques. J. Clin. Med. 2022, 11, 1690. [Google Scholar] [CrossRef]
- Yen, C.-Y.; Wang, P.-Y.; Chen, K.-Y.; Tseng, C.-C.; Wu, C.-C.; Ou, T.-T.; Yen, J.-H. HLA-DR Genotypes in Patients with Primary Sjögren’s Syndrome in Taiwan. Kaohsiung J. Med. Sci. 2024, 40, 934–941. [Google Scholar] [CrossRef]
- Chiorean, A.-D.; Nicula, G.Z.; Bâlici, Ș.; Vică, M.L.; Iancu Loga, L.-I.; Dican, L.; Matei, H.V. HLA Class II Allele Groups Involved in Autoimmune Thyroid Diseases: Hashimoto’s Thyroiditis and Basedow-Graves Disease. Life 2024, 14, 441. [Google Scholar] [CrossRef]
- Farra, C.; Awwad, J.; Fadlallah, A.; Sebaly, G.; Hage, G.; Souaid, M.; Ashkar, H.; Medlej, R.; Gannageh, M.H.; Halaby, G. Genetics of Autoimmune Thyroid Disease in the Lebanese Population. J. Community Genet. 2012, 3, 259–264. [Google Scholar] [CrossRef]
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef]
- Riega-Torres, J.C.L.; Villarreal-Gonzalez, A.J.; Ceceñas-Falcon, L.Á.; Salas-Alanis, J.C. Sjögren’s syndrome (SS), a review of the subject and saliva as a diagnostic method. Gac. Med. Mex. 2016, 152, 371–380. [Google Scholar]
- Czarnocka, B. Thyroperoxidase, Thyroglobulin, Na(+)/I(-) Symporter, Pendrin in Thyroid Autoimmunity. Front. Biosci. 2011, 16, 783–802. [Google Scholar] [CrossRef] [PubMed]
- Klubo-gwiezdzinska, J.; Wartofsky, L. Hashimoto Thyroiditis: An Evidence-Based Guide to Etiology, Diagnosis and Treatment. Pol. Arch. Intern. Med. 2022, 132, 16222. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Hisatome, I.; Taniguchi, S.; Shirayoshi, Y.; Yamamoto, Y.; Miake, J.; Ohkura, T.; Akama, T.; Igawa, O.; Shigemasa, C.; et al. Pendrin Is a Novel Autoantigen Recognized by Patients with Autoimmune Thyroid Diseases. J. Clin. Endocrinol. Metab. 2009, 94, 442–448. [Google Scholar] [CrossRef]
- Portulano, C.; Paroder-Belenitsky, M.; Carrasco, N. The Na+/I- Symporter (NIS): Mechanism and Medical Impact. Endocr. Rev. 2014, 35, 106–149. [Google Scholar] [CrossRef]
- Jankowska, K.; Dudek, P.; Stasiek, M.; Suchta, K. Autoimmune Polyendocrine Syndromes Associated with Autoimmune Rheumatic Diseases. Reumatologia 2023, 61, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Chen, L. Sjögren’s Syndrome Complicated with Fanconi Syndrome and Hashimoto’s Thyroiditis: Case Report and Literature Review. J. Int. Med. Res. 2016, 44, 753–759. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [Google Scholar] [CrossRef]
- Carvalho, D.P.; Dupuy, C. Thyroid Hormone Biosynthesis and Release. Mol. Cell. Endocrinol. 2017, 458, 6–15. [Google Scholar] [CrossRef] [PubMed]
- La Perle, K.M.D.; Kim, D.C.; Hall, N.C.; Bobbey, A.; Shen, D.H.; Nagy, R.S.; Wakely, P.E.; Lehman, A.; Jarjoura, D.; Jhiang, S.M. Modulation of Sodium/Iodide Symporter Expression in the Salivary Gland. Thyroid 2013, 23, 1029–1036. [Google Scholar] [CrossRef]
- Riesco-Eizaguirre, G.; Santisteban, P.; De la Vieja, A. The Complex Regulation of NIS Expression and Activity in Thyroid and Extrathyroidal Tissues. Endocr. Relat. Cancer 2021, 28, T141–T165. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Minuti, A.; Gianì, F.; Masto, R.; Romano, D.; Aliquò, F.; Campennì, A.; Campo, S.; Cannavò, S.; D’Ascola, A. Polychlorinated Biphenyls (PCBS)-Induced Oxidative Stress and Inflammation in Human Thyrocytes: Involvement of AhR and NRF-2/HO-1 Pathway. Endocrine 2025, 87, 252–261. [Google Scholar] [CrossRef]
- Endo, T.; Kogai, T.; Nakazato, M.; Saito, T.; Kaneshige, M.; Onaya, T. Autoantibody against Na+/I- Symporter in the Sera of Patients with Autoimmune Thyroid Disease. Biochem. Biophys. Res. Commun. 1996, 224, 92–95. [Google Scholar] [CrossRef]
- Ajjan, R.A.; Kemp, E.H.; Waterman, E.A.; Watson, P.F.; Endo, T.; Onaya, T.; Weetman, A.P. Detection of Binding and Blocking Autoantibodies to the Human Sodium-Iodide Symporter in Patients with Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 2000, 85, 2020–2027. [Google Scholar] [CrossRef]
- Endo, T.; Kaneshige, M.; Nakazato, M.; Kogai, T.; Saito, T.; Onaya, T. Autoantibody against Thyroid Iodide Transporter in the Sera from Patients with Hashimoto’s Thyroiditis Possesses Iodide Transport Inhibitory Activity. Biochem. Biophys. Res. Commun. 1996, 228, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Seissler, J.; Wagner, S.; Schott, M.; Lettmann, M.; Feldkamp, J.; Scherbaum, W.A.; Morgenthaler, N.G. Low Frequency of Autoantibodies to the Human Na(+)/I(-) Symporter in Patients with Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 2000, 85, 4630–4634. [Google Scholar] [CrossRef] [PubMed]
- Chin, H.S.; Chin, D.K.; Morgenthaler, N.G.; Vassart, G.; Costagliola, S. Rarity of Anti- Na+/I- Symporter (NIS) Antibody with Iodide Uptake Inhibiting Activity in Autoimmune Thyroid Diseases (AITD). J. Clin. Endocrinol. Metab. 2000, 85, 3937–3940. [Google Scholar] [CrossRef]
- De La Vieja, A.; Dohan, O.; Levy, O.; Carrasco, N. Molecular Analysis of the Sodium/ Iodide Symporter: Impact on Thyroid and Extrathyroid Pathophysiology. Physiol. Rev. 2000, 80, 1083–1105. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhang, J.; Lin, Y.; Chen, W.; Fan, X.; Zhang, D. Pathogenesis and Treatment of Sjogren’s Syndrome: Review and Update. Front. Immunol. 2023, 14, 1127417. [Google Scholar] [CrossRef]
- Talotta, R.; Sarzi-Puttini, P.; Atzeni, F. Microbial Agents as Putative Inducers of B Cell Lymphoma in Sjögren’s Syndrome through an Impaired Epigenetic Control: The State-of-the-Art. J. Immunol. Res. 2019, 2019. [Google Scholar] [CrossRef]
- Talotta, R.; Mercurio, V.; Bongiovanni, S.; Vittori, C.; Boccassini, L.; Rigamonti, F.; Batticciotto, A.; Atzeni, F.; Trabattoni, D.; Sarzi-Puttini, P.; et al. Evaluation of Salivary and Plasma MicroRNA Expression in Patients with Sjögren’s Syndrome, and Correlations with Clinical and Ultrasonographic Outcomes. Clin. Exp. Rheumatol. 2019, 37, 70–77. [Google Scholar]
- Otsuka, K.; Sato, M.; Tsunematsu, T.; Ishimaru, N. Virus Infections Play Crucial Roles in the Pathogenesis of Sjögren’s Syndrome. Viruses 2022, 14, 1474. [Google Scholar] [CrossRef]
- Weetman, A.P. The Immunopathogenesis of Chronic Autoimmune Thyroiditis One Century after Hashimoto. Eur. Thyroid. J. 2013, 1, 243–250. [Google Scholar] [CrossRef]
- Effraimidis, G.; Wiersinga, W.M. Mechanisms in Endocrinology: Autoimmune Thyroid Disease: Old and New Players. Eur. J. Endocrinol. 2014, 170, R241–R252. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in Our Understanding. Horm. Metab. Res. 2015, 47, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Yura, Y.; Hamada, M. Outline of Salivary Gland Pathogenesis of Sjögren’s Syndrome and Current Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 11179. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial–Immune Cell Interplay in Primary Sjögren Syndrome Salivary Gland Pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. [Google Scholar] [CrossRef]
- Ma, D.; Feng, Y.; Lin, X. Immune and Non-Immune Mediators in the Fibrosis Pathogenesis of Salivary Gland in Sjögren’s Syndrome. Front. Immunol. 2024, 15, 1421436. [Google Scholar] [CrossRef]
- Liao, R.; Yang, H.T.; Li, H.; Liu, L.X.; Li, K.; Li, J.J.; Liang, J.; Hong, X.P.; Chen, Y.L.; Liu, D.Z. Recent Advances of Salivary Gland Biopsy in Sjögren’s Syndrome. Front. Med. 2022, 8, 792593. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, R.; Marazuela, M. MicroRNAs in Autoimmune Thyroid Diseases and Their Role as Biomarkers. Best. Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101741. [Google Scholar] [CrossRef]
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
- Ariolli, A.; Agolini, E.; Mazza, T.; Petrizzelli, F.; Petrini, S.; D’Oria, V.; Cudini, A.; Nardella, C.; Pesce, V.; Comparcola, D.; et al. The Putative Role of TIM-3 Variants in Polyendocrine Autoimmunity: Insights from a WES Investigation. Int. J. Mol. Sci. 2024, 25, 10994. [Google Scholar] [CrossRef]
- Alli, R.; Nguyen, P.; Geiger, T.L. Altered Differentiation, Diminished Pathogenicity, and Regulatory Activity of Myelin-Specific T Cells Expressing an Enhanced Affinity TCR. J. Immunol. 2011, 187, 5521–5531. [Google Scholar] [CrossRef]
- Cruz-Tapias, P.; Rojas-Villarraga, A.; Maier-Moore, S.; Anaya, J.-M. HLA and Sjögren’s Syndrome Susceptibility. A Meta-Analysis of Worldwide Studies. Autoimmun. Rev. 2012, 11, 281–287. [Google Scholar] [CrossRef]
- Ríos, A.; Rodríguez, J.M.; Moya, M.R.; Galindo, P.J.; Canteras, M.; Alvarez, M.R.; Parrilla, P. Associations of HLA-C Alleles with Multinodular Goiters: Study in a Population from Southeastern Spain. Arch. Surg. 2006, 141, 123–128. [Google Scholar] [CrossRef]
- Opdenakker, G.; Dillen, C.; Fiten, P.; Martens, E.; Van Aelst, I.; Van den Steen, P.E.; Nelissen, I.; Starckx, S.; Descamps, F.J.; Hu, J.; et al. Remnant Epitopes, Autoimmunity and Glycosylation. Biochim. Biophys. Acta 2006, 1760, 610–615. [Google Scholar] [CrossRef]
- Pohlenz, J.; Duprez, L.; Weiss, R.E.; Vassart, G.; Refetoff, S.; Costagliola, S. Failure of Membrane Targeting Causes the Functional Defect of Two Mutant Sodium Iodide Symporters. J. Clin. Endocrinol. Metab. 2000, 85, 2366–2369. [Google Scholar] [CrossRef]
- Kemp, E.H.; Waterman, E.A.; Ajjan, R.A.; Smith, K.A.; Watson, P.F.; Ludgate, M.E.; Weetman, A.P. Identification of Antigenic Domains on the Human Sodium-Iodide Symporter Which Are Recognized by Autoantibodies from Patients with Autoimmune Thyroid Disease. Clin. Exp. Immunol. 2001, 124, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Marianayagam, N.J.; Sunde, M.; Matthews, J.M. The Power of Two: Protein Dimerization in Biology. Trends Biochem. Sci. 2004, 29, 618–625. [Google Scholar] [CrossRef]
- Jepson, T.A.; Chung, J.K. Diffusion-Based Determination of Protein Homodimerization on Reconstituted Membrane Surfaces. BMB Rep. 2021, 54, 157–163. [Google Scholar] [CrossRef]
- Huc-Brandt, S.; Marcellin, D.; Graslin, F.; Averseng, O.; Bellanger, L.; Hivin, P.; Quemeneur, E.; Basquin, C.; Navarro, V.; Pourcher, T.; et al. Characterisation of the Purified Human Sodium/Iodide Symporter Reveals That the Protein Is Mainly Present in a Dimeric Form and Permits the Detailed Study of a Native C-Terminal Fragment. Biochim. Biophys. Acta 2011, 1808, 65–77. [Google Scholar] [CrossRef]
- Li, C.-C.; Ho, T.-Y.; Kao, C.-H.; Wu, S.-L.; Liang, J.-A.; Hsiang, C.-Y. Conserved Charged Amino Acid Residues in the Extracellular Region of Sodium/Iodide Symporter Are Critical for Iodide Transport Activity. J. Biomed. Sci. 2010, 17, 89. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-L.; Ho, T.-Y.; Liang, J.-A.; Hsiang, C.-Y. Histidine Residue at Position 226 Is Critical for Iodide Uptake Activity of Human Sodium/Iodide Symporter. J. Endocrinol. 2008, 199, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Nicola, J.P.; Amzel, L.M.; Carrasco, N. Asn441 Plays a Key Role in Folding and Function of the Na+/I- Symporter (NIS). FASEB J. 2013, 27, 3229–3238. [Google Scholar] [CrossRef]
- Ferrandino, G.; Nicola, J.P.; Sánchez, Y.E.; Echeverria, I.; Liu, Y.; Amzel, L.M.; Carrasco, N. Na+ Coordination at the Na2 Site of the Na+/I- Symporter. Proc. Natl. Acad. Sci. USA 2016, 113, E5379–E5388. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.J.; Fletcher, A.; Brookes, K.; Nieto, H.; Alshahrani, M.M.; Mueller, J.W.; Fine, N.H.F.; Hodson, D.J.; Boelaert, K.; Read, M.L.; et al. Dimerization of the Sodium/Iodide Symporter. Thyroid 2019, 29, 1485–1498. [Google Scholar] [CrossRef]
- Benvenga, S.; Santarpia, L.; Trimarchi, F.; Guarneri, F. Human Thyroid Autoantigens and Proteins of Yersinia and Borrelia Share Amino Acid Sequence Homology That Includes Binding Motifs to HLA-DR Molecules and T-Cell Receptor. Thyroid 2006, 16, 225–236. [Google Scholar] [CrossRef]
- Paul, S.; Sidney, J.; Sette, A.; Peters, B. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates. Curr. Protoc. Immunol. 2016, 114, 18.19.1–18.19.24. [Google Scholar] [CrossRef]
- Vita, R.; Blazeska, N.; Marrama, D.; Duesing, S.; Bennett, J.; Greenbaum, J.; De Almeida Mendes, M.; Mahita, J.; Wheeler, D.K.; Cantrell, J.R.; et al. The Immune Epitope Database (IEDB): 2024 Update. Nucleic Acids Res. 2025, 53, D436–D443. [Google Scholar] [CrossRef]
- Zeng, X.; Bai, G.; Sun, C.; Ma, B. Recent Progress in Antibody Epitope Prediction. Antibodies 2023, 12, 52. [Google Scholar] [CrossRef]
- Di Palma, L.; Talotta, R. HERV-Derived Syncytin-1 and Syncytin-2 as Sources of Linear and Discontinuous Epitopes in Antiphospholipid Syndrome: A Pivotal Computational Study. Discov. Med. 2024, 36, 2111–2131. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. Prediction Methods for B-Cell Epitopes. Methods Mol. Biol. 2007, 409, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Le, S.N.; Godlewska, M.; Hoke, D.E.; Buckle, A.M. Thyroid Peroxidase as an Autoantigen in Hashimoto’s Disease: Structure, Function, and Antigenicity. Horm. Metab. Res. 2018, 50, 908–921. [Google Scholar] [CrossRef]
- Gora, M.; Gardas, A.; Wiktorowicz, W.; Hobby, P.; Watson, P.F.; Weetman, A.P.; Sutton, B.J.; Banga, J.P. Evaluation of Conformational Epitopes on Thyroid Peroxidase by Antipeptide Antibody Binding and Mutagenesis. Clin. Exp. Immunol. 2004, 136, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.R.; Arscott, P.; Johnson, J. An Analysis of the Structure and Antigenicity of Different Forms of Human Thyroid Peroxidase. Thyroid 1994, 4, 173–178. [Google Scholar] [CrossRef]
- Godlewska, M.; Czarnocka, B.; Gora, M. Localization of Key Amino Acid Residues in the Dominant Conformational Epitopes on Thyroid Peroxidase Recognized by Mouse Monoclonal Antibodies. Autoimmunity 2012, 45, 476–484. [Google Scholar] [CrossRef]
- Chazenbalk, G.D.; Portolano, S.; Russo, D.; Hutchison, J.S.; Rapoport, B.; McLachlan, S. Human Organ-Specific Autoimmune Disease. Molecular Cloning and Expression of an Autoantibody Gene Repertoire for a Major Autoantigen Reveals an Antigenic Immunodominant Region and Restricted Immunoglobulin Gene Usage in the Target Organ. J. Clin. Investig. 1993, 92, 62–74. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Jaume, J.C.; Rapoport, B.; McLachlan, S.M. Rarity of Autoantibodies to a Major Autoantigen, Thyroid Peroxidase, That Interact with Denatured Antigen or with Epitopes Outside the Immunodominant Region. Clin. Exp. Immunol. 1999, 117, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Furtmüller, P.G.; Jantschko, W.; Regelsberger, G.; Jakopitsch, C.; Moguilevsky, N.; Obinger, C. A Transient Kinetic Study on the Reactivity of Recombinant Unprocessed Monomeric Myeloperoxidase. FEBS Lett. 2001, 503, 147–150. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, N.; Sharma, S.; Singh, S.B.; Kaur, P.; Bhushan, A.; Srinivasan, A.; Singh, T.P. Crystal Structure of Lactoperoxidase at 2.4 A Resolution. J. Mol. Biol. 2008, 376, 1060–1075. [Google Scholar] [CrossRef]
- Fiedler, T.J.; Davey, C.A.; Fenna, R.E. X-Ray Crystal Structure and Characterization of Halide-Binding Sites of Human Myeloperoxidase at 1.8 A Resolution. J. Biol. Chem. 2000, 275, 11964–11971. [Google Scholar] [CrossRef]
- McDonald, D.O.; Pearce, S.H.S. Thyroid Peroxidase Forms Thionamide-Sensitive Homodimers: Relevance for Immunomodulation of Thyroid Autoimmunity. J. Mol. Med. 2009, 87, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Wolin, S.L.; Reinisch, K.M. The Ro 60 KDa Autoantigen Comes into Focus: Interpreting Epitope Mapping Experiments on the Basis of Structure. Autoimmun. Rev. 2006, 5, 367–372. [Google Scholar] [CrossRef]
- Ødum Nielsen, I.; Hartwig Trier, N.; Friis, T.; Houen, G. Characterization of Continuous Monoclonal Antibody Epitopes in the N-Terminus of Ro60. Biopolymers 2016, 106, 62–71. [Google Scholar] [CrossRef]
- Routsias, J.G.; Sakarellos-Daitsiotis, M.; Tsikaris, V.; Sakarellos, C.; Moutsopoulos, H.M.; Tzioufas, A.G. Structural, Molecular and Immunological Properties of Linear B-Cell Epitopes of Ro60KD Autoantigen. Scand. J. Immunol. 1998, 47, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Scofield, R.H.; Dickey, W.D.; Jackson, K.W.; James, J.A.; Harley, J.B. A Common Autoepitope near the Carboxyl Terminus of the 60-KD Ro Ribonucleoprotein: Sequence Similarity with a Viral Protein. J. Clin. Immunol. 1991, 11, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Whittingham, S. B-Cell Epitopes of La and Ro Autoantigens. Mol. Biol. Rep. 1992, 16, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P.; Aistleitner, A.; Oehrlein, M.; Trifina-Mikosch, E. Hashimoto’s Thyroiditis and Coexisting Disorders in Correlation with HLA Status-an Overview. Wien. Med. Wochenschr. 2023, 173, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, P.; Lepage, V.; Djelal, F.; Busson, M.; Tamouza, R.; Raffoux, C.; Menkes, C.J.; Meyer, O.; Charron, D.; Goldberg, D. HLA Class I and Class II Are Both Associated with the Genetic Predisposition to Primary Sjögren Syndrome. Hum. Immunol. 2001, 62, 725–731. [Google Scholar] [CrossRef]
- Weider, T.; Richardson, S.J.; Morgan, N.G.; Paulsen, T.H.; Dahl-Jørgensen, K.; Hammerstad, S.S. Upregulation of HLA Class I and Antiviral Tissue Responses in Hashimoto’s Thyroiditis. Thyroid 2020, 30, 432–442. [Google Scholar] [CrossRef]
- Rischmueller, M.; Lester, S.; Chen, Z.; Champion, G.; Van Den Berg, R.; Beer, R.; Coates, T.; McCluskey, J.; Gordon, T. HLA Class II Phenotype Controls Diversification of the Autoantibody Response in Primary Sjögren’s Syndrome (PSS). Clin. Exp. Immunol. 1998, 111, 365–371. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Busson, M.; Loiseau, P.; Cohen-Solal, J.; Lepage, V.; Charron, D.; Sibilia, J.; Mariette, X. In Primary Sjögren’s Syndrome, HLA Class II Is Associated Exclusively with Autoantibody Production and Spreading of the Autoimmune Response. Arthritis Rheum. 2003, 48, 2240–2245. [Google Scholar] [CrossRef]
- Bolstad, A.I.; Wassmuth, R.; Haga, H.J.; Jonsson, R. HLA Markers and Clinical Characteristics in Caucasians with Primary Sjögren’s Syndrome. J. Rheumatol. 2001, 28, 1554–1562. [Google Scholar]
- Trutschel, D.; Bost, P.; Mariette, X.; Bondet, V.; Llibre, A.; Posseme, C.; Charbit, B.; Thorball, C.W.; Jonsson, R.; Lessard, C.J.; et al. Variability of Primary Sjögren’s Syndrome Is Driven by Interferon-α and Interferon-α Blood Levels Are Associated With the Class II HLA-DQ Locus. Arthritis Rheumatol. 2022, 74, 1991–2002. [Google Scholar] [CrossRef]
- Jean, S.; Quelvennec, E.; Alizadeh, M.; Guggenbuhl, P.; Birebent, B.; Perdriger, A.; Grosbois, B.; Pawlotsky, P.Y.; Semana, G. DRB1*15 and DRB1*03 Extended Haplotype Interaction in Primary Sjögren’s Syndrome Genetic Susceptibility. Clin. Exp. Rheumatol. 1998, 16, 725–728. [Google Scholar]
- Kang, H.I.; Fei, H.M.; Saito, I.; Sawada, S.; Chen, S.L.; Yi, D.; Chan, E.; Peebles, C.; Bugawan, T.L.; Erlich, H.A. Comparison of HLA Class II Genes in Caucasoid, Chinese, and Japanese Patients with Primary Sjögren’s Syndrome. J. Immunol. 1993, 150, 3615–3623. [Google Scholar] [CrossRef]
- Anaya, J.-M.; Correa, P.A.; Mantilla, R.D.; Arcos-Burgos, M. TAP, HLA-DQB1, and HLA-DRB1 Polymorphism in Colombian Patients with Primary Sjögren’s Syndrome. Semin. Arthritis Rheum. 2002, 31, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Tapias, P.; Pérez-Fernández, O.M.; Rojas-Villarraga, A.; Rodríguez-Rodríguez, A.; Arango, M.-T.; Anaya, J.-M. Shared HLA Class II in Six Autoimmune Diseases in Latin America: A Meta-Analysis. Autoimmune Dis. 2012, 2012, 569728. [Google Scholar] [CrossRef] [PubMed]
- Papasteriades, C.A.; Skopouli, F.N.; Drosos, A.A.; Andonopoulos, A.P.; Moutsopoulos, H.M. HLA-Alloantigen Associations in Greek Patients with Sjögren’s Syndrome. J. Autoimmun. 1988, 1, 85–90. [Google Scholar] [CrossRef]
- Miyagawa, S.; Shinohara, K.; Nakajima, M.; Kidoguchi, K.; Fujita, T.; Fukumoto, T.; Yoshioka, A.; Dohi, K.; Shirai, T. Polymorphisms of HLA Class II Genes and Autoimmune Responses to Ro/SS-A-La/SS-B among Japanese Subjects. Arthritis Rheum. 1998, 41, 927–934. [Google Scholar] [CrossRef]
- Morling, N.; Andersen, V.; Fugger, L.; Georgsen, J.; Halberg, P.; Oxholm, P.; Odum, N.; Svejgaard, A. Immunogenetics of Rheumatoid Arthritis and Primary Sjögren’s Syndrome: DNA Polymorphism of HLA Class II Genes. Dis. Markers 1991, 9, 289–296. [Google Scholar]
- Roitberg-Tambur, A.; Friedmann, A.; Safirman, C.; Markitziu, A.; Ben-Chetrit, E.; Rubinow, A.; Moutsopoulos, H.M.; Stavropoulos, E.; Skopouli, F.N.; Margalit, H. Molecular Analysis of HLA Class II Genes in Primary Sjögren’s Syndrome. A Study of Israeli Jewish and Greek Non-Jewish Patients. Hum. Immunol. 1993, 36, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Colombo, G.; Brucato, A.; Coluccio, E.; Compasso, S.; Luzzana, C.; Franceschini, F.; Quinzanini, M.; Scorza, R. DNA Typing of Maternal HLA in Congenital Complete Heart Block: Comparison with Systemic Lupus Erythematosus and Primary Sjögren’s Syndrome. Arthritis Rheum. 1999, 42, 1757–1764. [Google Scholar] [CrossRef]
- Stenszky, V.; Balázs, C.; Kraszits, E.; Juhasz, F.; Kozma, L.; Balázs, G.; Farid, N.R. Association of Goitrous Autoimmune Thyroiditis with HLA-DR3 in Eastern Hungary. J. Immunogenet. 1987, 14, 143–148. [Google Scholar] [CrossRef]
- Zeitlin, A.A.; Heward, J.M.; Newby, P.R.; Carr-Smith, J.D.; Franklyn, J.A.; Gough, S.C.L.; Simmonds, M.J. Analysis of HLA Class II Genes in Hashimoto’s Thyroiditis Reveals Differences Compared to Graves’ Disease. Genes. Immun. 2008, 9, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.J.; Marshall, S.E.; Weetman, A.P.; Bunce, M.; Bell, J.I.; Wass, J.A.; Welsh, K.I. Histocompatibility Leucocyte Antigens and Closely Linked Immunomodulatory Genes in Autoimmune Thyroid Disease. Clin. Endocrinol. 2001, 55, 491–499. [Google Scholar] [CrossRef]
- Shirizadeh, A.; Borzouei, S.; Razavi, Z.; Taherkhani, A.; Faradmal, J.; Solgi, G. Determination of HLA Class II Risk Alleles and Prediction of Self/Non-Self-Epitopes Contributing Hashimoto’s Thyroiditis in a Group of Iranian Patients. Immunogenetics 2024, 76, 175–187. [Google Scholar] [CrossRef]
- Valdés-Corona, L.F.; Hernández-Doño, S.; Rodríguez-Reyna, T.S.; García-Silva, R.; Jakez, J.; Escamilla-Tilch, M.; Lima, G.; Llorente, L.; Pineda, C.; Yunis, E.; et al. Aspartic Acid(70) in the HLA-DRB1 Chain and Shared Epitope Alleles Partially Explain the High Prevalence of Autoimmunity in Mexicans. J. Transl. Autoimmun. 2020, 3, 100057. [Google Scholar] [CrossRef] [PubMed]
- Kokaraki, G.; Daniilidis, M.; Yiangou, M.; Arsenakis, M.; Karyotis, N.; Tsilipakou, M.; Fleva, A.; Gerofotis, A.; Karadani, N.; Yovos, J.G. Major Histocompatibility Complex Class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 Subtypes’ Associations of Hashimoto’s Thyroiditis in a Greek Population. Tissue Antigens 2009, 73, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Jung, M.H.; Choi, E.-J.; Choi, H.-B.; Kim, T.-G.; Suh, B.-K. Association of HLA Alleles with Autoimmune Thyroid Disease in Korean Children. Horm. Res. Paediatr. 2011, 76, 328–334. [Google Scholar] [CrossRef]
- Petrone, A.; Giorgi, G.; Mesturino, C.A.; Capizzi, M.; Cascino, I.; Nistico, L.; Osborn, J.; Di Mario, U.; Buzzetti, R. Association of DRB1*04-DQB1*0301 Haplotype and Lack of Association of Two Polymorphic Sites at CTLA-4 Gene with Hashimoto’s Thyroiditis in an Italian Population. Thyroid 2001, 11, 171–175. [Google Scholar] [CrossRef]
- Wan, X.L.; Kimura, A.; Dong, R.P.; Honda, K.; Tamai, H.; Sasazuki, T. HLA-A and -DRB4 Genes in Controlling the Susceptibility to Hashimoto’s Thyroiditis. Hum. Immunol. 1995, 42, 131–136. [Google Scholar] [CrossRef]
- Hashimoto, K.; Maruyama, H.; Nishiyama, M.; Asaba, K.; Ikeda, Y.; Takao, T.; Iwasaki, Y.; Kumon, Y.; Suehiro, T.; Tanimoto, N.; et al. Susceptibility Alleles and Haplotypes of Human Leukocyte Antigen DRB1, DQA1, and DQB1 in Autoimmune Polyglandular Syndrome Type III in Japanese Population. Horm. Res. 2005, 64, 253–260. [Google Scholar] [CrossRef]
- Ramgopal, S.; Rathika, C.; Padma, M.R.; Murali, V.; Arun, K.; Kamaludeen, M.N.; Balakrishnan, K. Interaction of HLA-DRB1* Alleles and CTLA4 (+49 AG) Gene Polymorphism in Autoimmune Thyroid Disease. Gene 2018, 642, 430–438. [Google Scholar] [CrossRef]
- Farid, N.R.; Sampson, L.; Moens, H.; Barnard, J.M. The Association of Goitrous Autoimmune Thyroiditis with HLA-DR5. Tissue Antigens 1981, 17, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Ryder, L.P.; Bech, K.; Bliddal, H.; Feldt-Rasmussen, U.; Mølholm, J.; Kappelgaard, E.; Nielsen, H.; Svejgaard, A. HLA-D in Hashimoto’s Thyroiditis. Tissue Antigens 1983, 21, 173–175. [Google Scholar] [CrossRef]
- Katahira, M.; Ogata, H.; Takashima, H.; Ito, T.; Hodai, Y.; Miwata, T.; Goto, M.; Yamaguchi, M.; Mizoguchi, A.; Kawakubo, M.; et al. Critical Amino Acid Variants in HLA-DRB1 Allotypes in the Development of Graves’ Disease and Hashimoto’s Thyroiditis in the Japanese Population. Hum. Immunol. 2021, 82, 226–231. [Google Scholar] [CrossRef]
- Hawkins, B.R.; Lam, K.S.; Ma, J.T.; Wang, C.; Yeung, R.T. Strong association between HLA DRw9 and Hashimoto’s thyroiditis in southern Chinese. Acta Endocrinol. 1987, 114, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Iijima, T.; Niitani, T.; Tanaka, S.; Yanagi, K.; Jojima, T.; Suzuki, K.; Usui, I.; Aso, Y. Concurrent Variant Type 3 Autoimmune Polyglandular Syndrome and Pulmonary Arterial Hypertension in a Japanese Woman. Endocr. J. 2018, 65, 493–498. [Google Scholar] [CrossRef]
- Kanga, U.; Tandon, N.; Marwaha, R.K.; Khanna, R.; Bhattacharya, B.; Singh, S.; Kumar, N.; Mehra, N.K. Immunogenetic Association and Thyroid Autoantibodies in Juvenile Autoimmune Thyroiditis in North India. Clin. Endocrinol. 2006, 64, 573–579. [Google Scholar] [CrossRef]
- Moens, H.; Farid, N.R.; Sampson, L.; Noel, E.P.; Barnard, J.M. Hashimoto’s Thyroiditis Is Associated with HLA-DRw3. N. Engl. J. Med. 1978, 299, 133–134. [Google Scholar] [CrossRef]
- Zantut-Wittmann, D.E.; Persoli, L.; Tambascia, M.A.; Fischer, E.; Franco Maldonado, D.; Costa, A.M.; João Pavin, E. HLA-DRB1*04 and HLA-DQB1*03 Association with the Atrophic but Not with the Goitrous Form of Chronic Autoimmune Thyroiditis in a Brazilian Population. Horm. Metab. Res. 2004, 36, 492–500, Correction in Horm. Metab. Res. 2004, 36, e1. [Google Scholar] [CrossRef] [PubMed]
- Giza, S.; Galli-Tsinopoulou, A.; Lazidou, P.; Trachana, M.; Goulis, D. HLA-DQB1*05 Association with Hashimoto’s Thyroiditis in Children of Northern Greek Origin. Indian. Pediatr. 2008, 45, 493–496. [Google Scholar]
- Katahira, M.; Hanakita, M.; Ito, T.; Suzuki, M. Effect of Human Leukocyte Antigen Class II Genes on Hashimoto’s Thyroiditis Requiring Replacement Therapy with Levothyroxine in the Japanese Population. Hum. Immunol. 2013, 74, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Galarza, F.F.; McCabe, A.; Melo Dos Santos, E.J.; Jones, A.R.; Middleton, D. A Snapshot of Human Leukocyte Antigen (HLA) Diversity Using Data from the Allele Frequency Net Database. Hum. Immunol. 2021, 82, 496–504. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Dow, C.; Mothé, B.; Sette, A.; Peters, B. A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach. PLoS Comput. Biol. 2008, 4, e1000048. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. Prediction of Continuous B-Cell Epitopes in an Antigen Using Recurrent Neural Network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing Structure Coverage for over 214 Million Protein Sequences. Nucleic Acids Res. 2024, 52, D368–D375. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Haste Andersen, P.; Nielsen, M.; Lund, O. Prediction of Residues in Discontinuous B-Cell Epitopes Using Protein 3D Structures. Protein Sci. 2006, 15, 2558–2567. [Google Scholar] [CrossRef] [PubMed]




| Peptide Start | Peptide End | Peptide Sequence | Percentile Rank | Allele |
|---|---|---|---|---|
| 230 | 244 | NLMDFNPDPRSRYTF | 0.01 | HLA-DRB1*03:05 |
| 230 | 244 | NLMDFNPDPRSRYTF | 0.02 | HLA-DRB1*03:40 |
| 230 | 244 | NLMDFNPDPRSRYTF | 0.03 | HLA-DRB1*03:14 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.03 | HLA-DRB1*11:13 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.07 | HLA-DRB1*08:31 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.08 | HLA-DRB1*08:04 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.08 | HLA-DRB1*14:15 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.09 | HLA-DRB1*11:25 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.09 | HLA-DRB1*11:27 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.11 | HLA-DRB1*11:08 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.12 | HLA-DRB1*11:04 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.12 | HLA-DRB1*11:06 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.12 | HLA-DRB1*11:52 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.13 | HLA-DRB1*11:19 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:01 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:05 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:09 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:10 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:15 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.14 | HLA-DRB1*11:29 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.15 | HLA-DRB1*08:02 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.15 | HLA-DRB1*08:09 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.16 | HLA-DRB1*11:37 |
| 368 | 382 | EDLIKPRLRSLAPRK | 0.17 | HLA-DRB1*11:03 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.39 | HLA-DRB1*08:10 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.43 | HLA-DRB1*08:12 |
| 368 | 382 | EDLIKPRLRSLAPRK | 0.46 | HLA-DRB1*11:11 |
| 368 | 382 | EDLIKPRLRSLAPRK | 0.48 | HLA-DRB1*11:02 |
| 368 | 382 | EDLIKPRLRSLAPRK | 0.48 | HLA-DRB1*11:16 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.49 | HLA-DRB1*08:06 |
| 380 | 394 | PRKLVIISKGLSLIY | 0.5 | HLA-DRB1*11:03 |
| Rank | Sequence | Start Position | Score |
|---|---|---|---|
| 1 | AGSWTPCVGHDGGRDQ | 622 | 0.94 |
| 1 | LGRISAPDQYMPLLVL | 314 | 0.94 |
| 2 | MEAVETGERPTFGAWD | 1 | 0.92 |
| 3 | GVLQGSFTVMGVISGP | 410 | 0.90 |
| 4 | TGIICTFYTAVGGMKA | 170 | 0.89 |
| 4 | TALLFMPVFYRLGLTS | 101 | 0.89 |
| 5 | ALSVNASGLLDPALLP | 484 | 0.88 |
| 5 | MGVISGPLLGAFILGM | 419 | 0.88 |
| 6 | QTASVAPKEEVAILDD | 569 | 0.87 |
| 6 | LISCLTGPTKRSTLAP | 544 | 0.87 |
| 7 | FYTDCDPLLLGRISAP | 305 | 0.86 |
| 8 | DSSRAPSSGMDASRPA | 502 | 0.85 |
| 9 | GPTKRSTLAPGLLWWD | 550 | 0.84 |
| 9 | SFYAISYLYYGALGTL | 521 | 0.84 |
| 9 | GATLYPPSEQTMRVLP | 461 | 0.84 |
| 9 | GMFLPACNTPGVLAGL | 433 | 0.84 |
| 9 | PRSRYTFWTFVVGGTL | 237 | 0.84 |
| 9 | GLDIWASLLSTGIICT | 160 | 0.84 |
| 10 | FFLGQKELEGAGSWTP | 612 | 0.83 |
| 10 | GTLSTASTSINAMAAV | 349 | 0.83 |
| 10 | FGAWDYGVFALMLLVS | 12 | 0.83 |
| 11 | QRSAEDFFTGGRRLAA | 41 | 0.82 |
| 11 | EDLPGVPGLFLACAYS | 333 | 0.82 |
| 11 | ACCGIVMFVFYTDCDP | 296 | 0.82 |
| 11 | GGTLVWLSMYGVNQAQ | 249 | 0.82 |
| 12 | AVTVEDLIKPRLRSLA | 363 | 0.81 |
| 13 | GVPSEAYRYGLKFLWM | 75 | 0.80 |
| 14 | GIVIYAPALILNQVGL | 146 | 0.79 |
| 15 | GLLWWDLARQTASVAP | 560 | 0.77 |
| 15 | LTSTYEYLEMRFSRAV | 114 | 0.77 |
| 16 | ASRPALADSFYAISYL | 513 | 0.76 |
| 17 | PEELPTGNKKPPGFLP | 590 | 0.75 |
| 18 | PSEQTMRVLPSSAARC | 467 | 0.74 |
| 18 | YGVNQAQVQRYVACRT | 258 | 0.74 |
| 18 | YIVATMLYTGIVIYAP | 137 | 0.74 |
| 19 | PVFYRLGLTSTYEYLE | 107 | 0.73 |
| 20 | YRYGLKFLWMCLGQLL | 81 | 0.72 |
| 21 | PKEEVAILDDNLVKGP | 575 | 0.71 |
| 21 | INLMDFNPDPRSRYTF | 228 | 0.71 |
| 22 | GLALSLWVALGATLYP | 451 | 0.70 |
| 22 | LIVSSAACCGIVMFVF | 290 | 0.70 |
| 22 | ARGVMLVGGPRQVLTL | 206 | 0.70 |
| 23 | YGALGTLTTVLCGALI | 530 | 0.69 |
| 23 | ISKGLSLIYGSACLTV | 385 | 0.69 |
| 23 | PGLFLACAYSGTLSTA | 339 | 0.69 |
| 23 | AVGGMKAVVWTDVFQV | 179 | 0.69 |
| 24 | LGAFILGMFLPACNTP | 427 | 0.67 |
| 24 | QVLTLAQNHSRINLMD | 217 | 0.67 |
| 25 | IKPRLRSLAPRKLVII | 370 | 0.65 |
| 25 | IGLWVGLARGGQRSAE | 30 | 0.65 |
| 26 | SINAMAAVTVEDLIKP | 357 | 0.64 |
| 26 | CRTEKQAKLALLINQV | 271 | 0.64 |
| 26 | GFWVVLARGVMLVGGP | 200 | 0.64 |
| 27 | RVLPSSAARCVALSVN | 473 | 0.63 |
| 28 | VGLSLSASFMSAVQVL | 59 | 0.61 |
| 28 | GRRLAALPVGLSLSAS | 51 | 0.61 |
| 29 | PALILNQVGLDIWASL | 152 | 0.60 |
| 30 | TVAALSSLLGGGVLQG | 399 | 0.59 |
| 30 | LIYGSACLTVAALSSL | 391 | 0.59 |
| 30 | AVVWTDVFQVVVMLSG | 185 | 0.59 |
| 31 | FLPTNEDRLFFLGQKE | 603 | 0.57 |
| 32 | TPGVLAGLGAGLALSL | 441 | 0.54 |
| 33 | VQRYVACRTEKQAKLA | 265 | 0.53 |
| 33 | MRFSRAVRLCGTLQYI | 123 | 0.53 |
| Chain ID | Residue ID | Residue Name | Contact Number | Propensity Score | DiscoTope Score |
|---|---|---|---|---|---|
| A | 636 | ARG | 2 | 4.713 | 3.941 |
| A | 598 | ASN | 0 | 4.334 | 3.835 |
| A | 638 | GLN | 1 | 4.433 | 3.808 |
| A | 637 | ASP | 4 | 4.702 | 3.702 |
| A | 596 | THR | 0 | 4.057 | 3.591 |
| A | 597 | GLY | 3 | 4.148 | 3.326 |
| A | 599 | LYS | 1 | 3.801 | 3.249 |
| A | 601 | PRO | 2 | 3.921 | 3.24 |
| A | 602 | PRO | 0 | 3.499 | 3.096 |
| A | 600 | LYS | 3 | 3.836 | 3.05 |
| A | 635 | GLY | 1 | 3.494 | 2.977 |
| A | 639 | GLN | 2 | 3.608 | 2.963 |
| A | 595 | PRO | 1 | 2.901 | 2.452 |
| A | 603 | GLY | 1 | 2.866 | 2.421 |
| A | 634 | GLY | 3 | 2.53 | 1.894 |
| A | 604 | PHE | 4 | 2.659 | 1.893 |
| A | 640 | GLU | 1 | 2.049 | 1.698 |
| A | 641 | THR | 1 | 1.931 | 1.594 |
| A | 633 | ASP | 1 | 1.699 | 1.389 |
| A | 605 | LEU | 0 | 1.487 | 1.316 |
| A | 606 | PRO | 3 | 1.792 | 1.241 |
| A | 607 | THR | 4 | 1.727 | 1.068 |
| A | 594 | LEU | 5 | 1.61 | 0.85 |
| A | 593 | GLU | 1 | 0.885 | 0.668 |
| A | 632 | HIS | 0 | 0.494 | 0.438 |
| A | 609 | GLU | 0 | 0.139 | 0.123 |
| A | 608 | ASN | 3 | 0.505 | 0.102 |
| A | 592 | GLU | 2 | 0.191 | −0.061 |
| A | 642 | ASN | 0 | −0.121 | −0.107 |
| A | 591 | PRO | 0 | −0.205 | −0.181 |
| A | 510 | SER | 2 | −0.109 | −0.327 |
| A | 511 | GLY | 5 | −0.08 | −0.645 |
| A | 631 | GLY | 3 | −0.46 | −0.752 |
| A | 507 | ALA | 6 | −0.09 | −0.77 |
| A | 610 | ASP | 1 | −0.778 | −0.804 |
| A | 590 | GLY | 0 | −0.909 | −0.805 |
| A | 621 | GLU | 0 | −1.034 | −0.915 |
| A | 508 | PRO | 6 | −0.507 | −1.139 |
| A | 643 | LEU | 3 | −1.053 | −1.277 |
| A | 509 | SER | 6 | −0.865 | −1.456 |
| A | 619 | GLU | 1 | −1.7 | −1.619 |
| A | 630 | VAL | 0 | −1.947 | −1.723 |
| A | 589 | LYS | 9 | −0.814 | −1.755 |
| A | 620 | LEU | 3 | −1.671 | −1.824 |
| A | 623 | ALA | 0 | −2.175 | −1.925 |
| A | 622 | GLY | 3 | −1.807 | −1.944 |
| A | 588 | VAL | 6 | −1.821 | −2.302 |
| A | 506 | ARG | 1 | −2.586 | −2.403 |
| A | 624 | GLY | 3 | −2.414 | −2.481 |
| A | 627 | THR | 1 | −2.684 | −2.49 |
| A | 625 | SER | 0 | −2.921 | −2.585 |
| A | 611 | ARG | 3 | −2.599 | −2.645 |
| A | 586 | ASN | 7 | −2.083 | −2.648 |
| A | 628 | PRO | 3 | −2.61 | −2.655 |
| A | 618 | LYS | 2 | −2.844 | −2.747 |
| A | 512 | MET | 9 | −2.04 | −2.84 |
| A | 629 | CYS | 1 | −3.096 | −2.855 |
| A | 587 | LEU | 6 | −2.51 | −2.912 |
| A | 514 | ALA | 0 | −3.363 | −2.977 |
| A | 626 | TRP | 2 | −3.117 | −2.988 |
| A | 576 | PRO | 4 | −2.87 | −3.0 |
| A | 585 | ASP | 6 | −2.785 | −3.155 |
| A | 578 | GLU | 1 | −3.507 | −3.218 |
| A | 577 | LYS | 1 | −3.515 | −3.226 |
| A | 582 | ILE | 5 | −3.083 | −3.303 |
| A | 579 | GLU | 6 | −2.973 | −3.321 |
| A | 505 | SER | 1 | −3.768 | −3.45 |
| A | 617 | GLN | 2 | −3.679 | −3.486 |
| Allele | Percentile Rank for Predicted NIS T-Cell Epitopes | Percentile Rank for Predicted TPO T-Cell Epitopes | Percentile Rank for Predicted Ro60 T-Cell Epitopes |
|---|---|---|---|
| HLA-DRB1*03:05 | 0.01 | 1.4 | 0.26 |
| HLA-DRB1*03:14 | 0.03 | 1.7 | 0.23 |
| HLA-DRB1*03:40 | 0.02 | 1.4 | 0.33 |
| HLA-DRB1*08:02 | 0.15 | 0.1 | 0.62 |
| HLA-DRB1*08:04 | 0.08 | 0.34 | 0.42 |
| HLA-DRB1*08:06 | 0.49 | 0.08 | 0.75 |
| HLA-DRB1*08:09 | 0.15 | 0.1 | 0.62 |
| HLA-DRB1*08:10 | 0.39 | 0.03 | 0.64 |
| HLA-DRB1*08:12 | 0.43 | 0.03 | 0.84 |
| HLA-DRB1*08:31 | 0.07 | 0.28 | 0.27 |
| HLA-DRB1*11:01 | 0.14 | 0.07 | 0.56 |
| HLA-DRB1*11:02 | 0.48 | 0.5 | 0.3 |
| HLA-DRB1*11:03 | 0.17 | 0.2 | 1.3 |
| HLA-DRB1*11:04 | 0.12 | 0.23 | 0.25 |
| HLA-DRB1*11:05 | 0.14 | 0.15 | 0.6 |
| HLA-DRB1*11:06 | 0.12 | 0.22 | 0.24 |
| HLA-DRB1*11:08 | 0.11 | 0.16 | 0.64 |
| HLA-DRB1*11:09 | 0.14 | 0.07 | 0.56 |
| HLA-DRB1*11:10 | 0.14 | 0.07 | 0.56 |
| HLA-DRB1*11:11 | 0.46 | 0.43 | 1.1 |
| HLA-DRB1*11:13 | 0.03 | 0.46 | 0.25 |
| HLA-DRB1*11:15 | 0.14 | 0.07 | 0.56 |
| HLA-DRB1*11:16 | 0.48 | 0.5 | 0.3 |
| HLA-DRB1*11:19 | 0.13 | 0.18 | 0.65 |
| HLA-DRB1*11:25 | 0.09 | 0.17 | 0.35 |
| HLA-DRB1*11:27 | 0.09 | 0.19 | 0.5 |
| HLA-DRB1*11:29 | 0.14 | 0.07 | 0.56 |
| HLA-DRB1*11:37 | 0.16 | 0.08 | 0.54 |
| HLA-DRB1*11:52 | 0.12 | 0.27 | 0.62 |
| HLA-DRB1*14:15 | 0.08 | 0.34 | 0.42 |
| HLA Class II Allele | Population | Allele Frequency | References |
|---|---|---|---|
| HLA-DRB1*01:01 | Mexican | 0.003–0.13 | [12] |
| HLA-DR3 | Australian | 0.12–0.14 | [88] |
| HLA-DR3 | French | 0.09–0.13 | [89] |
| HLA-DR3 | Spanish | 0.06–0.20 | [50] |
| HLA-DR3 | Caucasian (mostly Norwegian) | 0.06–0.14 | [90] |
| HLA-DR3 | American | 0.05–0.13 | [12] |
| HLA-DRB1*03:01 | French | 0.08–0.15 | [12,91,92] |
| HLA-DRB1*03:01 | Swiss | NA | [91] |
| HLA-DRB1*03:01 | American | 0.01–0.15 | [91] |
| HLA-DRB1*03:01 | Norwegian | 0.14 | [50] |
| HLA-DRB1*03:01 | Californian Caucasian | 0.06 | [93] |
| HLA-DRB1*03:01 | Columbian | 0.02–0.15 | [12,94] |
| HLA-DRB1*03:01 | Latin American | 0–0.15 | [95] |
| HLA-DRB1*03:01 | Japanese | 0.0007–0.008 | [12] |
| HLA-DRB1*03:01 | Greek | 0.07–0.09 | [12] |
| HLA-DRB1*03:01 | Italian | 0.06–0.56 | [12] |
| HLA-DRB1*03:01 | Finnish | 0.06–0.10 | [12] |
| HLA-DRB1*03:01 | Norwegian | 0.14 | [12] |
| HLA-DRB1*03:01 | British | 0.10–0.17 | [12] |
| HLA-DRB1*03:01 | Australian | 0.05 | [12] |
| HLA-DRB1*04:05 | Japanese | 0.08–0.16 | [12,50,93] |
| HLA-DR5 | Greek | NA | [96] |
| HLA-DR8 | Taiwanese | 0.04–0.72 | [13] |
| HLA-DRB1*08:03 | Chinese | 0.004–0.09 | [12,50,93] |
| HLA-DRB1*08:032 | Japanese | NA | [12,97] |
| HLA-DR11 | Spanish | 0–0.24 | [12,50] |
| HLA-DRB1*11:01 | Israeli Jews | 0.01–0.11 | [12] |
| HLA-DRB1*11:01 | Greek of non-Jewish origin | 0.08–0.11 | [12] |
| HLA-DRB1*11:04 | Israeli Jews | 0.0001–0.34 | [12] |
| HLA-DRB1*11:04 | Greek of non-Jewish origin | 0.10–0.19 | [12] |
| HLA-DR15 | Australian | 0.14–0.16 | [88] |
| HLA-DR15 | French | 0.10–0.18 | [89,92] |
| HLA-DR15 | Danish | NA | [12] |
| HLA-DRB1*15:01 | French | 0.08–0.13 | [12] |
| HLA-DRB3*01:01 | Norwegian | NA | [50] |
| HLA-DRB3*01:01 | Californian Caucasian | NA | [93] |
| HLA-DRB3*01:01 | Danish | NA | [98] |
| HLA-DRB3*01:01 | Japanese | NA | [12] |
| HLA-DRB4*01:01 | Japanese | NA | [12,93] |
| HLA-DRw52 | American Caucasian | NA | [12] |
| HLA-DRw52 | British | NA | [12] |
| HLA-DRw53 | Japanese | NA | [12] |
| HLA-DQA1*01 | Israeli | NA | [12] |
| HLA-DQA1*01 | Israeli Jew | NA | [12] |
| HLA-DQA1*01 | Greek | 0.40 | [12] |
| HLA-DQA1*01:01 | European | 0.01–0.27 | [12] |
| HLA-DQA1*01:01 | Afroamerican | 0.02–0.17 | [12] |
| HLA-DQA1*01:02 | Australian | 0.10–0.15 | [88] |
| HLA-DQA1*01:03 | Chinese | 0.06–0.15 | [12,93] |
| HLA-DQA1*01:03 | Japanese | 0.15–0.23 | [97] |
| HLA-DQA1*03:01 | Japanese | 0.11–0.42 | [12,93] |
| HLA-DQA1*03:01 | Danish | NA | [12] |
| HLA-DQA1*05:01 | French | 0.22–0.32 | [91] |
| HLA-DQA1*05:01 | Swiss | NA | [91] |
| HLA-DQA1*05:01 | American | 0.15–0.94 | [91] |
| HLA-DQA1*05:01 | Australian | 0.13–0.31 | [12,88] |
| HLA-DQA1*05:01 | Danish | 0.15 | [12,50] |
| HLA-DQA1*05:01 | Israeli | 0.26–0.29 | [50] |
| HLA-DQA1*05:01 | Jew | 0.26–0.29 | [50] |
| HLA-DQA1*05:01 | Greek | 0.07–0.43 | [12,50] |
| HLA-DQA1*05:01 | Caucasian (mostly Norwegian) | 0.22 | [90] |
| HLA-DQA1*05:01 | American Caucasian | 0.23–0.26 | [99] |
| HLA-DQA1*05:01 | Black American | 0.15–0.94 | [99] |
| HLA-DQA1*05:01 | Japanese | 0.001–0.09 | [12] |
| HLA-DQA1*05:01 | Finnish | NA | [12] |
| HLA-DQA1*05:01 | Norwegian | 0.22 | [12] |
| HLA-DQA1*05:01 | Italian | 0.07–0.41 | [100] |
| HLA-DQB1*02 | Australian | NA | [88] |
| HLA-DQB1*02 | French | 0.15–0.27 | [12,89] |
| HLA-DQB1*02 | Norwegian | 0.06–0.19 | [12,90] |
| HLA-DQB1*02:01 | French | 0.08–0.25 | [12,91] |
| HLA-DQB1*02:01 | Swiss | 0.06–0.13 | [91] |
| HLA-DQB1*02:01 | American Caucasian | 0.08–0.15 | [91,93,99] |
| HLA-DQB1*02:01 | Afroamerican | 0.07–0.22 | [99] |
| HLA-DQB1*02:01 | Danish | 0.21 | [98] |
| HLA-DQB1*02:01 | Columbian | 0.02–0.33 | [12,94] |
| HLA-DQB1*02:01 | Japanese | 0.002–0.01 | [12] |
| HLA-DQB1*02:01 | European | 0.05–0.59 | [12] |
| HLA-DQB1*02:01 | Afroamerican | 0.07–0.22 | [12] |
| HLA-DQB1*02:01 | Italian | 0.07–0.59 | [100] |
| HLA-DQB1*03 | Japanese | NA | [97] |
| HLA-DQB1*03:01 | French | 0.16–0.31 | [91] |
| HLA-DQB1*03:01 | Swiss | 0.17–0.27 | [91] |
| HLA-DQB1*03:01 | American | 0.16–0.94 | [91] |
| HLA-DQB1*03:01 | Israeli | 0.19–0.30 | [50] |
| HLA-DQB1*03:01 | Jew | 0.19–0.30 | [50] |
| HLA-DQB1*03:01 | Greek | 0.27–0.34 | [50] |
| HLA-DQB1*04:01 | Japanese | 0.09–0.16 | [12,50,93] |
| HLA-DQB1*06 | Japanese | NA | [97] |
| HLA-DQB1*06:01 | Chinese | 0.04–0.26 | [12,50] |
| HLA-DQB1*06:01 | Japanese | 0.16–0.22 | [12,97] |
| HLA-DQB1*06:02 | Australian | 0.04 | [88] |
| HLA-DQB1*06:02 | Danish | 0.17 | [50] |
| HLA-DQB1*06:02 | French | 0.08–0.16 | [12] |
| HLA Class II Allele | Population | Allele Frequency | References |
|---|---|---|---|
| HLA-DR3 | Romanian | 0.11 | [14] |
| HLA-DR3 | Hungarian | NA | [101] |
| HLA-DR3 | British | 0.13–0.16 | [102,103] |
| HLA-DR3 | Spanish | 0.06–0.20 | [51] |
| HLA-DRB1*03:01 | Iranian | 0.05–0.29 | [104] |
| HLA-DRB1*03:01 | Mexican | 0.003–0.14 | [105] |
| HLA-DR4 | British | 0.13–0.20 | [102] |
| HLA-DR4 | Greek | 0.04–0.10 | [106] |
| HLA-DR4 | Korean | 0.20 | [107] |
| HLA-DR4 | Italian | 0.03–0.11 | [108] |
| HLA-DRB1*04:02 | Iranian | 0.02–0.09 | [104] |
| HLA-DRB1*04:03 | Japanese | 0.01–0.06 | [109] |
| HLA-DRB1*04:04 | Mexican | 0.01–0.21 | [105] |
| HLA-DRB1*04:05 | Greek | 0.01–0.03 | [106] |
| HLA-DRB1*04:05 | Japanese | 0.08–0.16 | [110] |
| HLA-DRB1*04:05 | Iranian | 0.01–0.02 | [104] |
| HLA-DR5 | Southern Indian | NA | [111] |
| HLA-DR5 | Canadian | NA | [112] |
| HLA-DR5 | Danish | NA | [113] |
| HLA-DR7 | Japanese | 0.006–0.008 | [109] |
| HLA-DR8 | British | 0.02–0.04 | [102] |
| HLA-DR8 | Korean | 0.10 | [107] |
| HLA-DRB1*08:02 | Japanese | 0.01–0.10 | [110] |
| HLA-DRB1*08:032 | Japanese | NA | [109,114] |
| HLA-DR9 | Southern Chinese | 0.06–0.19 | [115] |
| HLA-DRB1*09:01 | Japanese | 0.12–0.16 | [109,110,114,116] |
| HLA-DR11 | Southern Indian | 0.03–0.18 | [111] |
| HLA-DRB1*11:04 | Iranian | NA | [104] |
| HLA-DR12 | Southern Indian | 0.02–0.07 | [111] |
| HLA-DR13 | British | 0.09–0.11 | [102] |
| HLA-DRB1*13:01 | Iranian | 0.03–0.15 | [104] |
| HLA-DRB1*14:04 | Northern Indian | 0.003–0.13 | [117] |
| HLA-DR16 | Romanian | 0.10–0.11 | [14] |
| HLA-DRB4*01:01 | Japanese | NA | [109] |
| HLA-DRw3 | Canadian | NA | [118] |
| HLA-DQA1*01 | British | 0.34 | [102] |
| HLA-DQA1*03:01 | Greek | 0.05–0.08 | [106] |
| HLA-DQA1*03:01 | Lebanese | NA | [15] |
| HLA-DQA1*03:01 | Southern Indian | 0.09–0.11 | [111] |
| HLA-DQA1*03:02 | Japanese | 0.14 | [110] |
| HLA-DQA1*03:03 | Japanese | 0.17 | [110] |
| HLA-DQA1*04:01 | Japanese | 0.01–0.08 | [110] |
| HLA-DQA1*05:01 | Lebanese | NA | [15] |
| HLA-DQB1*02:01 | Greek | 0.08–0.16 | [106] |
| HLA-DQB1*02:01 | Southern Indian | 0.05–0.23 | [111] |
| HLA-DQB1*03 | Brazilian | 0.29–0.73 | [119] |
| HLA-DQB1*03:01 | British | 0.13–0.22 | [102] |
| HLA-DQB1*03:01 | Italian | 0.03–0.35 | [108] |
| HLA-DQB1*03:02 | Greek | 0.03–0.09 | [106] |
| HLA-DQB1*03:02 | Lebanese | 0.05–0.15 | [15] |
| HLA-DQB1*03:03 | Japanese | 0.11–0.18 | [110,116] |
| HLA-DQB1*04:01 | Japanese | 0.09–0.16 | [110] |
| HLA-DQB1*04:02 | British | 0.003–0.02 | [102] |
| HLA-DQB1*04:02 | Japanese | 0.03–0.08 | [110] |
| HLA-DQB1*05 | Northern Greek | NA | [120] |
| HLA-DQB1*06 | British | 0.21–0.27 | [102] |
| HLA-DQB1*06:01 | Japanese | 0.16–0.22 | [121] |
| Host Species | Human |
|---|---|
| Class allele | Class II |
| 1 | HLA-DRB1*03:01 |
| 2 | HLA-DRB1*03:05 |
| 3 | HLA-DRB1*03:06 |
| 4 | HLA-DRB1*03:07 |
| 5 | HLA-DRB1*03:14 |
| 6 | HLA-DRB1*03:15 |
| 7 | HLA-DRB1*03:23 |
| 8 | HLA-DRB1*03:36 |
| 9 | HLA-DRB1*03:40 |
| 10 | HLA-DRB1*04:05 |
| 11 | HLA-DRB1*08:01 |
| 12 | HLA-DRB1*08:02 |
| 13 | HLA-DRB1*08:03 |
| 14 | HLA-DRB1*08:04 |
| 15 | HLA-DRB1*08:05 |
| 16 | HLA-DRB1*08:06 |
| 17 | HLA-DRB1*08:07 |
| 18 | HLA-DRB1*08:09 |
| 19 | HLA-DRB1*08:10 |
| 20 | HLA-DRB1*08:11 |
| 21 | HLA-DRB1*08:12 |
| 22 | HLA-DRB1*08:14 |
| 23 | HLA-DRB1*08:16 |
| 24 | HLA-DRB1*08:17 |
| 25 | HLA-DRB1*08:31 |
| 26 | HLA-DRB1*11:01 |
| 27 | HLA-DRB1*11:02 |
| 28 | HLA-DRB1*11:03 |
| 29 | HLA-DRB1*11:04 |
| 30 | HLA-DRB1*11:05 |
| 31 | HLA-DRB1*11:06 |
| 32 | HLA-DRB1*11:07 |
| 33 | HLA-DRB1*11:08 |
| 34 | HLA-DRB1*11:09 |
| 35 | HLA-DRB1*11:10 |
| 36 | HLA-DRB1*11:11 |
| 37 | HLA-DRB1*11:13 |
| 38 | HLA-DRB1*11:14 |
| 39 | HLA-DRB1*11:15 |
| 40 | HLA-DRB1*11:16 |
| 41 | HLA-DRB1*11:19 |
| 42 | HLA-DRB1*11:20 |
| 43 | HLA-DRB1*11:21 |
| 44 | HLA-DRB1*11:25 |
| 45 | HLA-DRB1*11:27 |
| 46 | HLA-DRB1*11:29 |
| 47 | HLA-DRB1*11:37 |
| 48 | HLA-DRB1*11:52 |
| 49 | HLA-DRB1*14:15 |
| 50 | HLA-DRB4*01:01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Talotta, R.; Cammaroto, G.; Ruggeri, R.M.; Postorino, E.; Cannavò, S.; Aragona, P. Predicted T-Cell and B-Cell Epitopes of NIS: Where Do Sjögren’s Syndrome and Hashimoto’s Thyroiditis Converge? Int. J. Mol. Sci. 2026, 27, 200. https://doi.org/10.3390/ijms27010200
Talotta R, Cammaroto G, Ruggeri RM, Postorino E, Cannavò S, Aragona P. Predicted T-Cell and B-Cell Epitopes of NIS: Where Do Sjögren’s Syndrome and Hashimoto’s Thyroiditis Converge? International Journal of Molecular Sciences. 2026; 27(1):200. https://doi.org/10.3390/ijms27010200
Chicago/Turabian StyleTalotta, Rossella, Gabriele Cammaroto, Rosaria Maddalena Ruggeri, Elisa Postorino, Salvatore Cannavò, and Pasquale Aragona. 2026. "Predicted T-Cell and B-Cell Epitopes of NIS: Where Do Sjögren’s Syndrome and Hashimoto’s Thyroiditis Converge?" International Journal of Molecular Sciences 27, no. 1: 200. https://doi.org/10.3390/ijms27010200
APA StyleTalotta, R., Cammaroto, G., Ruggeri, R. M., Postorino, E., Cannavò, S., & Aragona, P. (2026). Predicted T-Cell and B-Cell Epitopes of NIS: Where Do Sjögren’s Syndrome and Hashimoto’s Thyroiditis Converge? International Journal of Molecular Sciences, 27(1), 200. https://doi.org/10.3390/ijms27010200

