A Composite Score of Insulin Resistance and Inflammation Biomarkers for Predicting Lower Limb Complications in Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Anamnestic, Socio-Demographic, Clinical, and Biochemical Data
4.3. Evaluation of Peripheral Arterial Disease and Diabetic Peripheral Neuropathy
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABI | ankle–brachial index |
| AUROC | area under the receiver operating characteristic |
| BMI | body mass index |
| CAR | C-reactive protein-to-albumin ratio |
| CHG | cholesterol, HDL, glucose |
| CHG−BMI | CHG−body mass index |
| CHG−WC | CHG−waist circumference |
| CHG−WHtR | CHG−waist-to-height ratio |
| CI | confidence interval |
| CRP | C-reactive protein |
| DM | diabetes mellitus |
| DPN | diabetic peripheral neuropathy |
| ESR | erythrocyte sedimentation rate |
| FGF1 | fibroblast growth factor 1 |
| FPG | fasting plasma glucose |
| GCP | good clinical practice |
| HbA1c | glycated hemoglobin |
| HDL-c | high-density lipoprotein cholesterol |
| ICH | International Conference on Harmonization |
| IDF | International Diabetes Federation |
| IL | interleukin |
| IL-6 | interleukin-6 |
| IQR | interquartile range |
| IR | insulin resistance |
| LDL-c | low-density lipoprotein cholesterol |
| METS-IR | metabolic score for insulin resistance |
| MLR | monocyte-to-lymphocyte ratio |
| MMP1 | matrix metalloproteinase 1 |
| NLR | neutrophil-to-lymphocyte ratio |
| NPAR | neutrophil percentage-to-albumin ratio |
| PAD | peripheral arterial disease |
| PN | peripheral neuropathy |
| PREDATORR | Prevalence of diabetes mellitus, prediabetes, overweight, obesity, dyslipidemia, hyperuricemia, and chronic kidney disease in Romania |
| ROC | receiver operating characteristic |
| SD | standard deviation |
| SII | systemic immune-inflammation index |
| SPSS | Statistical Package for the Social Sciences |
| STROBE | The Strengthening the Reporting of Observational Studies in Epidemiology |
| TC | total cholesterol |
| TG | triglycerides |
| TG/HDL-c | triglyceride to high-density-lipoprotein cholesterol |
| TNF-α | tumor necrosis factor alpha |
| TyG | triglyceride-glucose |
| TyG−BMI | TyG−body mass index |
| TyG−WC | TyG−waist circumference |
| TyG−WHtR | TyG−waist-to-height ratio |
| WC | waist circumference |
| WHtR | waist-to-height ratio |
References
- International Diabetes Federation. IDF Diabetes Atlas 11th Edition. Available online: https://diabetesatlas.org/media/uploads/sites/3/2025/04/IDF_Atlas_11th_Edition_2025.pdf (accessed on 10 October 2025).
- Mota, M.; Popa, S.G.; Mota, E.; Mitrea, A.; Catrinoiu, D.; Cheta, D.M.; Guja, C.; Hancu, N.; Ionescu-Tirgoviste, C.; Lichiardopol, R.; et al. Prevalence of diabetes mellitus and prediabetes in the adult Romanian population: PREDATORR study. J. Diabetes 2016, 8, 336–344. [Google Scholar] [CrossRef]
- Miranda, C.S.; Vj, P.; Miranda, C. Correlation of Triglyceride-Glucose Index and the Presence of Microvascular Complications of Diabetes. Cureus 2025, 17, e90363. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef]
- Samavarchitehrani, A.; Cannavo, A.; Behnoush, A.H.; Kazemi Abadi, A.; Shokri Varniab, Z.; Khalaji, A. Investigating the association between the triglyceride-glucose index and peripheral artery disease: A systematic review and meta-analysis. Nutr. Diabetes 2024, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45 (Suppl. S), S5–S67. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Ahmad, S.; Khan, I.; Bin Jardan, Y.A.; Fentahun Wondmie, G. An evaluation of inflammatory and endothelial dysfunction markers as determinants of peripheral arterial disease in those with diabetes mellitus. Sci. Rep. 2024, 14, 15348. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Zhu, L.Y.; Han, R.; Sun, L.L.; Li, J.X.; Dou, J.T. Pathophysiology of peripheral arterial disease in diabetes mellitus. J. Diabetes 2017, 9, 133–140. [Google Scholar] [CrossRef]
- Erikssen, G.; Liestøl, K.; Bjørnholt, J.V.; Stormorken, H.; Thaulow, E.; Erikssen, J. Erythrocyte sedimentation rate: A possible marker of atherosclerosis and a strong predictor of coronary heart disease mortality. Eur. Heart J. 2000, 21, 1614–1620. [Google Scholar] [CrossRef]
- Ibaram, D.R.S. Role of C-Reactive Protein in Peripheral Arterial Disease. Int. J. Innov. Res. Med. Sci. 2018, 3, 2428–2432. [Google Scholar] [CrossRef]
- Kremers, B.; Wübbeke, L.; Mees, B.; Ten Cate, H.; Spronk, H.; Ten Cate-Hoek, A. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients With Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef]
- Igari, K.; Kudo, T.; Toyofuku, T.; Inoue, Y. Relationship of Inflammatory Biomarkers with Severity of Peripheral Arterial Disease. Int. J. Vasc. Med. 2016, 2016, 6015701. [Google Scholar] [CrossRef] [PubMed]
- Pande, R.L.; Perlstein, T.S.; Beckman, J.A.; Creager, M.A. Association of insulin resistance and inflammation with peripheral arterial disease: The National Health and Nutrition Examination Survey, 1999 to 2004. Circulation 2008, 118, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Britton, K.A.; Mukamal, K.J.; Ix, J.H.; Siscovick, D.S.; Newman, A.B.; de Boer, I.H.; Thacker, E.L.; Biggs, M.L.; Gaziano, J.M.; Djoussé, L. Insulin resistance and incident peripheral artery disease in the Cardiovascular Health Study. Vasc. Med. 2012, 17, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Zeng, J.; Feng, Q.; Chen, M.; Cao, H. Triglyceride-Glucose Index as a Predictor of Lower Extremity Arterial Disease in Patients with Diabetes: A Hospitalized Population Retrospective Study. Ann. Vasc. Surg. 2024, 98, 173–181. [Google Scholar] [CrossRef]
- Zhong, H.; Shao, Y.; Guo, G.; Zhan, Y.; Liu, B.; Shao, M.; Li, L. Association between the triglyceride-glucose index and arterial stiffness: A meta-analysis. Medicine 2023, 102, e33194. [Google Scholar] [CrossRef]
- Panou, T.; Gouveri, E.; Papazoglou, D.; Papanas, N. The role of novel inflammation-associated biomarkers in diabetic peripheral neuropathy. Metab. Open 2024, 24, 100328. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S252–S265. [Google Scholar] [CrossRef]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diabetes Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef]
- Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, H.; Zhu, X.; Mao, F.; Zhang, S.; Shi, H.; Li, Y.; Lu, B. Neutrophil-to-lymphocyte ratio is associated with diabetic peripheral neuropathy in type 2 diabetes patients. Diabetes Res. Clin. Pract. 2017, 130, 90–97. [Google Scholar] [CrossRef]
- Mustafa, T.; Ozlem, E.; Mehmet, E.A.; Özcan, K. The significance of neutrophil/lympocyte ratio and platelet/lymphocyte ratio in predicting diabetic polyneuropathy and neuropathic pain severity as inflammatory factors. Ideggyogy. Sz. 2023, 76, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Zhang, Y.; Dan, X.; Wu, X.; Yang, Y.; Chen, X.; Li, S.; Xu, Y.; Wan, Q.; et al. Increased Systemic Immune-Inflammation Index Was Associated with Type 2 Diabetic Peripheral Neuropathy: A Cross-Sectional Study in the Chinese Population. J. Inflamm. Res. 2023, 16, 6039–6053. [Google Scholar] [CrossRef] [PubMed]
- Aktas, G. Serum C-reactive protein to albumin ratio as a reliable marker of diabetic neuropathy in type 2 diabetes mellitus. Biomol. Biomed. 2024, 24, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhao, M.; Song, T.; Tang, J.; Kuang, M.; Liu, H.; Zhong, S. Role of Triglyceride-Glucose Index in Type 2 Diabetes Mellitus and Its Complications. Diabetes Metab. Syndr. Obes. 2024, 17, 3325–3333. [Google Scholar] [CrossRef]
- Ştefan, A.-G.; Clenciu, D.; Vladu, I.-M.; Mitrea, A.; Protasiewicz-Timofticiuc, D.-C.; Roşu, M.-M.; Gheonea, T.-C.; Vladu, B.-E.; Efrem, I.-C.; Pintilei, D.-V.R.; et al. Relationship Between Insulin Resistance Indicators and Type 2 Diabetes Mellitus in Romania. Int. J. Mol. Sci. 2025, 26, 9888. [Google Scholar] [CrossRef]
- Reurean-Pintilei, D.; Pantea Stoian, A.; Salmen, T.; Stoica, R.-A.; Mititelu-Tartau, L.; Lazăr, S.; Timar, B. Associations between Skin Autofluorescence Levels with Cardiovascular Risk and Diabetes Complications in Patients with Type 2 Diabetes. Biomedicines 2024, 12, 890. [Google Scholar] [CrossRef]
- da Silva, A.; Caldas, A.P.S.; Rocha, D.M.U.P.; Bressan, J. Triglyceride-glucose index predicts independently type 2 diabetes mellitus risk: A systematic review and meta-analysis of cohort studies. Prim. Care Diabetes 2020, 14, 584–593. [Google Scholar] [CrossRef]
- Er, L.K.; Wu, S.; Chou, H.H.; Hsu, L.A.; Teng, M.S.; Sun, Y.C.; Ko, Y.L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Lee, S.; Chen, H.; Quon, M.J. Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E15–E26. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Ştefan, A.G.; Clenciu, D.; Mitrea, A.; Vladu, I.M.; Protasiewicz-Timofticiuc, D.C.; Roşu, M.M.; Maria, D.T.; Dinu, I.R.; Gheonea, T.C.; Vladu, B.E.; et al. Metabolic Syndrome and Insulin Resistance in Romania. Int. J. Mol. Sci. 2025, 26, 2389. [Google Scholar] [CrossRef]
- Caliskan, S.; Boyuk, F. Is Triglyceride-Glucose Index a Valuable Parameter in Peripheral Artery Disease? Cureus 2023, 15, e35532. [Google Scholar] [CrossRef]
- Bermudez, E.A.; Rifai, N.; Buring, J.E.; Manson, J.E.; Ridker, P.M. Relation between markers of systemic vascular inflammation and smoking in women. Am. J. Cardiol. 2002, 89, 1117–1119. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Kuyt, F.; Jacob, P., 3rd. Influence of nicotine on cardiovascular and hormonal effects of cigarette smoking. Clin. Pharmacol. Ther. 1984, 36, 74–81. [Google Scholar] [CrossRef]
- Pala, A.A.; Urcun, Y.S. Relationship of triglyceride-glucose index with chronic limb-threatening ischemia in lower extremity peripheral artery disease. Vascular 2022, 30, 455–462. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, S.; Chi, C.; Fan, X.; Tang, J.; Ji, H.; Teliewubai, J.; Zhang, Y.; Xu, Y. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: The Northern Shanghai Study. Cardiovasc. Diabetol. 2019, 18, 95. [Google Scholar] [CrossRef]
- Zhang, X.; Ran, X.; Xu, Z.; Cheng, Z.; Shen, F.; Yu, Y.; Gao, L.; Chai, S.; Wang, C.; Liu, J.; et al. Epidemiological characteristics of lower extremity arterial disease in Chinese diabetes patients at high risk: A prospective, multicenter, cross-sectional study. J. Diabetes Complicat. 2018, 32, 150–156. [Google Scholar] [CrossRef]
- Kassab, H.S.; Osman, N.A.; Elrahmany, S.M. Assessment of Triglyceride-Glucose Index and Ratio in Patients with Type 2 Diabetes and Their Relation to Microvascular Complications. Endocr. Res. 2023, 48, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Singh, P.; Kulothungan, V.; Sharma, T.; Raman, R. Relationship between triglyceride glucose index, retinopathy and nephropathy in Type 2 diabetes. Endocrinol. Diabetes Metab. 2020, 4, e00151. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Du, J.; Ge, X.; Peng, W.; Shen, L.; Xia, L.; Jiang, X.; Hu, F.; Huang, S. Triglyceride Glucose Index for the Detection of Diabetic Kidney Disease and Diabetic Peripheral Neuropathy in Hospitalized Patients with Type 2 Diabetes. Diabetes Ther. 2024, 15, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.P.; Lin, C.C.; Li, C.I.; Liu, C.S.; Lin, C.H.; Hwang, K.L.; Yang, S.Y.; Li, T.C. Fasting plasma glucose variability and HbA1c are associated with peripheral artery disease risk in type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 4. [Google Scholar] [CrossRef]
- Arya, S.; Binney, Z.O.; Khakharia, A.; Long, C.A.; Brewster, L.P.; Wilson, P.W.; Jordan, W.D., Jr.; Duwayri, Y. High hemoglobin A1c associated with increased adverse limb events in peripheral arterial disease patients undergoing revascularization. J. Vasc. Surg. 2018, 67, 217–228.e1. [Google Scholar] [CrossRef]
- Wolf, J.; Rose-John, S.; Garbers, C. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine 2014, 70, 11–20. [Google Scholar] [CrossRef]
- Sabat, R.; Grütz, G.; Warszawska, K.; Kirsch, S.; Witte, E.; Wolk, K.; Geginat, J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef]
- Koenig, W. High-sensitivity C-reactive protein and atherosclerotic disease: From improved risk prediction to risk-guided therapy. Int. J. Cardiol. 2013, 168, 5126–5134. [Google Scholar] [CrossRef]
- Singh, T.P.; Morris, D.R.; Smith, S.; Moxon, J.V.; Golledge, J. Systematic Review and Meta-Analysis of the Association Between C-Reactive Protein and Major Cardiovascular Events in Patients with Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 220–233. [Google Scholar] [CrossRef]
- Busti, C.; Falcinelli, E.; Momi, S.; Gresele, P. Matrix metalloproteinases and peripheral arterial disease. Intern. Emerg. Med. 2010, 5, 13–25, Erratum in: Intern. Emerg. Med. 2010, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Vlad, C.E.; Foia, L.; Florea, L.; Costache, I.I.; Covic, A.; Popescu, R.; Reurean-Pintilei, D.; Covic, A. Evaluation of cardiovascular risk factors in patients with familial hypercholesterolemia from the North-Eastern area of Romania. Lipids Health Dis. 2021, 20, 4. [Google Scholar] [CrossRef]
- Duksal, T.; Tiftikcioglu, B.I.; Bilgin, S.; Kose, S.; Zorlu, Y. Role of inflammation in sensory neuropathy in prediabetes or diabetes. Acta Neurol. Scand. 2016, 133, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-Ramírez, A.; García-Macedo, R.; Díaz-García, C.M.; Sanchez-Soto, C.; Padrón, A.M.; de la Peña, J.E.; Cruz, M.; Hiriart, M. Neuropathy-specific alterations in a Mexican population of diabetic patients. BMC Neurol. 2017, 17, 161. [Google Scholar] [CrossRef] [PubMed]
- Akintoye, O.O.; Oniyide, A.A.; Owoyele, B.V. A Study of Pain Threshold, Interleukins and NLR in Diabetic Polyneuropathy in a Selected Nigerian Population. Niger. J. Physiol. Sci. 2018, 33, 151–157. [Google Scholar]
- Gökçay Canpolat, A.; Emral, R.; Keskin, Ç.; Canlar, Ş.; Şahin, M.; Çorapçioğlu, D. Association of monocyte-to-high density lipoprotein-cholesterol ratio with peripheral neuropathy in patients with Type II diabetes mellitus. Biomark. Med. 2019, 13, 907–915. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Calculator.net. Available online: https://www.calculator.net/sample-size-calculator.html (accessed on 20 February 2023).
- Dai, K.; Li, Z.; Luo, Y.; Xiong, Q.; Xiong, Y.; Song, Z.; Xiong, W. Neutrophil percentage-to-albumin ratio and monocyte-to-lymphocyte ratio as predictors of free-wall rupture in patients with acute myocardial infarction. J. Clin. Lab. Anal. 2022, 36, e24136. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef]
- Mansoori, A.; Nosrati, M.; Dorchin, M.; Mohammadyari, F.; Derakhshan-Nezhad, E.; Ferns, G.; Esmaily, H.; Ghayour-Mobarhan, M. A novel index for diagnosis of type 2 diabetes mellitus: Cholesterol, High density lipoprotein, and Glucose (CHG) index. J. Diabetes Investig. 2025, 16, 309–314. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Bril, V.; Perkins, B.A. Validation of Toronto Clinical Scoring System for diabetic polineuropathy. Diabetes Care 2002, 25, 2048–2052. [Google Scholar] [CrossRef]

| Characteristics | PAD | DPN | ||||
|---|---|---|---|---|---|---|
| PAD (−) | PAD (+) | p Value | DPN (−) | DPN (+) | p Value | |
| Participants, no. | 28 | 82 | 18 | 92 | ||
| Gender (%) * | 0.231 | 0.925 | ||||
| Males | 64.3 | 51.2 | 55.6 | 54.3 | ||
| Females | 35.7 | 48.8 | 44.4 | 45.7 | ||
| DM duration (years) ** | 4.00 (6.00) | 15.00 (15.00) | <0.001 | 1.00 (2.00) | 15.00 (13.00) | <0.001 |
| Age (years) *** | 54.14 ± 10.64 | 63.88 ± 9.20 | <0.001 | 55.56 ± 12.99 | 62.54 ± 9.55 | 0.009 |
| BMI (kg/m2) ** | 31.00 (8.00) | 32.00 (8.00) | 0.474 | 33.00 (7.00) | 32.00 (9.00) | 0.163 |
| WC (cm) ** | 103.50 (10.00) | 104.00 (18.00) | 0.303 | 107.00 (25.00) | 104.00 (19.00) | 0.348 |
| WHtR ** | 0.60 (0.14) | 0.64 (0.13) | 0.099 | 0.65 (0.14) | 0.62 (0.11) | 0.213 |
| FPG (mg/dL) ** | 153.00 (131.00) | 230.00 (129.00) | 0.003 | 162.00 (197.00) | 225.00 (133.00) | 0.137 |
| HbA1c (%) ** | 6.60 (3.00) | 8.90 (3.00) | 0.002 | 6.30 (4.20) | 8.80 (3.10) | 0.195 |
| TC (mg/dL) ** | 216.50 (59.00) | 176.00 (68.00) | 0.007 | 232.00 (139.00) | 176.00 (67.00) | 0.004 |
| HDL-c (mg/dL) ** | 36.00 (17.00) | 42.00 (16.00) | 0.138 | 36.00 (30.00) | 40.50 (17.00) | 0.846 |
| LDL-c (mg/dL) ** | 108.20 (46.20) | 87.80 (39.80) | 0.004 | 109.00 (61.00) | 92.40 (42.30) | 0.018 |
| TG (mg/dL) ** | 139.50 (364.00) | 171.00 (142.00) | 0.402 | 141.00 (502.00) | 169.50 (150.00) | 0.698 |
| IR Biomarkers | PAD | DPN | ||||
|---|---|---|---|---|---|---|
| PAD (−) | PAD (+) | p Value | DPN (−) | DPN (+) | p Value | |
| TyG * | 9.30 (2.04) | 9.73 (1.02) | 0.084 | 9.25 (2.45) | 9.71 (1.05) | 0.245 |
| TyG−BMI * | 304.47 (72.20) | 311.51 (81.16) | 0.272 | 306.34 (39.85) | 311.20 (90.93) | 0.583 |
| TyG−WC * | 1013.17 (210.91) | 1045.63 (162.67) | 0.197 | 1045.63 (193.52) | 1033.74 (189.87) | 0.698 |
| TyG−WHtR * | 5.94 (1.72) | 6.31 (1.28) | 0.042 | 6.14 (1.25) | 6.19 (1.37) | 0.572 |
| TG/HDL-c * | 3.44 (10.83) | 4.18 (4.06) | 0.989 | 3.57 (15.19) | 4.18 (4.31) | 0.859 |
| MetS-IR * | 54.89 (10.19) | 55.84 (14.92) | 0.410 | 56.45 (6.75) | 55.83 (15.04) | 0.821 |
| CHG ** | 6.15 ± 1.01 | 6.15 ± 0.63 | <0.001 | 6.14 ± 0.63 | 6.23 ± 1.17 | 0.007 |
| CHG−BMI * | 193.33 (26.82) | 200.76 (44.12) | 0.238 | 197.41 (11.63) | 200.34 (49.54) | 0.846 |
| CHG−WC * | 626.50 (122.73) | 652.67 (120.74) | 0.249 | 641.53 (116.31) | 652.62 (125.79) | 0.872 |
| CHG−WHtR * | 3.64 (0.94) | 3.95 (0.89) | 0.091 | 3.92 (0.76) | 3.87 (0.93) | 0.594 |
| Inflammation Biomarkers | PAD | DPN | ||||
|---|---|---|---|---|---|---|
| PAD (−) | PAD (+) | p Value | DPN (−) | DPN (+) | p Value | |
| Ferritin (ng/mL) | 207.00 (135.00) | 178.00 (101.00) | 0.114 | 170.00 (110.00) | 178.50 (155.00) | 0.710 |
| ESR (mm/hr) | 26.50 (27.00) | 34.00 (44.00) | 0.640 | 25.00 (26.00) | 34.00 (45.00) | 0.560 |
| CRP (mg/L) | 0.54 (0.50) | 0.54 (0.55) | 0.537 | 0.41 (0.64) | 0.60 (0.54) | 0.201 |
| Fibrinogen (mg/dL) | 333.00 (108.8) | 354.50 (147.00) | 0.763 | 336.50 (118.00) | 377.00 (194.00) | 0.383 |
| TNFα (pg/mL) | 69.76 (34.80) | 76.24 (51.13) | 0.316 | 69.12 (37.24) | 77.03 (30.64) | 0.028 |
| IL-6 (pg/mL) | 7.29 (6.16) | 8.71 (7.10) | 0.026 | 6.90 (3.82) | 8.67 (6.71) | 0.063 |
| FGF1 (pg/mL) | 532.82 (219.44) | 574.38 (101.01) | 0.121 | 544.27 (209.59) | 565.65 (159.09) | 0.238 |
| MMP1 (pg/mL) | 1309.67 (788.00) | 1541.82 (789.73) | 0.602 | 1371.77 (770.81) | 1382.25 (928.17) | 0.872 |
| NLR | 2.00 (1.00) | 2.00 (1.00) | 0.729 | 2.00 (1.00) | 2.00 (1.00) | 0.220 |
| MLR | 0.20 (0.06) | 0.22 (0.10) | 0.237 | 0.19 (0.07) | 0.22 (0.10) | 0.008 |
| SII | 357.09 (248.46) | 517.11 (252.33) | 0.015 | 380.46 (199.92) | 489.53 (266.72) | 0.137 |
| CAR | 0.11 (0.16) | 0.16 (0.14) | 0.410 | 0.08 (0.12) | 0.16 (0.16) | 0.038 |
| NPAR | 1233.00 (318.00) | 1293.00 (352.00) | 0.056 | 1190.00 (352.00) | 1291.50 (348.00) | 0.497 |
| IR and Inflammation Biomarkers | AUROC Curve | Standard Error | 95% CI | p Value | Cut-Off Value | Sensitivity (%) | Specificity (%) |
|---|---|---|---|---|---|---|---|
| TyG−WHtR | 0.629 | 0.067 | 0.498–0.759 | 0.042 | 5.78 | 75.6 | 50.0 |
| CHG | 0.553 | 0.069 | 0.417–0.689 | 0.403 | – | – | – |
| IL-6 (pg/mL) | 0.641 | 0.059 | 0.526–0.756 | 0.026 | 8.39 | 61.0 | 71.4 |
| SII | 0.655 | 0.065 | 0.528–0.782 | 0.015 | 334.27 | 87.8 | 50.0 |
| DM duration (years) | 0.813 | 0.044 | 0.726–0.900 | <0.001 | 7.50 | 70.7 | 78.6 |
| IR and Inflammation Biomarkers | AUROC Curve | Standard Error | 95% CI | p Value | Cut-Off Value | Sensitivity (%) | Specificity (%) |
|---|---|---|---|---|---|---|---|
| CHG | 0.552 | 0.088 | 0.379–0.724 | 0.487 | – | – | – |
| TNFα (pg/mL) | 0.664 | 0.057 | 0.552–0.776 | 0.028 | 75.91 | 77.8 | 58.7 |
| MLR | 0.697 | 0.062 | 0.576–0.818 | 0.008 | 80.50 | 41.3 | 55.6 |
| CAR | 0.655 | 0.074 | 0.510–0.800 | 0.039 | 0.20 | 60.9 | 77.8 |
| DM duration (years) | 0.982 | 0.010 | 0.962–1.000 | <0.001 | 4.50 | 91.3 | 100.0 |
| Items | 0 Points | 1 Point |
|---|---|---|
| DM duration (years) | <4.50 | ≥4.50 |
| TyG−WHtR | <5.78 | ≥5.78 |
| SII | <334.27 | ≥334.27 |
| MLR | <80.50 | ≥80.50 |
| CAR | <0.20 | ≥0.20 |
| Score Predicting | AUROC Curve | Standard Error | 95% CI | p Value | Cut-Off Value | Sensitivity (%) | Specificity (%) |
|---|---|---|---|---|---|---|---|
| PAD | 0.822 | 0.043 | 0.738–0.907 | <0.001 | 2.50 | 63.4 | 85.7 |
| DPN | 0.848 | 0.039 | 0.772–0.923 | <0.001 | 2.50 | 60.9 | 100.0 |
| Biomarker | Formula | Reference |
|---|---|---|
| NLR | neutrophil count (×103 cells/μL)/lymphocyte count (×103 cells/μL) | [21] |
| MLR | monocyte counts (×103 cells/μL)/lymphocyte counts (×103 cells/μL) | [60] |
| SII | platelet (×103 cells/μL) × (neutrophil count (×103 cells/μL)/lymphocyte count (×103 cells/μL)) | [23] |
| CAR | C-reactive protein (mg/L)/serum albumin (g/L) | [24] |
| NPAR | (neutrophil percentage (%) × 100)/serum albumin (g/dL) | [60] |
| Biomarker | Formula | Reference |
|---|---|---|
| TyG | Ln (fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2) | [28] |
| TyG−BMI | TyG × BMI (kg/m2) | [29] |
| TyG−WC | TyG × WC | [29] |
| TyG−WHtR | TyG × WHtR | [30] |
| TG/HDL-c | fasting triglycerides (mg/dL)/fasting HDL-c (mg/dL) | [61] |
| MetS-IR | [Ln (2 × fasting glucose (mg/dL) + fasting triglycerides (mg/dL)) × BMI (kg/m2)]/[Ln (HDL-c (mg/dL))] | [31] |
| CHG | Ln [(Total Cholesterol (mg/dL) × fasting glucose (mg/dL))/(2 × HDL-c (mg/dL))] | [62] |
| CHG−BMI | CHG × BMI (kg/m2) | [62] |
| CHG−WC | CHG × WC | [62] |
| CHG−WHtR | CHG × WHtR | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrea, A.; Ștefan, A.-G.; Vladu, I.-M.; Clenciu, D.; Stan, S.-I.; Efrem, I.-C.; Biciușcă, V.; Maria, M.; Protasiewicz-Timofticiuc, D.-C.; Roșu, M.-M.; et al. A Composite Score of Insulin Resistance and Inflammation Biomarkers for Predicting Lower Limb Complications in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2025, 26, 11859. https://doi.org/10.3390/ijms262411859
Mitrea A, Ștefan A-G, Vladu I-M, Clenciu D, Stan S-I, Efrem I-C, Biciușcă V, Maria M, Protasiewicz-Timofticiuc D-C, Roșu M-M, et al. A Composite Score of Insulin Resistance and Inflammation Biomarkers for Predicting Lower Limb Complications in Type 2 Diabetes Mellitus. International Journal of Molecular Sciences. 2025; 26(24):11859. https://doi.org/10.3390/ijms262411859
Chicago/Turabian StyleMitrea, Adina, Adela-Gabriela Ștefan, Ionela-Mihaela Vladu, Diana Clenciu, Sorina-Ionelia Stan, Ion-Cristian Efrem, Viorel Biciușcă, Moța Maria, Diana-Cristina Protasiewicz-Timofticiuc, Maria-Magdalena Roșu, and et al. 2025. "A Composite Score of Insulin Resistance and Inflammation Biomarkers for Predicting Lower Limb Complications in Type 2 Diabetes Mellitus" International Journal of Molecular Sciences 26, no. 24: 11859. https://doi.org/10.3390/ijms262411859
APA StyleMitrea, A., Ștefan, A.-G., Vladu, I.-M., Clenciu, D., Stan, S.-I., Efrem, I.-C., Biciușcă, V., Maria, M., Protasiewicz-Timofticiuc, D.-C., Roșu, M.-M., Radu-Gheonea, T.-C., Moța, E., Mogoș, G., Reurean-Pintilei, D.-V., Boldeanu, L., & Țenea-Cojan, T.-Ș. (2025). A Composite Score of Insulin Resistance and Inflammation Biomarkers for Predicting Lower Limb Complications in Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 26(24), 11859. https://doi.org/10.3390/ijms262411859

