The Role of High-Sensitivity Cardiac Troponin and Ischemia-Modified Albumin in Patients with Lower Extremity Peripheral Arterial Disease
Abstract
1. Introduction
2. High-Sensitivity Troponin: A Marker of Subclinical Coronary Artery Disease in Patients with Peripheral Arterial Disease
3. Ischemia-Modified Albumin: A Marker of Disease Burden and Cardiovascular Complications in Patients with Peripheral Arterial Disease
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PAD | Peripheral Arterial Disease |
| hs-cTn | High-Sensitivity Cardiac Troponins |
| IMA | Ischemia-Modified Albumin |
| ABI | Ankle-Brachial Index |
| IC | Intermittent Claudication |
| CLTI | Chronic Limb-Threatening Ischemia |
| MACE | Major Adverse Cardiovascular Event |
| hs-cTnT | High-Sensitivity Cardiac Troponin T |
| hs-cTnI | High-Sensitivity Cardiac Troponin I |
References
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e171–e191, Correction in Circulation 2021, 144, e193. [Google Scholar] [CrossRef]
- Eid, M.A.; Mehta, K.; Barnes, J.A.; Wanken, Z.; Columbo, J.A.; Stone, D.H.; Goodney, P.; Mayo Smith, M. The Global Burden of Peripheral Artery Disease. J. Vasc. Surg. 2023, 77, 1119–1126.e1. [Google Scholar] [CrossRef]
- Luca, A.C.; David, S.G.; David, A.G.; Țarcă, V.; Pădureț, I.A.; Mîndru, D.E.; Roșu, S.T.; Roșu, E.V.; Adumitrăchioaiei, H.; Bernic, J.; et al. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life 2023, 13, 2056. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Hwang, J.; Yon, D.K.; Lee, S.W.; Jung, S.Y.; Park, S.; Johnson, C.O.; Stark, A.B.; Razo, C.; Abbasian, M.; et al. Global burden of peripheral artery disease and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob. Health 2023, 11, e1553–e1565. [Google Scholar] [CrossRef] [PubMed]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Agnelli, G.; Belch, J.J.F.; Baumgartner, I.; Giovas, P.; Hoffmann, U. Morbidity and mortality associated with atherosclerotic peripheral artery disease: A systematic review. Atherosclerosis 2020, 293, 94–100. [Google Scholar] [CrossRef]
- Kremers, B.; Wübbeke, L.; Mees, B.; Ten Cate, H.; Spronk, H.; Ten Cate-Hoek, A. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients With Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Atheroscler. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef]
- Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; González Miqueo, A.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int. J. Mol. Sci. 2021, 22, 3601. [Google Scholar] [CrossRef]
- Poredoš, P.; Šabovič, M.; Božič Mijovski, M.; Nikolajević, J.; Antignani, P.L.; Paraskevas, K.I.; Mikhailidis, D.P.; Blinc, A. Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int. J. Mol. Sci. 2022, 23, 12054. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Girdharry, N.R.; Massin, S.Z.; Abu-Raisi, M.; Saposnik, G.; Mamdani, M.; Qadura, M. Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites 2025, 15, 224. [Google Scholar] [CrossRef]
- Mair, J.; Dienstl, F.; Puschendorf, B. Cardiac troponin T in the diagnosis of myocardial injury. Crit. Rev. Clin. Lab. Sci. 1992, 29, 31–57. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.S.; Babuin, L.; Apple, F.S. Biomarkers in acute cardiac disease: The present and the future. J. Am. Coll. Cardiol. 2006, 48, 16814641. [Google Scholar] [CrossRef] [PubMed]
- Katus, H.A.; Remppis, A.; Neumann, F.J.; Scheffold, T.; Diederich, K.W.; Vinar, G.; Noe, A.; Matern, G.; Kuebler, W. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991, 83, 902–912. [Google Scholar] [CrossRef]
- Apple, F.S.; Collinson, P.O. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 2012, 58, 54–61. [Google Scholar] [CrossRef]
- Reichlin, T.; Hochholzer, W.; Bassetti, S.; Steuer, S.; Stelzig, C.; Hartwiger, S.; Biedert, S.; Schaub, N.; Buerge, C.; Potocki, M.; et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 2009, 361, 858–867. [Google Scholar] [CrossRef]
- Giannitsis, E.; Katus, H.A. Cardiac troponin level elevations not related to acute coronary syndromes. Nat. Rev. Cardiol. 2013, 10, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.T.; Nambi, V.; de Lemos, J.A.; Chambless, L.E.; Virani, S.S.; Boerwinkle, E.; Hoogeveen, R.C.; Liu, X.; Astor, B.C.; Mosley, T.H.; et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011, 123, 1367–1376. [Google Scholar] [CrossRef]
- de Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010, 304, 2503–2512, Erratum in JAMA 2011, 305, 1200. [Google Scholar] [CrossRef]
- Eisen, A.; Bonaca, M.P.; Jarolim, P.; Scirica, B.M.; White, H.D.; Tendera, M.; Dellborg, M.; Nicolau, J.C.; Morais, J.; Fox, K.A.; et al. High-Sensitivity Troponin I in Stable Patients with Atherosclerotic Disease in the TRA 2°P—TIMI 50 Trial. Clin. Chem. 2017, 63, 307–315. [Google Scholar] [CrossRef]
- Pohlhammer, J.; Kronenberg, F.; Rantner, B.; Stadler, M.; Peric, S.; Hammerer-Lercher, A.; Klein-Weigel, P.; Fraedrich, G.; Kollerits, B. High-sensitivity cardiac troponin T in patients with intermittent claudication and its relation with cardiovascular events and all-cause mortality--the CAVASIC Study. Atherosclerosis 2014, 237, 711–717. [Google Scholar] [CrossRef]
- Linnemann, B.; Sutter, T.; Herrmann, E.; Sixt, S.; Rastan, A.; Schwarzwaelder, U.; Noory, E.; Buergelin, K.; Beschorner, U.; Zeller, T. Elevated cardiac troponin T is associated with higher mortality and amputation rates in patients with peripheral arterial disease. J. Am. Coll. Cardiol. 2014, 63, 1529–1538. [Google Scholar] [CrossRef]
- Otaki, Y.; Takahashi, H.; Watanabe, T.; Yamaura, G.; Funayama, A.; Arimoto, T.; Shishido, T.; Miyamoto, T.; Kubota, I. Heart-type fatty acid binding protein and high-sensitivity troponin T are myocardial damage markers that could predict adverse clinical outcomes in patients with peripheral artery disease. BBA Clin. 2015, 4, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hikita, H.; Shigeta, T.; Kimura, S.; Takahashi, A.; Isobe, M. Coronary Artery Disease Severity and Cardiovascular Biomarkers in Patients with Peripheral Artery Disease. Int. J. Angiol. 2015, 24, 278–282. [Google Scholar] [CrossRef]
- Szczeklik, W.; Krzanowski, M.; Maga, P.; Partyka, Ł.; Kościelniak, J.; Kaczmarczyk, P.; Maga, M.; Pieczka, P.; Suska, A.; Wachsmann, A.; et al. Myocardial injury after endovascular revascularization in critical limb ischemia predicts 1-year mortality: A prospective observational cohort study. Clin. Res. Cardiol. 2018, 107, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Clemens, R.K.; Annema, W.; Baumann, F.; Roth-Zetzsche, S.; Seifert, B.; von Eckardstein, A.; Amann-Vesti, B.R. Cardiac biomarkers but not measures of vascular atherosclerosis predict mortality in patients with peripheral artery disease. Clin. Chim Acta 2019, 495, 215–220. [Google Scholar] [CrossRef]
- Cimaglia, P.; Dalla Paola, L.; Carone, A.; Scavone, G.; Manfrini, M.; Brogneri, S.; Tenti, E.; Pavasini, R.; Bernucci, D.; Passarini, G.; et al. High-Sensitivity Cardiac Troponin Predicts Major Cardiovascular Events in Diabetic Patients With Critical Limb Ischemia and Foot Lesions. Front. Cardiovasc. Med. 2021, 8, 595701. [Google Scholar] [CrossRef]
- Rammos, C.; Kontogiannis, A.; Mahabadi, A.A.; Steinmetz, M.; Messiha, D.; Lortz, J.; Rassaf, T. Risk stratification and mortality prediction in octo-and nonagenarians with peripheral artery disease: A retrospective analysis. BMC Cardiovasc. Disord. 2021, 21, 370. [Google Scholar] [CrossRef]
- Dobrilovic, N.; Gerbec, N.; Pelicon, K.; Petek, K.; Blinc, A.; Boc, V.; Jug, B.; Mijovski, M.B.; Osredkar, J.; Kejžar, N.; et al. Prognostic value of biomarkers of ischaemia in patients with peripheral arterial disease following endovascular revascularisation. Vasa 2025, 54, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Marston, N.A.; Bonaca, M.P.; Jarolim, P.; Goodrich, E.L.; Bhatt, D.L.; Steg, P.G.; Cohen, M.; Storey, R.F.; Johanson, P.; Wiviott, S.D.; et al. Clinical Application of High-Sensitivity Troponin Testing in the Atherosclerotic Cardiovascular Disease Framework of the Current Cholesterol Guidelines. JAMA Cardiol. 2020, 5, 1255–1262. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Matsushita, K.; Kwak, L.; Yang, C.; Pang, Y.; Ballew, S.H.; Sang, Y.; Hoogeveen, R.C.; Jaar, B.G.; Selvin, E.; Ballantyne, C.M.; et al. High-sensitivity cardiac troponin and natriuretic peptide with risk of lower-extremity peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) Study. Eur. Heart J. 2018, 39, 2412–2419. [Google Scholar] [CrossRef] [PubMed]
- Janus, S.E.; Hajjari, J.; Al-Kindi, S.G. High Sensitivity Troponin and Risk of Incident Peripheral Arterial Disease in Chronic Kidney Disease (from the Chronic Renal Insufficiency Cohort [CRIC] Study). Am. J. Cardiol. 2020, 125, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.K.; Lima, J.; deFilippi, C.R.; Daniels, L.B.; Seliger, S.L.; de Lemos, J.A.; Maisel, A.S.; Criqui, M.H.; Bahrami, H. Associations of cardiac injury biomarkers with risk of peripheral artery disease: The Multi-Ethnic Study of Atherosclerosis. Int. J. Cardiol. 2021, 344, 199–204. [Google Scholar] [CrossRef]
- Hicks, C.W.; Wang, D.; McDermott, K.; Matsushita, K.; Tang, O.; Echouffo-Tcheugui, J.B.; McEvoy, J.W.; Christenson, R.H.; Selvin, E. Associations of Cardiac Biomarkers With Peripheral Artery Disease and Peripheral Neuropathy in US Adults Without Prevalent Cardiovascular Disease. Atheroscler. Thromb. Vasc. Biol. 2023, 43, 1583–1591. [Google Scholar] [CrossRef]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef]
- Shevtsova, A.; Gordiienko, I.; Tkachenko, V.; Ushakova, G. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis. Markers 2021, 2021, 9945424. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, A.A.; Zinellu, A. Serum Concentrations of Ischaemia-Modified Albumin in Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 4205. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. A Systematic Review and Meta-Analysis of Serum Concentrations of Ischaemia-Modified Albumin in Acute Ischaemic Stroke, Intracerebral Haemorrhage, and Subarachnoid Haemorrhage. Biomolecules 2022, 12, 653. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Starkopf, J.; Björck, M.; Forbes, A.; Kase, K.; Kiisk, E.; Laisaar, K.T.; Mihnovits, V.; Murruste, M.; Mändul, M.; et al. Diagnostic accuracy of biomarkers to detect acute mesenteric ischaemia in adult patients: A systematic review and meta-analysis. World J. Emerg. Surg. 2023, 18, 44. [Google Scholar] [CrossRef]
- Li, X.; Guo, D.; Zhou, W.; Hu, Y.; Zhou, H.; Chen, Y. Oxidative Stress and Inflammation Markers Associated with Multiple Peripheral Artery Occlusions in Elderly Patients. Angiology 2023, 74, 472–487. [Google Scholar] [CrossRef]
- Ghareghani, O.; Ghareghani, S.; Takhshid, M.A. Diagnostic values of ischemia modified albumin in diabetes-related complications: A narrative review. J. Diabetes Metab. Disord. 2023, 22, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Gkana, A.; Papadopoulou, A.; Mermiri, M.; Beltsios, E.; Chatzis, D.; Malli, F.; Adamou, A.; Gourgoulianis, K.; Mavrovounis, G.; Pantazopoulos, I. Contemporary Biomarkers in Pulmonary Embolism Diagnosis: Moving beyond D-Dimers. J. Pers. Med. 2022, 12, 1604. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Quiles, J.; Sharma, R.; Sinha, M.; Avanzas, P.; Gaze, D.; Kaski, J.C. Ischemia-modified albumin concentrations in patients with peripheral vascular disease and exercise-induced skeletal muscle ischemia. Clin. Chem. 2004, 50, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Troxler, M.; Thompson, D.; Homer-Vanniasinkam, S. Ischaemic skeletal muscle increases serum ischaemia modified albumin. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 164–169. [Google Scholar] [CrossRef]
- Montagnana, M.; Lippi, G.; Fava, C.; Minuz, P.; Santonastaso, C.L.; Arosio, E.; Guidi, G.C. Ischemia-modified albumin and NT-prohormone-brain natriuretic peptide in peripheral arterial disease. Clin. Chem. Lab. Med. 2006, 44, 207–212. [Google Scholar] [CrossRef]
- Gunduz, A.; Mentese, A.; Turedi, S.; Karahan, S.C.; Mentese, U.; Eroglu, O.; Turkmen, S.; Turan, I.; Ucar, U.; Russell, R.; et al. Serum ischaemia-modified albumin increases in critical lower limb ischaemia. Emerg. Med. J. 2008, 25, 351–353. [Google Scholar] [CrossRef]
- Ma, S.G.; Wei, C.L.; Hong, B.; Yu, W.N. Ischemia-modified albumin in type 2 diabetic patients with and without peripheral arterial disease. Clinics 2011, 66, 1677–1680. [Google Scholar] [CrossRef]
- Feng, F.; Chen, Y.; Wang, G.; Huang, P.; Zhu, Q.; Zhou, B. Correlation of Serum CysC, IMA, and LP-PLA2 Levels With Type 2 Diabetes Mellitus Patients With Lower Extremity Atherosclerotic Occlusive Disease. Front. Surg. 2022, 9, 846470. [Google Scholar] [CrossRef]
- Özsin, K.K.; Engin, M.; Sanrı, U.S.; Toktaş, F.; Kahraman, N.; Huysal, K.; Üstündağ, Y.; Yavuz, Ş. Evaluation of the relationship between adjusted ischemia-modified albumin and the presence and severity of peripheral artery disease. Vascular 2024, 32, 603–611. [Google Scholar] [CrossRef]
- Hacker, M.; Hoyer, H.X.; la Fougère, C.; Akcakoyunlu, E.; Schuhmann, C.; Förster, S.; Weber, C.; Reincke, M.; Tiling, R.; Sohn, H.Y. Effects of peripheral vascular intervention on ischemia-modified albumin. Coron. Artery Dis. 2007, 18, 375–379. [Google Scholar] [CrossRef]
- Falkensammer, J.; Frech, A.; Duschek, N.; Gasteiger, S.; Stojakovic, T.; Scharnagl, H.; Huber, K.; Fraedrich, G.; Greiner, A. Prognostic relevance of ischemia-modified albumin and NT-proBNP in patients with peripheral arterial occlusive disease. Clin. Chim. Acta 2015, 438, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Nativel, M.; Schneider, F.; Saulnier, P.J.; Gand, E.; Ragot, S.; Meilhac, O.; Rondeau, P.; Burillo, E.; Cournot, M.; Potier, L.; et al. Prognostic Values of Inflammatory and Redox Status Biomarkers on the Risk of Major Lower-Extremity Artery Disease in Individuals With Type 2 Diabetes. Diabetes Care 2018, 41, 2162–2169. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Chang, L.; Liu, J.; Zhu, J.; Guo, S.; Wang, Y.; Zhou, Z.; Wei, X. Advancing precision medicine: The transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization. Cancer Biol. Med. 2025, 22, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021, 117, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Simes, J.; Robledo, K.P.; White, H.D.; Espinoza, D.; Stewart, R.A.; Sullivan, D.R.; Zeller, T.; Hague, W.; Nestel, P.J.; Glasziou, P.P.; et al. D-Dimer Predicts Long-Term Cause-Specific Mortality, Cardiovascular Events, and Cancer in Patients With Stable Coronary Heart Disease: LIPID Study. Circulation 2018, 138, 712–723, Correction in Circulation 2019, 139. [Google Scholar] [CrossRef]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Suárez, C.; Zeymer, U.; Limbourg, T.; Baumgartner, I.; Cacoub, P.; Poldermans, D.; Röther, J.; Bhatt, D.L.; Steg, P.G. Influence of polyvascular disease on cardiovascular event rates. Insights from the REACH Registry. Vasc. Med. 2010, 15, 259–265. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. Ischemia-modified albumin in rheumatic diseases: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2024, 12, e1324. [Google Scholar] [CrossRef]
- Sigvant, B.; Lundin, F.; Wahlberg, E. The Risk of Disease Progression in Peripheral Arterial Disease is Higher than Expected: A Meta-Analysis of Mortality and Disease Progression in Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef] [PubMed]
| Study (1st Author, Year) | Assay (as Reported) | Analysis of hs-cTn |
|---|---|---|
| Pohlhammer, 2014 [20] | hs-cTnT, 5th gen. Roche E170 platform | Categorical; <LoD (5 ng/L) defined as LoD/√2; ≥5 ng/L vs. <5 ng/L; and ≥14 ng/L (99th percentile) vs. <14 ng/L. |
| Linnemann, 2014 [21] | cTnT, 4th gen. Roche Elecsys (Cobas 6000 e601) | Categorical; cut-off = 0.01 ng/mL (99th percentile); ≥0.01 ng/mL vs. <0.01 ng/mL. |
| Otaki, 2015 [22] | hs-cTnT, 4th gen. Roche Elecsys 2010 | Continuous (log10 hsTnT) and tertiles (<0.90 ng/mL, 0.90–1.23 ng/mL, and >1.23 ng/mL); higher tertiles predicted MACE. |
| Hikita, 2015 [23] | hs-cTnT, Roche Elecsys | Continuous; normal range < 0.014 ng/mL; hs-cTnT higher in patients with CLTI vs. IC. |
| Szczeklik, 2018 [24] | hs-cTnT, Roche Elecsys 2010 | Post-procedural hs-cTnT ≥ 14 ng/L plus ≥ 30% relative increase from baseline defined as a MI. |
| Clemens, 2019 [25] | hs-cTnT, Roche Cobas e601 | Continuous; cut-off = 9 ng/L for predicting mortality in patients with PAD. |
| Cimaglia, 2021 [26] | hs-cTnT Roche Elecsys Cobas e601 | Continuous; cut-off = 25 ng/L for predicting MACE in patients with diabetes and CLTI (without known CAD). |
| Rammos, 2021 [27] | Troponin-ultra | Categorical; below vs. above 99th percentile (>40 ng/L vs. ≤40 ng/L). |
| Dobrilovic, 2025 [28] | hs-cTnI, Abbott Alinity I | Categorical; detectable vs. undetectable (>10 ng/L vs. <10 ng/L). |
| Study (1st Author, Year) | Assay (as Reported) | Analysis of IMA Values |
|---|---|---|
| Roy, 2004 [43] | ACB, Cobas MIRA PLUS | Continuous; baseline and serial peri-exercise IMA values inversely correlated with ABI. No fixed cut-off. |
| Troxler, 2006 [44] | ACB, Cobas MIRA PLUS | Continuous; preoperative IMA higher in patients with IC vs. AAA and controls, and increased with clamping in IC and AAA vs. controls; mild perioperative increase in controls. No fixed cut-off. |
| Montagnana, 2006 [45] | ACB, Modular System P | Continuous; no difference in patients with IC vs. control. No fixed cut-off. |
| Hacker, 2007 [50] | ACB, Modular System P | Continuous; IMA elevated at baseline and increased transiently after PVI in patients with IC. No fixed cut-off. |
| Gunduz, 2008 [46] | ACB | Results reported as absorbance units; IMA higher in patients with severe limb ischemia vs. controls. Cut-off = 0.22 absorbance units. |
| Ma, 2011 [47] | ACB, Cobas MIRA PLUS | Continuous; IMA higher in patients with PAD vs. those without PAD. No fixed cut-off. |
| Falkensammer, 2015 [51] | ACB, Modular System P | Continuous; IMA higher in IC patients who developed MACE. Prognostic cut-off >103.9 kU/L. |
| Nativel, 2018 [52] | ACB | Continuous and tertiles; high IMA associated with increased risk of major PAD in patients with diabetes. No fixed cut-off. |
| Feng, 2022 [48] | ACB | Continuous; IMA correlated with PAD severity in diabetic patients. No fixed cut-off. |
| Li, 2023 [40] | ELISA | Results reported as absorbance units; IMA increased with number of artery occlusions. No fixed cut-off |
| Özsin, 2024 [49] | ACB | Continuous; IMA higher in patients with IC vs. controls and correlated with disease severity. Cut-off = 0.802 U/mL predicted presence of PAD. |
| Dobrilovic, 2025 [28] | ELISA | Categorical; detectable vs. undetectable based on LoD (0.48 U/L). |
Cardiac troponin![]() |
| Strengths |
| Highly sensitive and specific for myocardial injury. |
| Correlates with PAD severity; higher levels are seen in advanced PAD (CLTI vs. IC). |
| Predictive value for MACE, mortality, and amputation in PAD patients. |
| Reflects subclinical myocardial injury and the presence of PVD in PAD patients. |
| Predicts future PAD development even in asymptomatic individuals. |
| Widely available and standardized assays. |
| Part of guideline-supported cardiovascular risk stratification. |
| Limitations |
| Heterogeneous cut-off values across studies limit the comparability of results. |
| Lack of randomized controlled trials specifically in PAD populations. |
| Non-specific elevation in renal failure, sepsis, heart failure, etc. |
| Unclear incremental predictive value beyond clinical characteristics and risk factors. |
Ischemia-modified albumin![]() |
| Strengths |
| Sensitive to ischemia, including skeletal muscle ischemia. |
| Reflects oxidative stress, acidosis, and free radical activity linked to ischemia. |
| Levels increase with PAD severity, especially in CLTI. |
| May predict ischemic events and all-cause mortality in PAD patients with CLTI. |
| May offer incremental prognostic information beyond clinical assessment. |
| Limitations |
| Less extensively studied than troponin; small, heterogeneous cohorts. |
| Heterogeneous assays and cut-off values across studies limit comparability of results. |
| Unclear incremental predictive value beyond traditional risk factors. |
| Non-specific elevation in non-ischemic oxidative stress conditions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boc, V.; Blinc, A.; Boc, A. The Role of High-Sensitivity Cardiac Troponin and Ischemia-Modified Albumin in Patients with Lower Extremity Peripheral Arterial Disease. Int. J. Mol. Sci. 2025, 26, 11214. https://doi.org/10.3390/ijms262211214
Boc V, Blinc A, Boc A. The Role of High-Sensitivity Cardiac Troponin and Ischemia-Modified Albumin in Patients with Lower Extremity Peripheral Arterial Disease. International Journal of Molecular Sciences. 2025; 26(22):11214. https://doi.org/10.3390/ijms262211214
Chicago/Turabian StyleBoc, Vinko, Aleš Blinc, and Anja Boc. 2025. "The Role of High-Sensitivity Cardiac Troponin and Ischemia-Modified Albumin in Patients with Lower Extremity Peripheral Arterial Disease" International Journal of Molecular Sciences 26, no. 22: 11214. https://doi.org/10.3390/ijms262211214
APA StyleBoc, V., Blinc, A., & Boc, A. (2025). The Role of High-Sensitivity Cardiac Troponin and Ischemia-Modified Albumin in Patients with Lower Extremity Peripheral Arterial Disease. International Journal of Molecular Sciences, 26(22), 11214. https://doi.org/10.3390/ijms262211214



