Role of Liver Kinase 1B in Platelet Activation and Host Defense During Klebsiella pneumoniae-Induced Pneumosepsis
Abstract
1. Introduction
2. Results
2.1. Lkb1 Deficiency in Platelets Is Associated with Platelet Hyperactivation in Response to GPVI Stimulation
2.2. Platelet-Specific Lkb1 Deficiency Does Not Impact the Host Response During Pneumosepsis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Platelet Isolation and Preparation of Washed Platelets
4.3. Western Blotting
4.4. Flow Cytometry
4.5. Mouse Infection Model
4.6. Assays
4.7. Pathology
4.8. Ethical Statement
4.9. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer Nuala, J.; Prescott Hallie, C. Sepsis and Septic Shock. N. Engl. J. Med. 2024, 391, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Cox, D. Sepsis—It is all about the platelets. Front. Immunol. 2023, 14, 1210219. [Google Scholar] [CrossRef]
- Dewitte, A.; Lepreux, S.; Villeneuve, J.; Rigothier, C.; Combe, C.; Ouattara, A.; Ripoche, J. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critical ill patients? Ann. Intensive Care 2017, 7, 115. [Google Scholar] [CrossRef]
- de Stoppelaar, S.F.; van ’t Veer, C.; Claushuis, T.A.M.; Albersen, B.J.A.; Roelofs, J.J.T.H.; van der Poll, T. Thrombocytopenia impairs host defense in gram-negative pneumonia–derived sepsis in mice. Blood 2014, 124, 3781–3790. [Google Scholar] [CrossRef]
- Claushuis, T.A.M.; de Vos, A.F.; Nieswandt, B.; Boon, L.; Roelofs, J.J.T.H.; de Boer, O.J.; van der Poll, T. Platelet glycoprotein VI aids in local immunity during pneumonia-derived sepsis caused by gram-negative bacteria. Blood 2018, 131, 864–876. [Google Scholar] [CrossRef]
- de Stoppelaar, S.F.; van’t Veer, C.; Roelofs, J.J.T.H.; Claushuis, T.A.M.; de Boer, O.J.; Tanck, M.W.T.; van der Poll, T. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis. J. Thromb. Haemost. 2015, 13, 1128–1138. [Google Scholar] [CrossRef]
- Gautam, I.; Huss Chadwick, W.; Storad Zachary, A.; Krebs, M.; Bassiouni, O.; Ramesh, R.; Worth, R.G. Activated Platelets Mediate Monocyte Killing of Klebsiella pneumoniae. Infect. Immun. 2023, 91, e00556-22. [Google Scholar] [CrossRef]
- Aibibula, M.; Naseem, K.M.; Sturmey, R.G. Glucose metabolism and metabolic flexibility in blood platelets. J. Thromb. Haemost. 2018, 16, 2300–2314. [Google Scholar] [CrossRef]
- Kramer, P.A.; Ravi, S.; Chacko, B.; Johnson, M.S.; Darley-Usmar, V.M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biol. 2014, 2, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.K.; Ghatge, M.; Flora, G.D.; Dhanesha, N.; Jain, M.; Markan, K.R.; Chauhan, A.K. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 2021, 137, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Chacko, B.; Sawada, H.; Kramer, P.A.; Johnson, M.S.; Benavides, G.A.; Darley-Usmar, V.M. Metabolic Plasticity in Resting and Thrombin Activated Platelets. PLoS ONE 2015, 10, e0123597. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.; Hong, L.; Chefetz, I. AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J. Mol. Med. 2021, 99, 651–662. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q.; Sun, Q.; Xu, Z.-X.; Zhou, H.; Wang, Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol. Metab. 2021, 44, 101131. [Google Scholar] [CrossRef]
- Shackelford, D.B.; Shaw, R.J. The LKB1–AMPK pathway: Metabolism and growth control in tumour suppression. Nat. Rev. Cancer 2009, 9, 563–575. [Google Scholar] [CrossRef]
- Frelinger, A.L. Flow Cytometry and Platelets. Clin. Lab. Med. 2024, 44, 511–526. [Google Scholar] [CrossRef]
- Tyagi, T.; Jain, K.; Gu, S.X.; Qiu, M.; Gu, V.W.; Melchinger, H.; Hwa, J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. Nat. Cardiovasc. Res. 2022, 1, 223–237. [Google Scholar] [CrossRef]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Hwang, S.-L.; Li, X.; Lu, Y.; Jin, Y.; Jeong, Y.-T.; Kim, Y.D.; Chang, H.W. AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice. J. Allergy Clin. Immunol. 2013, 132, 729–736.e12. [Google Scholar] [CrossRef]
- Manne, B.K.; Badolia, R.; Dangelmaier, C.; Eble, J.A.; Ellmeier, W.; Kahn, M.; Kunapuli, S.P. Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets. J. Biol. Chem. 2015, 290, 11557–11568. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.P.; Auger, J.M.; McCarty, O.J.T.; Pearce, A.C. GPVI and integrin αIIbβ3 signaling in platelets. J. Thromb. Haemost. 2005, 3, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Perez, R.M.; Rodríguez-Manzo, G.; Espinosa-Riquer, Z.P.; Cruz, S.L.; González-Espinosa, C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur. J. Cell Biol. 2023, 102, 151324. [Google Scholar] [CrossRef] [PubMed]
- Léopold, V.; Pereverzeva, L.; Schuurman, A.R.; Reijnders, T.D.Y.; Saris, A.; de Brabander, J.; van der Poll, T. Platelets are Hyperactivated but Show Reduced Glycoprotein VI Reactivity in COVID-19 Patients. Thromb. Haemost. 2021, 121, 1258–1262. [Google Scholar] [CrossRef]
- Rolling, C.C.; Barrett, T.J.; Berger, J.S. Platelet-monocyte aggregates: Molecular mediators of thromboinflammation. Front. Cardiovasc. Med. 2023, 10, 960398. [Google Scholar] [CrossRef]
- Randriamboavonjy, V.; Isaak, J.; Frömel, T.; Viollet, B.; Fisslthaler, B.; Preissner, K.T.; Fleming, I. AMPK α2 subunit is involved in platelet signaling, clot retraction, and thrombus stability. Blood 2010, 116, 2134–2140. [Google Scholar] [CrossRef]
- Otto, N.A.; de Vos, A.F.; van Heijst, J.W.J.; Roelofs, J.J.T.H.; van der Poll, T. Association of Myeloid Liver Kinase B1 Depletion With a Reduction in Alveolar Macrophage Numbers and an Impaired Host Defense During Gram-Negative Pneumonia. J. Infect. Dis. 2022, 225, 1284–1295. [Google Scholar] [CrossRef]
Stk11fl/fl Mice | Stk11fl/fl × Pf4-Cre Mice | p-Value | |
---|---|---|---|
Plasma | |||
Naïve | n = 8 | n = 8 | |
Interferon-γ (pg/mL) | 12.6 [0.15] | 12.3 [0.14] | 0.16 |
IL-6 (pg/mL) | 10.9 [1.13] | 11.0 [2.91] | 0.84 |
IL-10 (pg/mL) | 8.8 [1.22] | 8.83 [0.72] | 0.80 |
CCL2 (pg/mL) | 57.9 [0.97] | 55.7 [5.67] | 0.63 |
TNF (pg/mL) | 24.9 [0.57] | 23.9 [1.62] | 0.47 |
24 h after K. pneumoniae infection | n = 8 * | n = 8 | |
Interferon-γ (pg/mL) | 14.5 [3.57] | 13.7 [1.69] | 0.66 |
IL-6 (pg/mL) | 105.1 [140.52] | 594.8 [439.12] | 0.18 |
IL-10 (pg/mL) | 13.6 [6.27] | 26.1 [14.52] | 0.16 |
CCL2 (pg/mL) | 1479.3 [3568.42] | 3008.1 [1576.81] | 0.59 |
TNF (pg/mL) | 68.7 [107.57] | 137.4 [53.25] | 0.50 |
40 h after K. pneumoniae infection | n = 16 * | n = 16 * | |
Interferon-γ (pg/mL) | 13.1 [4.68] | 13.0 [3.32] | 0.73 |
IL-6 (pg/mL) | 289.0 [713.17] | 374.6 [2192.03] | 0.59 |
IL-10 (pg/mL) | 20.1 [20.04] | 30.0 [30.42] | 0.59 |
CCL2 (pg/mL) | 1105.9 [1139.02] | 1137.3 [4404.23] | 0.67 |
TNF (pg/mL) | 62.2 [33.34] | 75.3 [89.97] | 0.90 |
Bronchoalveolar lavage fluid | n = 8 | n = 8 | |
40 h after K. pneumoniae infection | |||
Interferon gamma (pg/mL) | 12.4 [0.35] | 12.5 [0.35] | 0.68 |
IL-6 (pg/mL) | 62.3 [143.39] | 122.6 [176.15] | 0.56 |
IL-10 (pg/mL) | 11.8 [2.66] | 12.6 [2.63] | 0.56 |
CCL2 (pg/mL) | 55.9 [24.05] | 55.7 [19.18] | 0.96 |
TNF (pg/mL) | 34.5 [48.73] | 119.8 [85.75] | 0.50 |
Neutrophil counts (103 cells/mL) | 39.7 [44.2] | 116.4 [126.9] | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouchane, O.; Léopold, V.; van Linge, C.C.A.; de Vos, A.F.; Roelofs, J.J.T.H.; van ‘t Veer, C.; van der Poll, T. Role of Liver Kinase 1B in Platelet Activation and Host Defense During Klebsiella pneumoniae-Induced Pneumosepsis. Int. J. Mol. Sci. 2025, 26, 3714. https://doi.org/10.3390/ijms26083714
Chouchane O, Léopold V, van Linge CCA, de Vos AF, Roelofs JJTH, van ‘t Veer C, van der Poll T. Role of Liver Kinase 1B in Platelet Activation and Host Defense During Klebsiella pneumoniae-Induced Pneumosepsis. International Journal of Molecular Sciences. 2025; 26(8):3714. https://doi.org/10.3390/ijms26083714
Chicago/Turabian StyleChouchane, Osoul, Valentine Léopold, Christine C. A. van Linge, Alex F. de Vos, Joris J. T. H. Roelofs, Cornelis van ‘t Veer, and Tom van der Poll. 2025. "Role of Liver Kinase 1B in Platelet Activation and Host Defense During Klebsiella pneumoniae-Induced Pneumosepsis" International Journal of Molecular Sciences 26, no. 8: 3714. https://doi.org/10.3390/ijms26083714
APA StyleChouchane, O., Léopold, V., van Linge, C. C. A., de Vos, A. F., Roelofs, J. J. T. H., van ‘t Veer, C., & van der Poll, T. (2025). Role of Liver Kinase 1B in Platelet Activation and Host Defense During Klebsiella pneumoniae-Induced Pneumosepsis. International Journal of Molecular Sciences, 26(8), 3714. https://doi.org/10.3390/ijms26083714