It’s a Trap!—Potential of Cathepsins in NET Formation
Abstract
1. Introduction
2. NET Formation Is Not Equal to NETosis
3. Cathepsins—An Overview
4. The Involvement of Cathepsins in Neutrophil Functions
4.1. Migration
4.2. Phagocytosis
4.3. Apoptosis
5. The Involvement of Cathepsins in NET Formation
5.1. The Dependence of NET Formation on Cathepsin G and Platelets
5.2. The Dependence of Neutrophil Activity on Cathepsin C
5.3. The Involvement of Cathepsins B and D in NET Formation
6. Pathological Consequences of Cathepsin-Mediated Formation of NETs
6.1. Enhancement of Inflammation
6.2. Thrombosis
6.3. Tissue Injury
6.4. Tumor Progression and Metastasis
7. Future Directions in Cathepsin-Targeted Therapies for NET-Associated Diseases
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| APCs | antigen-presenting cells |
| ARDS | acute respiratory distress syndrome |
| Baf A1 | bafilomycin A1 |
| Bid | BH3-interacting domain death agonist |
| C5a | component 5a |
| cAMP | cyclic adenosine monophosphate |
| CC1-KO | cell adhesion molecule 1 knock-out |
| CCL | chemokine (C-C motif) ligand |
| CitH3 | citrullinated histone H3 |
| COVID-19 | coronavirus disease 2019 |
| CRC | colorectal cancer |
| CtsG−/− | cathepsin G-deficient |
| CXCL | chemokine (C-X-C motif) ligand |
| DAMPs | damage-associated molecular patterns |
| DCs | dendritic cells |
| fMLP | N-formyl-methionyl-leucyl-phenylalanine |
| GP IIb/IIIa | glycoprotein IIb/IIIa |
| GPCRs | G-protein-coupled receptors |
| GSDMD | gasdermin D |
| HCC | hepatocellular carcinoma |
| HMGB1 | high mobility group box 1 |
| I/R | ischemia–reperfusion |
| ICs | immune complexes |
| IGF-1 | insulin-like growth factor 1 |
| IL | Interleukin |
| KLK14 | kallikrein 14 |
| MAP | mitogen-activated protein |
| MLKL | mixed lineage kinase domain-like protein |
| MPO | myeloperoxidase |
| MPO-AAV- | myeloperoxidase ANCA-associated vasculitis |
| NET | neutrophil extracellular trap |
| NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
| NOX | NADPH oxidase |
| NSPs | neutrophil serine proteases |
| PAD | peptidyl arginine deiminase |
| PAR | protease-activated receptor |
| PGD | primary graft dysfunction |
| PI3K | phosphoinositide 3-kinase |
| PLS | Papillon-Lefèvre syndrome |
| PMA | phorbol 12-myristate 13-acetate |
| PR3 | proteinase 3 |
| PS | phosphatidylserine |
| PSGL-1 | P-selectin glycoprotein ligand-1 |
| RA | rheumatoid arthritis |
| RAGE | receptor for advanced glycation end-products |
| rhsB1 | recombinant human serpin B1 |
| RIPKs | receptor-interacting protein kinases |
| ROS | reactive oxygen species |
| S1P | sphingosine-1-phosphate |
| S1PR2 | sphingosine-1-phosphate receptor 2 |
| SLC44A2 | solute carrier family 44 member 2 |
| SLE | systemic lupus erythematosus |
| SLPI | secretory leukocyte protease inhibitor |
| Smac | second mitochondria-derived activator of caspases |
| TLRs | Toll-like receptors |
| TNF | tumor necrosis factor |
| VIITT | vaccine-induced immune thrombotic thrombocytopenia |
| WT | Wild-type |
References
- Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 2020, 108, 377–396. [Google Scholar] [CrossRef]
- Jaboury, S.; Wang, K.; O’Sullivan, K.M.; Ooi, J.D.; Ho, G.Y. NETosis as an oncologic therapeutic target: A mini review. Front. Immunol. 2023, 14, 1170603. [Google Scholar] [CrossRef]
- Liew, P.X.; Kubes, P. The Neutrophil’s role during health and disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Chen, T.; Li, Y.; Sun, R.; Hu, H.; Liu, Y.; Herrmann, M.; Zhao, Y.; Muñoz, L.E. Receptor-Mediated NETosis on Neutrophils. Front. Immunol. 2021, 12, 775267. [Google Scholar] [CrossRef]
- Yousefi, S.; Mihalache, C.; Kozlowski, E.; Schmid, I.; Simon, H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009, 16, 1438–1444. [Google Scholar] [CrossRef]
- Kasperkiewicz, P.; Hempel, A.; Janiszewski, T.; Kołt, S.; Snipas, S.J.; Drag, M.; Salvesen, G.S. NETosis occurs independently of neutrophil serine proteases. J. Biol. Chem. 2020, 295, 17624–17631. [Google Scholar] [CrossRef]
- Salvesen, G.S.; Hempel, A.; Coll, N.S. Protease signaling in animal and plant-regulated cell death. FEBS J. 2016, 283, 2577–2598. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Takei, H.; Araki, A.; Watanabe, H.; Ichinose, A.; Sendo, F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc. Biol. 1996, 59, 229–240. [Google Scholar] [CrossRef]
- Kessenbrock, K.; Krumbholz, M.; Schönermarck, U.; Back, W.; Gross, W.L.; Werb, Z.; Gröne, H.J.; Brinkmann, V.; Jenne, D.E. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 2009, 15, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.; Subramanian, V.; et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 2013, 5, 178ra40. [Google Scholar] [CrossRef]
- Farkas, Á.Z.; Farkas, V.J.; Gubucz, I.; Szabó, L.; Bálint, K.; Tenekedjiev, K.; Nagy, A.I.; Sótonyi, P.; Hidi, L.; Nagy, Z.; et al. Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb. Res. 2019, 175, 46–52. [Google Scholar] [CrossRef]
- Leshner, M.; Wang, S.; Lewis, C.; Zheng, H.; Chen, X.A.; Santy, L.; Wang, Y. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 2012, 3, 307. [Google Scholar] [CrossRef]
- Metzler, K.D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. Myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014, 8, 883–896. [Google Scholar] [CrossRef]
- Nishibata, Y.; Arai, S.; Taniguchi, M.; Nakade, I.; Ogawa, H.; Kitano, S.; Hosoi, Y.; Shindo, A.; Nishiyama, R.; Masuda, S.; et al. Cathepsin C inhibition reduces neutrophil serine protease activity and improves activated neutrophil-mediated disorders. Nat. Commun. 2024, 15, 6519. [Google Scholar] [CrossRef] [PubMed]
- Chitsamankhun, C.; Siritongtaworn, N.; Fournier, B.P.J.; Sriwattanapong, K.; Theerapanon, T.; Samaranayake, L.; Porntaveetus, T. Cathepsin C in health and disease: From structural insights to therapeutic prospects. J. Transl. Med. 2024, 22, 777. [Google Scholar] [CrossRef]
- Kambara, H.; Liu, F.; Zhang, X.; Liu, P.; Bajrami, B.; Teng, Y.; Zhao, L.; Zhou, S.; Yu, H.; Zhou, W.; et al. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep. 2018, 22, 2924–2936. [Google Scholar] [CrossRef]
- Sollberger, G.; Choidas, A.; Burn, G.L.; Habenberger, P.; Di Lucrezia, R.; Kordes, S.; Menninger, S.; Eickhoff, J.; Nussbaumer, P.; Klebl, B.; et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 2018, 3, eaar6689. [Google Scholar] [CrossRef]
- Guillotin, F.; Fortier, M.; Portes, M.; Demattei, C.; Mousty, E.; Nouvellon, E.; Mercier, E.; Chea, M.; Letouzey, V.; Gris, J.C.; et al. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia. Front. Cell Dev. Biol. 2023, 10, 1099038. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood 2013, 122, 2784–2794. [Google Scholar] [CrossRef]
- Branzk, N.; Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 2013, 35, 513–530. [Google Scholar] [CrossRef]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- Huang, J.; Hong, W.; Wan, M.; Zheng, L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm 2022, 3, e162. [Google Scholar] [CrossRef]
- Pilsczek, F.H.; Salina, D.; Poon, K.K.H.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.Y.; Surette, M.G.; Sugai, M.; et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef]
- Thiam, H.R.; Wong, S.L.; Wagner, D.D.; Waterman, C.M. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef]
- Tsourouktsoglou, T.D.; Warnatsch, A.; Ioannou, M.; Hoving, D.; Wang, Q.; Papayannopoulos, V. Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Rep. 2020, 31, 107602. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, M.; Lindberg, M.R.; Kennett, M.J.; Xiong, N.; Wang, Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010, 207, 1853–1862. [Google Scholar] [CrossRef]
- Sollberger, G.; Tilley, D.O.; Zychlinsky, A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev. Cell 2018, 44, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W.; Brinkmann, V.; Jungblut, P.R.; Zychlinsky, A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5, e1000639. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, L.; Kaiser, R.; Stark, K. Thromboinflammation in long COVID—The elusive key to postinfection sequelae? J. Thromb. Haemost. 2023, 21, 2020–2031. [Google Scholar] [CrossRef]
- Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016, 22, 146–153. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil extracellular traps (NETs): Double-edged swords of innate immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- DeLeo, F.R.; Allen, L.-A.H. Phagocytosis and neutrophil extracellular traps. Fac. Rev. 2020, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Honey, K.; Rudensky, A.Y. Lysosomal cysteine proteases regulate antigen presentation. Nat. Rev. Immunol. 2003, 3, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta-Proteins Proteom. 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Maubach, G.; Schilling, K.; Rommerskirch, W.; Wenz, I.; Schultz, J.E.; Weber, E.; Wiederanders, B. The inhibition of cathepsin S by its propeptide–specificity and mechanism of action. Eur. J. Biochem. 1997, 250, 745–750. [Google Scholar] [CrossRef]
- Rossi, A.; Deveraux, Q.; Turk, B.; Sali, A. Comprehensive search for cysteine cathepsins in the human genome. Biol. Chem. 2004, 385, 363–372. [Google Scholar] [CrossRef]
- Geraghty, P.; Rogan, M.P.; Greene, C.M.; Boxio, R.M.M.; Poiriert, T.; O’Mahony, M.; Belaaouaj, A.; O’Neill, S.J.; Taggart, C.C.; McElvaney, N.G. Neutrophil Elastase Up-Regulates Cathepsin B and Matrix Metalloprotease-2 Expression. J. Immunol. 2007, 178, 5871–5878. [Google Scholar] [CrossRef]
- Brix, K.; McInnes, J.; Al-Hashimi, A.; Rehders, M.; Tamhane, T.; Haugen, M.H. Proteolysis mediated by cysteine cathepsins and legumain—Recent advances and cell biological challenges. Protoplasma 2015, 252, 755–774. [Google Scholar] [CrossRef]
- Sapolsky, A.I.; Howell, D.S.; Woessner, J.F. Neutral Proteases and Cathepsin D in Human Articular Cartilage. J. Clin. Investig. 1974, 53, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Naseem, R.H.; Hedegard, W.; Henry, T.D.; Lessard, J.; Sutter, K.; Katz, S.A. Plasma cathepsin D isoforms and their active metabolites increase after myocardial infarction and contribute to plasma renin activity. Basic Res. Cardiol. 2005, 100, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Sanman, L.E.; van der Linden, W.A.; Verdoes, M.; Bogyo, M. Bifunctional probes of cathepsin protease activity and pH reveal alterations in endolysosomal pH during bacterial infection. Cell Chem. Biol. 2016, 23, 793–804. [Google Scholar] [CrossRef]
- Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine cathepsins and their extracellular roles: Shaping the microenvironment. Cells 2019, 8, 264. [Google Scholar] [CrossRef]
- Vizovišek, M.; Fonović, M.; Turk, B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol. 2019, 75–76, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Seyrantepe, V.; Hinek, A.; Peng, J.; Fedjaev, M.; Ernest, S.; Kadota, Y.; Canuel, M.; Itoh, K.; Morales, C.R.; Lavoie, J.; et al. Enzymatic activity of lysosomal carboxypeptidase (cathepsin) a is required for proper elastic fiber formation and inactivation of endothelin-1. Circulation 2008, 117, 1973–1981. [Google Scholar] [CrossRef]
- Jackman, H.L.; Massad, M.G.; Sekosan, M.; Tan, F.; Brovkovych, V.; Marcic, B.M.; Erdös, E.G. Angiotensin 1-9 and 1-7 release in human heart role of cathepsin A. Hypertension 2002, 39, 976–981. [Google Scholar] [CrossRef]
- Akenhead, M.L.; Fukuda, S.; Schmid-Schoünbein, G.W.; Shin, H.Y. Fluid shear-induced cathepsin B release in the control of Mac1-dependent neutrophil adhesion. J. Leukoc. Biol. 2017, 102, 117–126. [Google Scholar] [CrossRef]
- Hirao, H.; Kojima, H.; Dery, K.J.; Nakamura, K.; Kadono, K.; Zhai, Y.; Farmer, D.G.; Kaldas, F.M.; Kupiec-Weglinski, J.W. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J. Clin. Investig. 2023, 133, e162940. [Google Scholar] [CrossRef]
- Ben-Ari, Z.; Mor, E.; Azarov, D.; Sulkes, J.; Tor, R.; Cheporko, Y.; Hochhauser, E.; Pappo, O. Cathepsin B inactivation attenuates the apoptotic injury induced by ischemia/reperfusion of mouse liver. Apoptosis 2005, 10, 1261–1269. [Google Scholar] [CrossRef]
- Korkmaz, B.; Caughey, G.H.; Chapple, I.; Gauthier, F.; Hirschfeld, J.; Jenne, D.E.; Kettritz, R.; Lalmanach, G.; Lamort, A.S.; Lauritzen, C.; et al. Therapeutic targeting of cathepsin C: From pathophysiology to treatment. Pharmacol. Ther. 2018, 190, 202–236. [Google Scholar] [CrossRef]
- Xiao, Y.; Cong, M.; Li, J.; He, D.; Wu, Q.; Tian, P.; Wang, Y.; Yang, S.; Liang, C.; Liang, Y.; et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021, 39, 423–437.e7. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fu, Y.; Gao, J.; Zhang, Q.; Zhang, N.; Zhang, Z.; Jiang, X.; Chen, C.; Wen, Z. Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury. Redox Biol. 2024, 74, 103231. [Google Scholar] [CrossRef]
- Pham, C.T.N.; Ivanovich, J.L.; Raptis, S.Z.; Zehnbauer, B.; Ley, T.J. Papillon-Lefѐvre Syndrome: Correlating the Molecular, Cellular, and Clinical Consequences of Cathepsin C/Dipeptidyl Peptidase I Deficiency in Humans. J. Immunol. 2004, 173, 7277–7281. [Google Scholar] [CrossRef] [PubMed]
- Conus, S.; Perozzo, R.; Reinheckel, T.; Peters, C.; Scapozza, L.; Yousefi, S.; Simon, H.U. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J. Exp. Med. 2008, 205, 685–698. [Google Scholar] [CrossRef]
- Conus, S.; Pop, C.; Snipas, S.J.; Salvesen, G.S.; Simon, H.U. Cathepsin D Primes Caspase-8 Activation by Multiple Intra-chain Proteolysis. J. Biol. Chem. 2012, 287, 21142–21151. [Google Scholar] [CrossRef]
- Kakehashi, H.; Nishioku, T.; Tsukuba, T.; Kadowaki, T.; Nakamura, S.; Yamamoto, K. Differential Regulation of the Nature and Functions of Dendritic Cells and Macrophages by Cathepsin E. J. Immunol. 2007, 179, 5728–5737. [Google Scholar] [CrossRef] [PubMed]
- Chain, B.M.; Free, P.; Medd, P.; Swetman, C.; Tabor, A.B.; Terrazzini, N. The Expression and Function of Cathepsin E in Dendritic Cells. J. Immunol. 2005, 174, 1791–1800. [Google Scholar] [CrossRef]
- Ketterer, S.; Gomez-Auli, A.; Hillebrand, L.E.; Petrera, A.; Ketscher, A.; Reinheckel, T. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 2017, 284, 1437–1454. [Google Scholar] [CrossRef]
- Carnevale, R.; Leopizzi, M.; Dominici, M.; D’Amati, G.; Bartimoccia, S.; Nocella, C.; Cammisotto, V.; D’Amico, A.; Castellani, V.; Baratta, F.; et al. PAD4-Induced NETosis Via Cathepsin G-Mediated Platelet-Neutrophil Interaction in ChAdOx1 Vaccine-Induced Thrombosis—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2023, 43, E396–E403. [Google Scholar] [CrossRef]
- Guan, X.; Lu, Y.; Zhu, H.; Yu, S.; Zhao, W.; Chi, X.; Xie, C.; Yin, Z. The Crosstalk Between Cancer Cells and Neutrophils Enhances Hepatocellular Carcinoma Metastasis via Neutrophil Extracellular Traps-Associated Cathepsin G Component: A Potential Therapeutic Target. J. Hepatocell. Carcinoma 2021, 8, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Hoylaerts, M.F. Neutrophil Cathepsin G Enhances Thrombogenicity of Mildly Injured Arteries via ADP-Mediated Platelet Sensitization. Int. J. Mol. Sci. 2022, 23, 744. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Homaei, A.; El-Seedi, H.R.; Akhtar, N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother. 2018, 105, 526–532. [Google Scholar] [CrossRef]
- Hao, L.; Zhu, G.; Lu, Y.; Wang, M.; Jules, J.; Zhou, X.; Chen, W. Deficiency of cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role. FEBS Lett. 2015, 589, 1331–1339. [Google Scholar] [CrossRef]
- Dennemärker, J.; Lohmüller, T.; Müller, S.; Aguilar, S.V.; Tobin, D.J.; Peters, C.; Reinheckel, T. Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol. Chem. 2010, 391, 913–922. [Google Scholar] [CrossRef]
- Stoka, V.; Turk, V.; Turk, B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016, 32, 22–37. [Google Scholar] [CrossRef]
- McComb, S.; Shutinoski, B.; Thurston, S.; Cessford, E.; Kumar, K.; Sad, S. Cathepsins Limit Macrophage Necroptosis through Cleavage of Rip1 Kinase. J. Immunol. 2014, 192, 5671–5678. [Google Scholar] [CrossRef]
- Gunčar, G.; Pungerčič, G.; Klemenčič, I.; Turk, V.; Turk, D. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 1999, 18, 793–803. [Google Scholar] [CrossRef]
- Kiuchi, S.; Tomaru, U.; Ishizu, A.; Imagawa, M.; Kiuchi, T.; Iwasaki, S.; Suzuki, A.; Otsuka, N.; Deguchi, T.; Shimizu, T.; et al. Expression of cathepsins V and S in thymic epithelial tumors. Hum. Pathol. 2017, 60, 66–74. [Google Scholar] [CrossRef]
- Ondr, J.K.; Pham, C.T.N. Characterization of murine cathepsin W and its role in cell-mediated cytotoxity. J. Biol. Chem. 2004, 279, 27525–27533. [Google Scholar] [CrossRef] [PubMed]
- Wex, T.; Bühling, F.; Wex, H.; Günther, D.; Malfertheiner, P.; Weber, E.; Brömme, D. Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum. J. Immunol. 2001, 167, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Sekirnik, A.; Premzl, A.; Bergant, V.Z.; Langerholc, T.; Turk, B.; Werle, B.; Golouh, R.; Repnik, U.; Jeras, M.; et al. Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp. Cell Res. 2005, 306, 103–113. [Google Scholar] [CrossRef]
- Obermajer, N.; Premzl, A.; Zavašnik Bergant, T.; Turk, B.; Kos, J. Carboxypeptidase cathepsin X mediates β2-integrin-dependent adhesion of differentiated U-937 cells. Exp. Cell Res. 2006, 312, 2515–2527. [Google Scholar] [CrossRef]
- Owen, C.A.; Campbell, E.J. The cell biology of leukocyte-mediated proteolysis. J. Leukoc. Biol. 1999, 65, 137–150. [Google Scholar] [CrossRef]
- Pham, C.T.N. Neutrophil serine proteases: Specific regulators of inflammation. Nat. Rev. Immunol. 2006, 6, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Drake, F.H.; Dodds, R.A.; James, I.E.; Connor, J.R.; Debouck, C.; Richardson, S.; Lee-Rykaczewski, E.; Coleman, L.; Rieman, D.; Barthlow, R.; et al. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 1996, 271, 12511–12516. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Sloane, B.F. Cysteine cathepsins: Multifunctional enzymes in cancer. Nat. Rev. Cancer 2006, 6, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Gocheva, V.; Joyce, J.A. Cysteine Cathepsins and the Cutting Edge of Cancer Invasion. Cell Cycle 2007, 6, 60–64. [Google Scholar] [CrossRef]
- Aggarwal, N.; Sloane, B.F. Cathepsin B: Multiple roles in cancer. Proteom.-Clin. Appl. 2014, 8, 427–437. [Google Scholar] [CrossRef]
- Zamolodchikova, T.S.; Tolpygo, S.M.; Svirshchevskaya, E.V. Cathepsin G—Not Only Inflammation: The Immune Protease Can Regulate Normal Physiological Processes. Front. Immunol. 2020, 11, 411. [Google Scholar] [CrossRef]
- Cowland, J.B.; Borregaard, N. Granulopoiesis and granules of human neutrophils. Immunol. Rev. 2016, 273, 11–28. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, H.; Zuo, X.; Luo, H. Cathepsin g and its role in inflammation and autoimmune diseases. Arch. Rheumatol. 2018, 33, 498–504. [Google Scholar] [CrossRef]
- Penczek, A.; Burster, T. Cell surface cathepsin G can be used as an additional marker to distinguish T cell subsets. Biomed. Rep. 2019, 10, 245–249. [Google Scholar] [CrossRef]
- Anes, E.; Pires, D.; Mandal, M.; Azevedo-Pereira, J.M. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front. Immunol. 2022, 13, 955407. [Google Scholar] [CrossRef] [PubMed]
- Nufer, O.; Corbett, M.; Walz, A. Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry 1999, 38, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Bistrian, R.; Escher, S.; Forssmann, W.-G.; Vakili, J.; Henschler, R.; Spodsberg, N.; Frimpong-Boateng, A.; Forssmann, U. Quantum Proteolytic Activation of Chemokine CCL15 by Neutrophil Granulocytes Modulates Mononuclear Cell Adhesiveness. J. Immunol. 2005, 175, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Wittamer, V.; Bondue, B.; Guillabert, A.; Vassart, G.; Parmentier, M.; Communi, D. Neutrophil-Mediated Maturation of Chemerin: A Link between Innate and Adaptive Immunity. J. Immunol. 2005, 175, 487–493. [Google Scholar] [CrossRef]
- Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 2003, 198, 977–985. [Google Scholar] [CrossRef]
- Repnik, U.; Starr, A.E.; Overall, C.M.; Turk, B. Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. J. Biol. Chem. 2015, 290, 13800–13811. [Google Scholar] [CrossRef]
- Stoller, M.L.; Basak, I.; Denorme, F.; Rowley, J.W.; Alsobrooks, J.; Parsawar, K.; Nieman, M.T.; Yost, C.C.; Hamilton, J.R.; Bray, P.F.; et al. Neutrophil cathepsin G proteolysis of protease-activated receptor 4 generates a novel, functional tethered ligand. Blood Adv. 2022, 6, 2303–2308. [Google Scholar] [CrossRef]
- Raptis, S.Z.; Shapiro, S.D.; Simmons, P.M.; Cheng, A.M.; Pham, C.T.N. Serine Protease Cathepsin G Regulates Adhesion-Dependent Neutrophil Effector Functions by Modulating Integrin Clustering. Immunity 2005, 22, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Faraday, N.; Schunke, K.; Saleem, S.; Fu, J.; Wang, B.; Zhang, J.; Morrell, C.; Dore, S. Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils. PLoS ONE 2013, 8, e71447. [Google Scholar] [CrossRef]
- Sambrano, G.R.; Huang, W.; Faruqi, T.; Mahrus, S.; Craik, C.; Coughlin, S.R. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem. 2000, 275, 6819–6823. [Google Scholar] [CrossRef]
- Aghdassi, A.A.; John, D.S.; Sendler, M.; Storck, C.; van den Brandt, C.; Krüger, B.; Weiss, F.U.; Mayerle, J.; Lerch, M.M. Absence of the neutrophil serine protease cathepsin G decreases neutrophil granulocyte infiltration but does not change the severity of acute pancreatitis. Sci. Rep. 2019, 9, 16774. [Google Scholar] [CrossRef]
- Hamon, Y.; Legowska, M.; Hervé, V.; Dallet-Choisy, S.; Marchand-Adam, S.; Vanderlynden, L.; Demonte, M.; Williams, R.; Scott, C.J.; Si-Tahar, M.; et al. Neutrophilic cathepsin C is maturated by a multistep proteolytic process and secreted by activated cells during inflammatory lung diseases. J. Biol. Chem. 2016, 291, 8486–8499. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.D.L.; Canetti, C.; Souto, J.T.; Silva, J.S.; Hogaboam, C.M.; Ferreira, S.H.; Cunha, F.Q. MIP-1α[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential release of TNF-α and LTB4. J. Leukoc. Biol. 2005, 78, 167–177. [Google Scholar] [CrossRef]
- Hashizume, M.; Higuchi, Y.; Uchiyama, Y.; Mihara, M. IL-6 plays an essential role in neutrophilia under inflammation. Cytokine 2011, 54, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front. Immunol. 2020, 11, 1066. [Google Scholar] [CrossRef]
- Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 2005, 23, 197–223. [Google Scholar] [CrossRef]
- Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases. Pharmacol. Rev. 2010, 62, 726–759. [Google Scholar] [CrossRef]
- MacIvor, D.M.; Shapiro, S.D.; Pham, C.T.N.; Belaaouaj, A.; Abraham, S.N.; Ley, T.J. Normal Neutrophil Function in Cathepsin G-Deficient Mice. Blood 1999, 94, 4282–4293. [Google Scholar] [CrossRef]
- Voronina, M.V.; Frolova, A.S.; Kolesova, E.P.; Kuldyushev, N.A.; Parodi, A.; Zamyatnin, A.A. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int. J. Mol. Sci. 2024, 25, 4087. [Google Scholar] [CrossRef]
- Blomgran, R.; Zheng, L.; Stendahl, O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J. Leukoc. Biol. 2007, 81, 1213–1223. [Google Scholar] [CrossRef]
- Geering, B.; Simon, H.U. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 2011, 18, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Dejas, L.; Santoni, K.; Meunier, E.; Lamkanfi, M. Regulated cell death in neutrophils: From apoptosis to NETosis and pyroptosis. Semin. Immunol. 2023, 70, 101849. [Google Scholar] [CrossRef]
- Baumann, M.; Pham, C.T.N.; Benarafa, C. SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G. Blood 2013, 121, 3900–3907. [Google Scholar] [CrossRef]
- Burgener, S.S.; Leborgne, N.G.F.; Snipas, S.J.; Salvesen, G.S.; Bird, P.I.; Benarafa, C. Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep. 2019, 27, 3646–3656.e5. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.R.; Storey, R.F. The role of platelets in inflammation. Thromb. Haemost. 2015, 114, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ. Res. 2018, 122, 337–351. [Google Scholar] [CrossRef]
- Watson, S.P.; Morgan, N.V.; Harrison, P.; Lowe, G. The vascular function of platelets. In Hoffbrand’s Postgraduate Haematology, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2025; pp. 782–797. [Google Scholar] [CrossRef]
- Carnevale, R.; Sciarretta, S.; Valenti, V.; di Nonno, F.; Calvieri, C.; Nocella, C.; Frati, G.; Forte, M.; d’Amati, G.; Pignataro, M.G.; et al. Low-grade endotoxaemia enhances artery thrombus growth via Toll-like receptor 4: Implication for myocardial infarction. Eur. Heart J. 2020, 41, 3156–3165. [Google Scholar] [CrossRef]
- Bennett, J.S. Structure and function of the platelet integrin αIIbβ3. J. Clin. Investig. 2005, 115, 3363–3369. [Google Scholar] [CrossRef] [PubMed]
- de Boer, O.J.; Li, X.; Teeling, P.; Mackaay, C.; Ploegmakers, H.J.; van der Loos, C.M.; Daemen, M.J.; de Winter, R.J.; van der Wal, A.C. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb. Haemost. 2013, 109, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Massberg, S.; Grahl, L.; Von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Elaskalani, O.; Razak, N.B.A.; Metharom, P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun. Signal. 2018, 16, 24. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, M.; Ding, L.; Xia, Y.; Luo, L.; Lu, X.; Zhang, X.; Deng, D.Y.B. High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca2+/PAD4 pathway to exacerbate acute pancreatitis. Front. Immunol. 2023, 14, 1265344. [Google Scholar] [CrossRef]
- Wang, T.; Rathee, A.; Pemberton, P.A.; Lood, C. Exogenous serpin B1 restricts immune complex-mediated NET formation via inhibition of a chymotrypsin-like protease and enhances microbial phagocytosis. J. Biol. Chem. 2024, 300, 107533. [Google Scholar] [CrossRef]
- Constantinescu-Bercu, A.; Grassi, L.; Frontini, M.; Salles-Crawley, I.I.; Woollard, K.J.; Crawley, J.T.B. Activated αiibβ3 on platelets mediates flow-dependent netosis via slc44a2. eLife 2020, 9, e53353. [Google Scholar] [CrossRef] [PubMed]
- Bryzek, D.; Gasiorek, A.; Kowalczyk, D.; Santocki, M.; Ciaston, I.; Dobosz, E.; Kolaczkowska, E.; Kjøge, K.; Kantyka, T.; Lech, M.; et al. Non-classical neutrophil extracellular traps induced by PAR2-signaling proteases. Cell Death Dis. 2025, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.J.; Lipsky, P.E.; Thiele, D.L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 1993, 268, 2458–2467. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Clemmensen, S.N.; Dahl, S.L.; Østergaard, O.; Heegaard, N.H.; Glenthøj, A.; Nielsen, F.C.; Borregaard, N. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Investig. 2014, 124, 4539–4548. [Google Scholar] [CrossRef]
- Roberts, H.; White, P.; Dias, I.; McKaig, S.; Veeramachaneni, R.; Thakker, N.; Grant, M.; Chapple, I. Characterization of neutrophil function in Papillon-Lefèvre syndrome. J. Leukoc. Biol. 2016, 100, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Klose, F.P.S.; Björnsdottir, H.; Rudin, A.D.; Persson, T.; Khamzeh, A.; Sundqvist, M.; Thorbert-Mros, S.; Dieckmann, R.; Christenson, K.; Bylund, J. A rare CTSC mutation in Papillon-Lefèvre Syndrome results in abolished serine protease activity and reduced NET formation but otherwise normal neutrophil function. PLoS ONE 2021, 16, e0261724. [Google Scholar] [CrossRef]
- Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Yao, S.J.; Yang, H.; Liu, S.J.; Wang, Y.J. Autophagy: Regulator of cell death. Cell Death Dis. 2023, 14, 648. [Google Scholar] [CrossRef]
- Wang, W.; Su, J.; Kang, W.; Yan, M.; Pan, J.; Zhang, X. Corrigendum: Neutrophil extracellular traps in autoimmune diseases: Analysis of the knowledge map. Front. Immunol. 2023, 14, 1095421, Correction in Front. Immunol. 2023, 14, 1158560. https://doi.org/10.3389/fimmu.2023.1158560. [Google Scholar] [CrossRef]
- Monsalve, D.M.; Acosta-Ampudia, Y.; Acosta, N.G.; Celis-Andrade, M.; Şahin, A.; Yilmaz, A.M.; Shoenfeld, Y.; Ramírez-Santana, C. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J. Transl. Autoimmun. 2025, 10, 100280. [Google Scholar] [CrossRef]
- Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.; Libby, P. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [Google Scholar] [CrossRef]
- Kulkarni, P.P.; Ekhlak, M.; Dash, D. Non-canonical non-genomic morphogen signaling in anucleate platelets: A critical determinant of prothrombotic function in circulation. Cell Commun. Signal. 2024, 22, 13. [Google Scholar] [CrossRef]
- Stark, K.; Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil extracellular traps: From physiology to pathology. Cardiovasc. Res. 2022, 118, 2737–2753. [Google Scholar] [CrossRef]
- Mangrolia, U.; Osborne, J.W. Probiotics in counteracting the role of neutrophils in cancer metastasis. Vaccines 2021, 9, 1306. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Li, T.; Wang, H. NETosis in myocardial ischemia-reperfusion injury: From mechanisms to therapies (Review). Biomed. Rep. 2025, 23, 113. [Google Scholar] [CrossRef]
- Shimoda, N.; Fukazawa, N.; Nonomura, K.; Fairchild, R.L. Cathepsin G Is Required for Sustained Inflammation and Tissue Injury after Reperfusion of Ischemic Kidneys. Am. J. Pathol. 2007, 170, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Wang, X.; Wang, Z.; Du, Y.; Zuo, X.; Chen, J.; Sun, R.; Zhang, Q.; Lin, L.; Yang, Y.; et al. CTSG Suppresses Colorectal Cancer Progression through Negative Regulation of Akt/mTOR/Bcl2 Signaling Pathway. Int. J. Biol. Sci. 2023, 19, 2220–2233. [Google Scholar] [CrossRef]
- Ortenberg, R.; Sapoznik, S.; Zippel, D.; Shapira-Frommer, R.; Itzhaki, O.; Kubi, A.; Zikich, D.; Besser, M.J.; Schachter, J.; Markel, G. Serum CEACAM1 Elevation Correlates with Melanoma Progression and Failure to Respond to Adoptive Cell Transfer Immunotherapy. J. Immunol. Res. 2015, 2015, 902137. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cao, J.; Zhao, C.; Li, X.; Zhou, C.; Hirsch, F.R. TIM-3, a promising target for cancer immunotherapy. Onco. Targets. Ther. 2018, 11, 7005–7009. [Google Scholar] [CrossRef]
- Adrover, J.M.; Han, X.; Sun, L.; Fujii, T.; Sivetz, N.; Daßler-Plenker, J.; Evans, C.; Peters, J.; He, X.Y.; Cannon, C.D.; et al. Neutrophils drive vascular occlusion, tumour necrosis and metastasis. Nature 2025, 645, 484–495. [Google Scholar] [CrossRef]
- Biron, B.M.; Chung, C.S.; O’Brien, X.M.; Chen, Y.; Reichner, J.S.; Ayala, A. Cl-Amidine prevents histone 3 citrullination and neutrophil extracellular trap formation, and improves survival in a murine sepsis model. J. Innate Immun. 2017, 9, 22–32. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Burgel, P.-R.; Daley, C.L.; De Soyza, A.; Haworth, C.S.; Mauger, D.; Loebinger, M.R.; McShane, P.J.; Ringshausen, F.C.; Blasi, F.; et al. Phase 3 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis. N. Engl. J. Med. 2025, 392, 1569–1581. [Google Scholar] [CrossRef]
- Greco, M.N.; Hawkins, M.J.; Powell, E.T.; Almond, H.R.; Corcoran, T.W.; De Garavilla, L.; Kauffman, J.A.; Recacha, R.; Chattopadhyay, D.; Andrade-Gordon, P.; et al. Nonpeptide inhibitors of cathepsin G: Optimization of a novel β-ketophosphonic acid lead by structure-based drug design. J. Am. Chem. Soc. 2002, 124, 3810–3811. [Google Scholar] [CrossRef] [PubMed]
- De Garavilla, L.; Greco, M.N.; Sukumar, N.; Chen, Z.W.; Pineda, A.O.; Mathews, F.S.; Di Cera, E.; Giardinoi, E.C.; Wells, G.I.; Haertlein, B.J.; et al. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: Molecular mechanisms and anti-inflammatory activity in vivo. J. Biol. Chem. 2005, 280, 18001–18007. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Korkmaz, B.; Kraft, P.; Mayer, T.; Sayour, A.A.; Grundl, M.A.; Domain, R.; Karck, M.; Szabó, G.; Korkmaz-Icöz, S. Pharmacological inhibition of the cysteine protease cathepsin C improves graft function after heart transplantation in rats. J. Transl. Med. 2023, 21, 799. [Google Scholar] [CrossRef]
- Gobbetti, T.; Cenac, N.; Motta, J.P.; Rolland, C.; Martin, L.; Andrade-Gordon, P.; Steinhoff, M.; Barocelli, E.; Vergnolle, N. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. Am. J. Pathol. 2012, 180, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Kam, C.M.; Götz, M.G.; Koot, G.; McGuire, M.; Thiele, D.; Hudig, D.; Powers, J.C. Design and evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C). Arch. Biochem. Biophys. 2004, 427, 123–134. [Google Scholar] [CrossRef]
- Orlowski, G.M.; Sharma, S.; Colbert, J.D.; Bogyo, M.; Robertson, S.A.; Kataoka, H.; Chan, F.K.; Rock, K.L. Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. J. Leukoc. Biol. 2017, 102, 7–17. [Google Scholar] [CrossRef]
- Kreideweiss, S.; Schänzle, G.; Schnapp, G.; Vintonyak, V.; Grundl, M.A. BI 1291583: A novel selective inhibitor of cathepsin C with superior in vivo profile for the treatment of bronchiectasis. Inflamm. Res. 2023, 72, 1709–1717. [Google Scholar] [CrossRef]
- Tromsdorf, N.; Ullrich, F.T.H.; Rethmeier, M.; Sommerhoff, C.P.; Schaschke, N. E-64c-Hydrazide Based Cathepsin C Inhibitors: Optimizing the Interactions with the S1’-S2’ Area. ChemMedChem 2023, 18, e202300218. [Google Scholar] [CrossRef]
- Ottonello, L.; Epstein, A.L.; Mancini, M.; Dapino, P.; Dallegri, F. Monoclonal LYM-1 antibody-dependent cytolysis by human neutrophils exposed to GM-CSF: Auto-regulation of target cell attack by cathepsin G. J. Leukoc. Biol. 2004, 75, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, B.; Lesner, A.; Wysocka, M.; Gieldon, A.; Håkansson, M.; Gauthier, F.; Logan, D.T.; Jenne, D.E.; Lauritzen, C.; Pedersen, J. Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C. Biochem. Pharmacol. 2019, 164, 349–367. [Google Scholar] [CrossRef]






| Cathepsin | Main Functions | References |
|---|---|---|
| cathepsin A | regulates blood pressure via endothelin-1 degradation; degrades bioactive peptides (bradykinin, angiotensin, oxytocin, endothelin-1); protects β-galactosidase and neuraminidase; essential for elastic fiber formation and vascular integrity | [46,47] |
| cathepsin B | promotes apoptosis via Bid cleavage and lysosomal membrane permeabilization; regulates autophagy-related NET formation via S1P–S1PR2 signaling; inhibition accelerates S1P-induced NETosis; facilitates neutrophil extravasation by cleaving integrins (CD11b/CD18) | [48,49,50] |
| cathepsin C | is a master activator of neutrophil serine proteases (NE, PR3, cathepsin G); induces NETosis via NOX-dependent ROS and p38 MAPK signaling; activates PR3–IL-1β–NF-κB axis in neutrophils, promoting NET formation; promotes lung metastasis and ischemia–reperfusion injury via IL-1β–p38–ROS pathway; mutations in the gene encoding cathepsin C cause Papillon–Lefèvre syndrome with reduced NET formation | [51,52,53,54] |
| cathepsin D | mediates MHC-II antigen processing and apoptosis via Bid/Bax cleavage; activates caspase-8 and caspase-3 in neutrophils during ROS-dependent apoptosis; regulates autophagy and S1P-related NET formation with cathepsin B; maintains lysosomal integrity and cell death balance | [49,55,56] |
| cathepsin E | regulates endosomal/lysosomal microenvironment and pH; participates in MHC-II–mediated antigen presentation; modulates macrophage and dendritic cell differentiation; is linked to inflammatory responses in skin and mucosal tissues | [57,58] |
| cathepsin F | is involved in invariant chain (Ii) processing and MHC-II antigen presentation; plays a role in immune regulation and inherited lysosomal diseases | [59] |
| cathepsin G | cleaves gasdermin D (GSDMD), linking pyroptosis and NETosis; promotes platelet–neutrophil interactions via PAR-1/PAR-4 and ADP-dependent signaling; enhances NET-driven thrombosis and tumor metastasis (HCC, breast cancer); activates chemokines (CCL15, CXCL5) to promote neutrophil migration; regulates extracellular matrix remodeling. | [18,60,61,62] |
| cathepsin H | participates in prohormone processing; regulates cell cycle progression; contributes to proteolytic homeostasis in endolysosomes | [63] |
| cathepsin K | regulates TLR signaling and β-endorphin processing in the brain; controls osteoimmune crosstalk and bone resorption; inhibition prevents inflammation-driven tissue damage | [64] |
| cathepsin L | regulates apoptosis and autophagy; is involved in MHC-II antigen processing and viral entry; degrades α-synuclein and tau; controls cell cycle and prohormone maturation; contributes to neuronal and aging-related degeneration. | [65,66] |
| cathepsin S | cleaves RIP1 kinase and regulates necroptosis; activates IL-1β and inflammasome components; participates in MHC-II antigen presentation and Li chain degradation; potential target in inflammatory and autoimmune diseases. | [67,68] |
| cathepsin V | is expressed in thymic epithelial cells; regulates NK and CD8+ T-cell differentiation; associated with epithelial tumors and immune modulation. | [69] |
| cathepsin W | regulates IL-2 expression in NK cells; it is a component of endoplasmic reticulum proteolytic machinery in cytotoxic lymphocytes. | [70,71] |
| cathepsin X/Z/P | regulates phagocytosis and intracellular protein turnover; cleaves neuron-specific enolase; mediates β2-integrin-dependent adhesion and T-cell migration; may participate in immune cell invasion and tissue remodeling. | [72,73] |
| Medicines | Target | Indications | Advantages | Limitations | References |
|---|---|---|---|---|---|
| Brensocatib | cathepsin C | bronchiectasis | significantly reduces the annualized pulmonary exacerbation rate | long-term safety under evaluation | [140] |
| β-Ketophosphonic Acid 1 | cathepsin G | inflammation, tissue remodeling | reversible and competitive inhibition with high selectivity | incomplete biological characterization | [141] |
| JNJ-10311795 | cathepsin G | inflammation | inhibitor of cathepsin G and mast cell chymase; has in vivo anti-inflammatory effects | experimental; limited translational data | [142] |
| BI-9740 | cathepsin C | heart transplantation | reduces NE and cathepsin G activity, ameliorates histopathological injury, and limits neutrophil infiltration | preclinical stage | [143] |
| E-64 | cathepsin K cathepsin L cathepsin S cathepsin B cathepsin H | post-ischemic intestinal inflammation | protease inhibition reduces plasma proteolytic activity and granulocyte recruitment | non-specific; limited insight into individual cathepsin roles | [144] |
| FUT-175 | serine proteases (cathepsin-related downstream pathway) | intestinal ischemia–reperfusion injury | decreases granulocyte recruitment and inflammatory infiltration | preclinical stage; broad-spectrum protease inhibition | [144] |
| Ala-Hph-VS-Ph, Nva-Hph-VS-Ph | cathepsin C | neutrophil degranulation suppression and cytotoxicity | highly selective; non-toxic in vitro | limited in vivo validation; indirect neutrophil effects | [145] |
| K777 | cathepsin B cathepsin L | inflammation | inhibits cathepsin C-dependent activation of neutrophil proteases and IL-1β | broad target profile; potential off-target risks | [146] |
| MOD06051 | cathepsin C | MPO–AAV | reduces NSP activity (NE, PR3, cathepsin G) and NET formation, ameliorated MPO-AAV | preclinical stage | [16] |
| BI 1291583 | cathepsin C | bronchiectasis | inhibits activation of NE, PR3, and cathepsin G; strong in vivo pharmacokinetic profile | preclinical stage | [147] |
| E-64c | cathepsin C | neutrophil-dominant inflammatory disorders | suppresses NE activation; optimized hydrazide-based inhibitor design | in vitro only; limited biological testing | [148] |
| SerpinB1, Serpin B6 | cathepsin G | bone marrow neutropenia, neutrophil protection | promote neutrophil survival; prevent cathepsin G-mediated necrosis | may affect other immune cells; protease–serpin imbalance risk | [106,107] |
| Z-Gly Leu-Phe-CMK | cathepsin G | regulation of cathepsin G–mediated neutrophil cytotoxicity during antibody-dependent cellular cytotoxicity | potent, specific, irreversible cathepsin G inhibitor; minimal effect on NE/PR3 | no pharmacological or in vivo validation | [149] |
| IcatCXPZ-01 | cathepsin C | rheumatoid arthritis | strong anti-arthritic efficacy; reduces arthritis scores and paw swelling | preclinical stage; long-term safety not yet established | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruchniak, P.; Niedzielska, A.; Nejfeld, R.; Wyżewski, Z.; Gregorczyk-Zboroch, K.P.; Szulc-Dąbrowska, L.; Gieryńska, M. It’s a Trap!—Potential of Cathepsins in NET Formation. Int. J. Mol. Sci. 2025, 26, 11213. https://doi.org/10.3390/ijms262211213
Pruchniak P, Niedzielska A, Nejfeld R, Wyżewski Z, Gregorczyk-Zboroch KP, Szulc-Dąbrowska L, Gieryńska M. It’s a Trap!—Potential of Cathepsins in NET Formation. International Journal of Molecular Sciences. 2025; 26(22):11213. https://doi.org/10.3390/ijms262211213
Chicago/Turabian StylePruchniak, Pola, Adrianna Niedzielska, Rafał Nejfeld, Zbigniew Wyżewski, Karolina P. Gregorczyk-Zboroch, Lidia Szulc-Dąbrowska, and Małgorzata Gieryńska. 2025. "It’s a Trap!—Potential of Cathepsins in NET Formation" International Journal of Molecular Sciences 26, no. 22: 11213. https://doi.org/10.3390/ijms262211213
APA StylePruchniak, P., Niedzielska, A., Nejfeld, R., Wyżewski, Z., Gregorczyk-Zboroch, K. P., Szulc-Dąbrowska, L., & Gieryńska, M. (2025). It’s a Trap!—Potential of Cathepsins in NET Formation. International Journal of Molecular Sciences, 26(22), 11213. https://doi.org/10.3390/ijms262211213

