The Functional Role of Polyphenols Across the Human Lifespan
Abstract
1. Introduction
2. Polyphenols in Early Life (Infancy to Adolescence)
2.1. Prenatal and Lactational Polyphenol Exposure
2.2. Polyphenol Effects in Infancy
2.3. Polyphenol Effects in Childhood
3. Adulthood: Metabolic Health and Disease Prevention
3.1. Cardiovascular Protection
3.2. Insulin Sensitivity and Anti-Obesity Effects
3.3. Mood and Mental Health
4. Elderly Population: Longevity and Functional Preservation
4.1. Neurodegeneration Prevention
4.2. Anti-Inflammatory and Antioxidant Support
4.3. Muscle and Bone Health
4.4. Anti-Aging and Longevity-Promoting Effects of Polyphenols
| Polyphenol/ Compound | Dosage | Usage | Effects | References |
|---|---|---|---|---|
| Liposomal Curcumin, Resveratrol | In vivo | 200 mg/day of curcuminoids and 75 mg/day of resveratrol for 2 months—Orally administered as an aqueous solution prepared in liposomal form, together with dutasteride | Increased acute muscle activation in ALS patients; an increase in total activation of upper extremity muscles was observed in fasciculations (involuntary muscle twitching) | [94] |
| Resveratrol | In vitro | 15 µM—Loaded onto solid lipid nanoparticles and embedded in cross-linked hyaluronic acid hydrogel; drug delivery system | During the treatment of diabetes-related periodontitis, polyphenols exhibited anti-inflammatory, antioxidant, and bone-regenerating properties | [33] |
| Oleuropein and Polydatin | In vitro | 3 nM oleuropein and 1.5 nM polydatin doses alone or in combination—Experimental condition | Improved muscle and bone metabolism; promoted the differentiation and development of osteoblasts (bone-forming cells) and myoblasts (muscle-forming cells) | [93] |
| Avenantramid-C | In vivo and in vitro models | 6 mg/kg/day in mouse models. In in vitro experiments, 50 µM/day—Orally, in mouse models of Alzheimer’s disease (5xFAD and Tg2576); in vitro conditions in BV2 microglial cell models | Prevented or slowed progression of Alzheimer’s disease; preserved cognitive function, restored and sustained long-term potentiation | [34] |
| Resveratrol | In vitro | 10 µg/mL—Experimental condition | Prevented neurotoxicity; increased cell viability; increased mitochondrial biogenesis and reduced production of reactive oxygen species | [18] |
| Phenolic compounds in Xianhu tea water extract | In vitro and in vivo | In C. elegans experiments, low concentration (L) was 1 mg/mL and high concentration (H) was 4 mg/mL—Xianhu tea powder obtained from tea leaves was inoculated onto agar plates with E. coli OP50 on Caenorhabditis elegans (C. elegans) nematodes | Strong antioxidant and anti-aging properties; C. elegans lifespan was extended, with a 23.50% and 21.07% longer lifespan observed compared to the control group | [101] |
| Glukozil Hesperidin | In vivo | 1% G-Hes to drinking water for 4 weeks—Experimental condition | Prevented tubulointerstitial fibrosis and immune activation in diabetic nephropathy in mice | [11] |
| Raisin Polyphenol Extract | In vitro and in vivo | 50, 100 and 200 µg/mL in cell studies; 100, 200 and 400 mg/kg/day—Experimental condition and oral gavage in mice | Demonstrated antioxidant and anti-aging effects in mice | [91] |
| Grape Pomace | In vivo | 1 gGP/kg (E1), 5 gGP/kg (E2), 10 gGP/kg (E3) and 15 gGP/kg (E4) were given three times a day for 90 days—In feed, throughout the experiment | Improved growth performance in pigs; supported intestinal morphology; improved anti-inflammatory effect and antioxidant activity | [88] |
| Pandanus amaryllifolius Roxb. Polyphenol Extract | In vivo | 100 mg/kg/day (low dose) and 200 mg/kg/day (high dose)—Orally | Alleviated non-alcoholic fatty liver disease in mice | [90] |
| Pomegranate Extract | In vitro | 5 g pomegranate extract for in vitro digestion; 500 mg digested residue per tube for fermentation—Simulated in vitro human digestion (oral, gastric, intestinal) followed by in vitro fermentation with gut microbiota from healthy, obese, and celiac individuals | Modulated functionality of the gut microbiota | [102] |
| Polyphenols Extracted from Rosa roxburghii Tratt Pomace | In vitro | 50 µg/mL and 100 µg/mL concentrations were used for cell studies—Experimental condition | Demonstrated anti-inflammatory effects in LPS-activated macrophages; demonstrated antioxidant effects with higher DPPH and ABTS radical scavenging capacity than vitamin C | [89] |
| Houttuynia cordata | In vitro | 250 µg/mL and 500 µg/mL—Applied on NGM agar plates as dietary supplement | Decreased lipofuscin, a pigment associated with aging, demonstrating powerful antioxidant and anti-aging properties | [103] |
| Grape Seed Polyphenol Extract | In vivo | 100 µg/mL—Experimental condition | Stroke caused by amyloid-beta improved significantly; the lifespan of model organisms increased | [81] |
| Black ginger (Kaempferia parviflora) extract | In vivo | 8 weeks of dietary supplementation with a feed containing 3% (w/w)—Administered orally to mice by mixing it into their diet | Increase in submaximal endurance exercise capacity and daily voluntary wheel running distance | [95] |
| Oleuropein aglycone and Hydroxytyrosol | In vitro | 12.5, 25, and 50 µM—Tested in vitro on neuronal and microglial cell models | Decreased release of proinflammatory cytokines (IL-6, IL-8, IP-10, RANTES, MIP1b); damage to neuronal cells was alleviated | [78] |
| Quercetin | In vitro | 300 µM—Added to minimal medium/2% glucose culture at onset of chronological aging | Significantly increased chronological lifespan in yeast | [96] |
| Quercetin | In vivo | 1, 10, 50, and 100 µM—In feed, throughout the experiment | Prevented excessive proliferation of intestinal stem cells (ISCs) in Drosophila, maintained intestinal homeostasis, and extended lifespan | [97] |
| Phlorizin | In vivo | 1 µM, 100 µM, and 1000 µM—Experimental condition | Showed strong antioxidant and anti-aging properties, extended average and maximum lifespan | [100] |
| Chicoric Acid (CA) | In vivo | 40 mg/kg/day for 12 days—Orally administered in an MPTP-induced mouse model | Prevented neuroinflammation and neurodegeneration | [82] |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Beltrán-Velasco, A.I.; Rubio-Zarapuz, A.; Martínez-Guardado, I.; Valcárcel-Martín, R.; Tornero-Aguilera, J.F. Functional and Therapeutic Roles of Plant-Derived Antioxidants in Type 2 Diabetes Mellitus: Mechanisms, Challenges, and Considerations for Special Populations. Antioxidants 2025, 14, 725. [Google Scholar] [CrossRef]
- Ahmed, Z.S.O.; Khan, E.; Elias, N.; Elshebiny, A.; Dou, Q. Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management. Biomolecules 2025, 15, 629. [Google Scholar] [CrossRef] [PubMed]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.; Li, Q.; Kang, X.; Li, Y.; Gong, C.; Liu, Y.; Chen, H. Physiological Functions of the By-Products of Passion Fruit: Processing, Characteristics and Their Applications in Food Product Development. Foods 2025, 14, 1643. [Google Scholar] [CrossRef]
- Ciupei, D.; Colişar, A.; Leopold, L.; Stănilă, A.; Diaconeasa, Z.M. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024, 13, 4131. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Zeng, F. Biological Functions and Health Benefits of Flavonoids in Fruits and Vegetables: A Contemporary Review. Foods 2025, 14, 155. [Google Scholar] [CrossRef]
- Di Credico, A.; Gaggi, G.; Izzicupo, P.; Bucci, I.; Di Baldassarre, A. Resveratrol Enhances the Cytotoxic Activity of Lymphocytes from Menopausal Women. Antioxidants 2021, 10, 1914. [Google Scholar] [CrossRef]
- Ribeiro, E.; Vale, N. The Role of Resveratrol in Cancer Management: From Monotherapy to Combination Regimens. Targets 2024, 2, 307–326. [Google Scholar] [CrossRef]
- Ehambarampillai, D.; Wan, M.L.Y. A Comprehensive Review of Schisandra Chinensis Lignans: Pharmacokinetics, Pharmacological Mechanisms, and Future Prospects in Disease Prevention and Treatment. Chin. Med. 2025, 20, 47. [Google Scholar] [CrossRef]
- Hashimoto, K.; Yoshida, Y.; Kamesawa, M.; Yazawa, N.; Tominaga, H.; Aisyah, R.; Chen, S.; Bumrungkit, C.; Kawamoto, S.; Kumrungsee, T.; et al. Glucosyl Hesperidin Supplementation Prevents Tubulointerstitial Fibrosis and Immune Activation in Diabetic Nephropathy in Mice. Nutrients 2025, 17, 383. [Google Scholar] [CrossRef]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic Metabolites as Therapeutic in Inflammation and Neoplasms: Molecular Pathways Explaining Their Efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef]
- Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.-A. Dietary Polyphenols Suppress Chronic Inflammation by Modulation of Multiple Inflammation-Associated Cell Signaling Pathways. J. Nutr. Biochem. 2021, 93, 108634. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhou, W.; Zhang, H.; Guo, Q.; Yang, W.; Li, B.; Sun, Z.; Gao, S.; Cui, R. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front. Oncol. 2019, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Health-Improving Effects of Polyphenols on the Human Intestinal Microbiota: A Review. Int. J. Mol. Sci. 2025, 26, 1335. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between Gut Microbiota and Polyphenols: A Mechanistic and Metabolomic Review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef]
- Fiore, M.; Terracina, S.; Ferraguti, G. Brain Neurotrophins and Plant Polyphenols: A Powerful Connection. Molecules 2025, 30, 2657. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Yang, Y.-P.; Nicol, C.J.B.; Chiang, T.; Yen, C. Resveratrol-Enhanced Human Neural Stem Cell-Derived Exosomes Mitigate MPP+-Induced Neurotoxicity Through Activation of AMPK and Nrf2 Pathways and Inhibition of the NLRP3 Inflammasome in SH-SY5Y Cells. Life 2025, 15, 294. [Google Scholar] [CrossRef]
- Ryyti, R.; Pemmari, A.; Peltola, R.; Hämäläinen, M.; Moilanen, E. Effects of Lingonberry (Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021, 13, 3693. [Google Scholar] [CrossRef]
- Polom, J.; Boccardi, V. Employing Nutrition to Delay Aging: A Plant-Based Telomere-Friendly Dietary Revolution. Nutrients 2025, 17, 2004. [Google Scholar] [CrossRef]
- Berger, S.; Oesterle, I.; Ayeni, K.I.; Ezekiel, C.N.; Rompel, A.; Warth, B. Polyphenol Exposure of Mothers and Infants Assessed by LC–MS/MS Based Biomonitoring in Breast Milk. Anal. Bioanal. Chem. 2024, 416, 1759–1774. [Google Scholar] [CrossRef] [PubMed]
- Ramli, I.; Posadino, A.M.; Giordo, R.; Fenu, G.; Fardoun, M.; Iratni, R.; Eid, A.H.; Zayed, H.; Pintus, G. Effect of Resveratrol on Pregnancy, Prenatal Complications and Pregnancy-Associated Structure Alterations. Antioxidants 2023, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Darzi, M.; Abbasi, K.; Ghiasvand, R.; Akhavan Tabib, M.; Rouhani, M.H. The Association between Dietary Polyphenol Intake and Attention-Deficit Hyperactivity Disorder: A Case-Control Study. BMC Pediatr. 2022, 22, 700. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Fiore, M.; Tonchev, A.B.; Pancheva, R.Z.; Yamashima, T.; Venditti, S.; Ferraguti, G.; Terracina, S. Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets. Molecules 2025, 30, 2888. [Google Scholar] [CrossRef]
- Pires, V.C.; Anacleto, S.L.; Matté, C.; Aguiar, O.; Lajolo, F.M.; Hassimotto, N.M.A.; Ong, T.P. Paternal and/or Maternal Blackberry (Rubus spp.) Polyphenolic Extract Consumption Improved Paternal Fertility and Differentially Affected Female Offspring Antioxidant Capacity and Metabolic Programming in a Mouse Model. Antioxidants 2025, 14, 779. [Google Scholar] [CrossRef]
- Yang, Z.; Su, Q.; Yang, J.; Li, Z.; Lan, S.; Jia, X.; Ouyang, P.; Tang, H. Effects of Dietary Tea Polyphenols on the Growth, Antioxidant Status, Immune Function, and Intestinal Microbiota of Largemouth Bass (Micropterus salmoides). Animals 2025, 15, 222. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hou, C.-Y.; Chang-Chien, G.-P.; Lin, S.; Hsu, C.-N. Resveratrol Butyrate Ester Supplementation Blunts the Development of Offspring Hypertension in a Maternal Di-2-Ethylhexyl Phthalate Exposure Rat Model. Nutrients 2023, 15, 697. [Google Scholar] [CrossRef]
- McPherson, N.O.; Fullston, T.; Kang, W.X.; Sandeman, L.Y.; Corbett, M.A.; Owens, J.A.; Lane, M. Paternal Under-Nutrition Programs Metabolic Syndrome in Offspring Which Can Be Reversed by Antioxidant/Vitamin Food Fortification in Fathers. Sci. Rep. 2016, 6, 27010. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. Maternal Polyphenols and Offspring Cardiovascular–Kidney–Metabolic Health. Nutrients 2024, 16, 3168. [Google Scholar] [CrossRef]
- Miranda, A.R.; Cortez, M.V.; Scotta, A.V.; Soria, E.A. Dietary Intake of Polyphenols Enhances Executive/Attentional Functioning and Memory with an Improvement of the Milk Lipid Profile of Postpartum Women from Argentina. J. Intell. 2022, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Valls-Bellés, V.; Abad, C.; Hernández-Aguilar, M.T.; Nacher, A.; Guerrero, C.; Baliño, P.; Romero, F.J.; Muriach, M. Human Milk Antioxidative Modifications in Mastitis: Further Beneficial Effects of Cranberry Supplementation. Antioxidants 2022, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Conte, R.; Valentino, A.; Sepe, F.; Gianfreda, F.; Condò, R.; Cerroni, L.; Calarco, A.; Peluso, G. Resveratrol-Loaded Solid Lipid Nanoparticles Reinforced Hyaluronic Hydrogel: Multitarget Strategy for the Treatment of Diabetes-Related Periodontitis. Biomedicines 2025, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- Nathan, A.B.P.; Aziz, A.; Choi, S.; Lee, S.; Jeon, S.; Kim, H.-S.; Cho, J.; Jo, J. Avenanthramide-C as Alzheimer’s Disease-Modifying Therapy: Early and Sustained Intervention Prevents Disease Progression in Mouse Models. Cells 2025, 14, 826. [Google Scholar] [CrossRef]
- Torow, N.; Hand, T.W.; Hornef, M.W. Programmed and Environmental Determinants Driving Neonatal Mucosal Immune Development. Immunity 2023, 56, 485–499. [Google Scholar] [CrossRef]
- Iban-Arias, R.; Sebastian-Valverde, M.; Wu, H.; Lyu, W.; Wu, Q.; Simon, J.; Pasinetti, G.M. Role of Polyphenol-Derived Phenolic Acid in Mitigation of Inflammasome-Mediated Anxiety and Depression. Biomedicines 2022, 10, 1264. [Google Scholar] [CrossRef]
- Saraiva, A.L.; Justino, A.B.; Franco, R.R.; Silva, H.C.G.; Arruda, F.d.S.; Klein, S.G.; Celes, M.R.N.; Goulart, L.R.; Espindola, F.S. Polyphenols-Rich Fraction from Annona Muricata Linn. Leaves Attenuates Oxidative and Inflammatory Responses in Neutrophils, Macrophages, and Experimental Lung Injury. Pharmaceutics 2022, 14, 1182. [Google Scholar] [CrossRef]
- Su, J.; Tan, Q.; Wu, S.; Abbas, B.; Yang, M. Application of Kombucha Fermentation Broth for Antibacterial, Antioxidant, and Anti-Inflammatory Processes. Int. J. Mol. Sci. 2023, 24, 13984. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, L.; Xu, Y.; He, X.; Gan, S.; Yin, F. The Effects of Tea Polyphenols in Feed on the Immunity, Antioxidant Capacity, and Gut Microbiota of Weaned Goat Kids. Animals 2025, 15, 467. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Zhong, R.; Chen, L.; Zhang, H. Hydroxytyrosol Alleviates Intestinal Oxidative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int. J. Mol. Sci. 2024, 25, 5590. [Google Scholar] [CrossRef]
- Pontes, P.B.; Toscano, A.E.; Lacerda, D.C.; da Silva Araújo, E.R.; Costa, P.C.T.d.; Alves, S.M.; Brito Alves, J.L.d.; Manhães-de-Castro, R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods 2023, 12, 2278. [Google Scholar] [CrossRef]
- Heydarian, D.; Flavel, M.; Munasinghe, M.; Jois, M.; Thomas, J. Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract. Stresses 2024, 4, 816–826. [Google Scholar] [CrossRef]
- Horasan Sagbasan, B.; Williams, C.M.; Bell, L.; Barfoot, K.L.; Poveda, C.; Walton, G.E. Inulin and Freeze-Dried Blueberry Intervention Lead to Changes in the Microbiota and Metabolites within In Vitro Studies and in Cognitive Function within a Small Pilot Trial on Healthy Children. Microorganisms 2024, 12, 1501. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Bellavia, D.; Raimondi, L.; Carina, V.; Costa, V.; Fini, M.; Giavaresi, G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals 2022, 15, 342. [Google Scholar] [CrossRef] [PubMed]
- Berta, G.N.; Romano, F.; Vallone, R.; Abbadessa, G.; Di Scipio, F.; Defabianis, P. An Innovative Strategy for Oral Biofilm Control in Early Childhood Based on a Resveratrol-Cyclodextrin Nanotechnology Approach. Materials 2021, 14, 3801. [Google Scholar] [CrossRef] [PubMed]
- Zuccari, G.; Alfei, S.; Zorzoli, A.; Marimpietri, D.; Turrini, F.; Baldassari, S.; Marchitto, L.; Caviglioli, G. Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics 2021, 13, 1128. [Google Scholar] [CrossRef]
- Liu, A.; Cohen, J.; Vittorio, O. Poor Dietary Polyphenol Intake in Childhood Cancer Patients. Nutrients 2019, 11, 2835. [Google Scholar] [CrossRef]
- Gębalski, J.; Małkowska, M.; Gawenda-Kempczyńska, D.; Słomka, A.; Strzemski, M.; Styczyński, J.; Załuski, D. Eleutherococcus Divaricatus Fruits Decrease Hyaluronidase Activity in Blood Serum and Protect from Oxidative Damages in In Vitro Model. Int. J. Mol. Sci. 2024, 25, 2033. [Google Scholar] [CrossRef]
- Rojas-Ochoa, A.; Córdova, E.J.; Carrillo-García, A.; Lizano, M.; Pedraza-Chaverri, J.; Patiño, N.; Cruz-Gregorio, A.; Osnaya, N. The Polyphenols α-Mangostin and Nordihydroguaiaretic Acid Induce Oxidative Stress, Cell Cycle Arrest, and Apoptosis in a Cellular Model of Medulloblastoma. Molecules 2021, 26, 7230. [Google Scholar] [CrossRef]
- Wu, C.D.; Huang, E.; Li, W.; White, M.; Jung, S.; Xie, Q. Beverages Containing Plant-Derived Polyphenols Inhibit Growth and Biofilm Formation of Streptococcus Mutans and Children’s Supragingival Plaque Bacteria. Beverages 2021, 7, 43. [Google Scholar] [CrossRef]
- Piazzini, V.; Vasarri, M.; Degl’Innocenti, D.; Guastini, A.; Barletta, E.; Salvatici, M.C.; Bergonzi, M.C. Comparison of Chitosan Nanoparticles and Soluplus Micelles to Optimize the Bioactivity of Posidonia Oceanica Extract on Human Neuroblastoma Cell Migration. Pharmaceutics 2019, 11, 655. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef]
- Zhang, Y.; Balasooriya, H.; Sirisena, S.; Ng, K. The Effectiveness of Dietary Polyphenols in Obesity Management: A Systematic Review and Meta-Analysis of Human Clinical Trials. Food Chem. 2023, 404, 134668. [Google Scholar] [CrossRef]
- Farhan, M.; Faisal, M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life 2024, 14, 1342. [Google Scholar] [CrossRef]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; Ruiz de Viñaspre-Hernández, R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef]
- Harej Hrkać, A.; Pelčić, A.; Čaljkušić-Mance, T.; Mršić-Pelčić, J.; Pilipović, K. The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices? Curr. Issues Mol. Biol. 2025, 47, 418. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Hontman, N.; Perestrelo, R.; Câmara, J.S. A Comparative Study of the Biological Properties of Eugenia Uniflora L. Fruits and Leaves Related to the Prevention of Cardiovascular Diseases. Life 2025, 15, 147. [Google Scholar] [CrossRef]
- Pop, R.M.; Boarescu, P.-M.; Bocsan, C.I.; Gherman, M.L.; Chedea, V.S.; Jianu, E.-M.; Roșian, Ș.H.; Boarescu, I.; Ranga, F.; Muntean, M.D.; et al. Beneficial Effects of White Grape Pomace in Experimental Dexamethasone-Induced Hypertension. Diseases 2025, 13, 132. [Google Scholar] [CrossRef]
- Frumuzachi, O.; Mocan, A.; Rohn, S.; Gavrilaș, L. Impact of a Chokeberry (Aronia melanocarpa (Michx.) Elliott) Supplementation on Cardiometabolic Outcomes: A Critical Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2025, 17, 1488. [Google Scholar] [CrossRef]
- Buda, V.; Sturza, A.; Minda, D.; Diaconeasa, Z.; Iuhas, C.; Bădescu, B.; Dehelean, C.-A.; Danciu, C.; Muntean, M.-D.; Lighezan, R.; et al. Vasculo-Protective Effects of Standardized Black Chokeberry Extracts in Mice Aorta. Int. J. Mol. Sci. 2024, 25, 13520. [Google Scholar] [CrossRef]
- Benedetti, L.; Nigro, F.; Malaguti, M.; Di Michele, R.; Angeloni, C. Acute Effects of Dark Chocolate on Physical Performance in Young Elite Soccer Players: A Pilot Study. Appl. Sci. 2025, 15, 965. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to EPA, DHA, and DPA and Maintenance of Normal Cardiac Function. EFSA J. 2010, 8, 1796. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Announces Qualified Health Claim for Cocoa Flavanols in High Flavanol Cocoa Powder and Reduced Risk of Cardiovascular Disease; FDA: Silver Spring, MD, USA, 2024. Available online: https://www.fda.gov/food/hfp-constituent-updates/fda-announces-qualified-health-claim-cocoa-flavanols-high-flavanol-cocoa-powder-and-reduced-risk (accessed on 12 November 2025).
- He, L.; Su, Z.; Wang, S. The Anti-Obesity Effects of Polyphenols: A Comprehensive Review of Molecular Mechanisms and Signal Pathways in Regulating Adipocytes. Front. Nutr. 2024, 11, 1393575. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Sun, L.; Wu, J.; Zhu, X.; Liu, J.; Ruan, R.; Huang, G.; Mi, S.; Cheng, Y. Lipid-Lowering Potential of Almond Hulls (Quercetin, Baicalein, and Kaempferol): Insights from Network Pharmacology and Molecular Dynamics. Curr. Issues Mol. Biol. 2025, 47, 450. [Google Scholar] [CrossRef]
- Qian, W.; Han, J.; Shi, X.; Qin, X.; Jiao, F.; Zhang, M.; Bao, L.; Su, C. Mulberry (Morus alba) Twig and Leaf Extracts Ameliorate Obesity-Related Metabolic Disorders via Gut Microbiota Modulation in High-Fat Diet-Fed Mice. Animals 2025, 15, 1768. [Google Scholar] [CrossRef]
- Parklak, W.; Chottidao, M.; Munkong, N.; Komindr, S.; Monkhai, S.; Wanikorn, B.; Makaje, N.; Kulprachakarn, K.; Chuljerm, H.; Somnuk, S. Nutraceutical Properties of Thai Mulberry (Morus alba L.) and Their Effects on Metabolic and Cardiovascular Risk Factors in Individuals with Obesity: A Randomized, Single-Blind Crossover Trial. Nutrients 2024, 16, 4336. [Google Scholar] [CrossRef]
- Chen, L.; Pu, Y.; Xu, Y.; He, X.; Cao, J.; Ma, Y.; Jiang, W. Anti-Diabetic and Anti-Obesity: Efficacy Evaluation and Exploitation of Polyphenols in Fruits and Vegetables. Food Res. Int. 2022, 157, 111202. [Google Scholar] [CrossRef]
- Micek, A.; Jurek, J.; Owczarek, M.; Guerrera, I.; Torrisi, S.A.; Castellano, S.; Grosso, G.; Alshatwi, A.A.; Godos, J. Polyphenol-Rich Beverages and Mental Health Outcomes. Antioxidants 2023, 12, 272. [Google Scholar] [CrossRef]
- Bian, Z.; Li, Z.; Chang, H.; Luo, J.; Jian, S.; Zhang, J.; Lin, P.; Deng, B.; Deng, J.; Zhang, L. Resveratrol Ameliorates Chronic Stress in Kennel Dogs and Mice by Regulating Gut Microbiome and Metabolome Related to Tryptophan Metabolism. Antioxidants 2025, 14, 195. [Google Scholar] [CrossRef]
- Farhat, G.; Malla, J.; Vadher, J.; Al-Dujaili, E.A.S. Effects of Pomegranate Extract on Inflammatory Markers and Cardiometabolic Risk Factors in Adults Aged 55–70 Years: A Randomised Controlled Parallel Trial. Nutrients 2025, 17, 1235. [Google Scholar] [CrossRef]
- Aispuro-Pérez, A.; Pedraza-Leyva, F.J.; Ochoa-Acosta, A.; Arias-Gastélum, M.; Cárdenas-Torres, F.I.; Amezquita-López, B.A.; Terán, E.; Aispuro-Hernández, E.; Martínez-Téllez, M.Á.; Avena-Bustillos, R.J.; et al. A Functional Beverage from Coffee and Olive Pomace: Polyphenol-Flavonoid Content, Antioxidant, Antihyperglycemic Properties, and Mouse Behavior. Foods 2025, 14, 1331. [Google Scholar] [CrossRef]
- Ryyti, R.; Hämäläinen, M.; Leppänen, T.; Peltola, R.; Moilanen, E. Phenolic Compounds Known to Be Present in Lingonberry (Vaccinium vitis-idaea L.) Enhance Macrophage Polarization towards the Anti-Inflammatory M2 Phenotype. Biomedicines 2022, 10, 3045. [Google Scholar] [CrossRef]
- Micheli, L.; Bertini, L.; Bonato, A.; Villanova, N.; Caruso, C.; Caruso, M.; Bernini, R.; Tirone, F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023, 15, 1767. [Google Scholar] [CrossRef] [PubMed]
- Alrouji, M.; Anwar, S.; Venkatesan, K.; Shahwan, M.; Hassan, M.I.; Islam, A.; Shamsi, A. Iron Homeostasis and Neurodegeneration in the Ageing Brain: Insight into Ferroptosis Pathways. Ageing Res. Rev. 2024, 102, 102575. [Google Scholar] [CrossRef] [PubMed]
- Jalouli, M.; Rahman, M.A.; Biswas, P.; Rahman, H.; Harrath, A.H.; Lee, I.-S.; Kang, S.; Choi, J.; Park, M.N.; Kim, B. Targeting Natural Antioxidant Polyphenols to Protect Neuroinflammation and Neurodegenerative Diseases: A Comprehensive Review. Front. Pharmacol. 2025, 16, 1492517. [Google Scholar] [CrossRef] [PubMed]
- Silla, A.; Punzo, A.; Caliceti, C.; Barbalace, M.C.; Hrelia, S.; Malaguti, M. The Role of Antioxidant Compounds from Citrus Waste in Modulating Neuroinflammation: A Sustainable Solution. Antioxidants 2025, 14, 581. [Google Scholar] [CrossRef]
- Leri, M.; Vasarri, M.; Carnemolla, F.; Oriente, F.; Cabaro, S.; Stio, M.; Degl’Innocenti, D.; Stefani, M.; Bucciantini, M. EVOO Polyphenols Exert Anti-Inflammatory Effects on the Microglia Cell through TREM2 Signaling Pathway. Pharmaceuticals 2023, 16, 933. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Polyphenols in Olive and Protection of LDL Particles from Oxidative Damage. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- O’Connor, K.; Mentis, N.; Park, B.I. Center for Food Safety & Applied Nutrition. Nutr. Rev. 1997, 55, 315. [Google Scholar]
- González-Manzano, S.; Ayuda-Durán, B.; Martín-Sanz, R.; Garzón-García, L.; Santos-Buelga, C.; González-Paramás, A.M. Exploring the Neuroprotective Effects of Grape Seed Procyanidins on Amyloid-β-Induced Toxicity in Caenorhabditis elegans. Foods 2024, 13, 3865. [Google Scholar] [CrossRef]
- Wang, N.; Li, R.; Feng, B.; Cheng, Y.; Guo, Y.; Qian, H. Chicoric Acid Prevents Neuroinflammation and Neurodegeneration in a Mouse Parkinson’s Disease Model: Immune Response and Transcriptome Profile of the Spleen and Colon. Int. J. Mol. Sci. 2022, 23, 2031. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Hediyal, T.A.; Anand, N.; Kendaganna, P.H.; Gorantla, V.R.; Mahalakshmi, A.M.; Ghanekar, R.K.; Yang, J.; Sakharkar, M.K.; Chidambaram, S.B. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023, 13, 1196. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, K.; Boda, A.k.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an Isocoumarin Analogue That Modulates Neuronal Functions via Neurotrophin Receptor TrkB. Bioorg. Med. Chem. Lett. 2019, 29, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the Enzymes in the Leukotriene and Prostaglandin Pathways in Inflammation by 3-Aryl Isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Avdović, E.; Dimić, D.; Nakarada, Đ.; Simijonović, D.; Jovičić Milić, S.; Marković, K.; Grujović, M.; Antonijević, M.; Ćirić, A.; Milenković, D.; et al. Evaluation of Bioactive Properties of Ultrasound-Assisted Extracts from Prokupac Grape Skins for Functional Foods. Antioxidants 2025, 14, 733. [Google Scholar] [CrossRef]
- Horodincu, L.; Proca, A.C.; Șlencu, B.G.; Trifan, A.; Pavel, G.; Solcan, G.; Solcan, C. Modulating Effects of Grape Pomace on the Intestinal Antioxidative and Inflammatory Status in Fattening Pigs. Agriculture 2025, 15, 740. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Fu, X.; Huang, Q.; Li, Y. Purification, Characterization, and Anti-Inflammatory Potential of Free and Bound Polyphenols Extracted from Rosa Roxburghii Tratt Pomace. Foods 2024, 13, 2044. [Google Scholar] [CrossRef]
- Lin, J.; Ren, F.; Zhu, M.; Hu, Y.; Zhao, Z.; Pei, J.; Chen, H.; Chen, W.; Zhong, Q.; Lyu, Y.; et al. Pandanus Amaryllifolius Roxb. Polyphenol Extract Alleviates NAFLD via Regulating Gut Microbiota and AMPK/AKT/mTOR Signaling Pathway. Foods 2025, 14, 1000. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, B.; Qin, Y.; Qiao, B.; Ren, M.; Cao, L.; Zhang, Y.; Han, M. Dietary Supplementation with Proanthocyanidins and Rutin Alleviates the Symptoms of Type 2 Diabetes Mice and Regulates Gut Microbiota. Front. Microbiol. 2025, 15, 1513935. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Aguzzi, C.; Rascioni, R.; Mignini, F. A Study of the Effects of Oleuropein and Polydatin Association on Muscle and Bone Metabolism. Biomolecules 2025, 15, 628. [Google Scholar] [CrossRef] [PubMed]
- Martín-Ruiz, J.; Maset-Roig, R.; Caplliure-Llopis, J.; Villarón-Casales, C.; Alarcón-Jiménez, J.; de Bernardo, N.; Proaño, B.; Menargues-Ramírez, R.; Selvi-Sabater, P.; de la Rubia-Ortí, J.E. Enhanced Acute Muscle Activation in ALS Patients Following Liposomal Curcumin, Resveratrol, and Dutasteride Administration. Pharmaceuticals 2025, 18, 497. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tong, Y.; Wang, S.; Tagawa, T.; Seki, Y.; Ma, S.; Zhang, Z.; Cao, T.; Kobori, H.; Suzuki, K. 8-Week Kaempferia Parviflora Extract Administration Improves Submaximal Exercise Capacity in Mice by Enhancing Skeletal Muscle Antioxidant Gene Expression and Plasma Antioxidant Capacity. Antioxidants 2024, 13, 1147. [Google Scholar] [CrossRef]
- Abbiati, F.; Garagnani, S.A.; Orlandi, I.; Vai, M. Sir2 and Glycerol Underlie the Pro-Longevity Effect of Quercetin during Yeast Chronological Aging. Int. J. Mol. Sci. 2023, 24, 12223. [Google Scholar] [CrossRef]
- Yan, L.; Guo, X.; Zhou, J.; Zhu, Y.; Zhang, Z.; Chen, H. Quercetin Prevents Intestinal Stem Cell Aging via Scavenging ROS and Inhibiting Insulin Signaling in Drosophila. Antioxidants 2023, 12, 59. [Google Scholar] [CrossRef]
- Appendino, G.; Belcaro, G.; Cornelli, U.; Luzzi, R.; Togni, S.; Dugall, M.; Cesarone, M.R.; Feragalli, B.; Ippolito, E.; Errichi, B.M.; et al. Potential Role of Curcumin Phytosome (Meriva) in Controlling the Evolution of Diabetic Microangiopathy. A Pilot Study. Panminerva Med. 2011, 53, 43–49. [Google Scholar]
- Campagna, R.; Vignini, A. The Role of Xenobiotic Caffeine on Cardiovascular Health: Promises and Challenges. J. Xenobiotics 2025, 15, 51. [Google Scholar] [CrossRef]
- Park, S.; Park, S.-K. Anti-Oxidant and Anti-Aging Effects of Phlorizin Are Mediated by DAF-16-Induced Stress Response and Autophagy in Caenorhabditis elegans. Antioxidants 2022, 11, 1996. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, W.; Hu, Q.; Luo, J.; Peng, X. Characterization and Anti-Aging Potency of Phenolic Compounds in Xianhu Tea Extracts. Foods 2025, 14, 737. [Google Scholar] [CrossRef]
- Buccato, D.G.; Delgado-Osorio, A.; De Lellis, L.F.; Morone, M.V.; Ullah, H.; Izzo, L.; Lombardi, S.; Di Minno, A.; Riccioni, C.V.; Moriki, D.; et al. Exploring the Influence of a Pomegranate Extract on the Functionality of Healthy and Diseased Human Gut Microbiota: An In Vitro Study. Molecules 2025, 30, 1634. [Google Scholar] [CrossRef]
- Kim, H.-J.; Mun, J.-S.; Oh, S.-H.; Kim, J.-H. Antioxidant and Antiaging Activity of Houttuynia Cordata Thunb. Ethyl Acetate Fraction in Caenorhabditis elegans. Nutrients 2024, 16, 4168. [Google Scholar] [CrossRef]


| Polyphenol/Compound | Research Model | Dosage/Usage | Effects | References |
|---|---|---|---|---|
| Tea polyphenols | In vivo | 0.00% (control), 0.02%, 0.04%, 0.08% of the compound—in feed, throughout the experiment | Improved antioxidant status; enhanced immune function; better intestinal health in young fish | [27] |
| Anthocyanins, ellagitannins, and quercetin | In vivo | 0.8 mg/mL (prepared by dilution)—Drinking water | Increased sperm production, improved sperm morphology and fertility, enhanced plasma antioxidant capacity in father rats; reduced perinatal mortality rate in newborn rats | [26] |
| Hydroxytyrosol | In vivo | 500 mg/kg (supplemented to basal diet for 28 days)—In feed, throughout the experiment | Alleviated intestinal damage caused by oxidative stress in piglets | [40] |
| Chlorogenic acid, protocatechuic acid, and eleutherosid | In vitro and ex vivo | 100 µg (single dose)—Experimental condition | Inhibited human serum hyaluronidase activity by 76–86% in children with acute leukemia (average age 7) | [48] |
| Wild Blueberry | In vitro and in vivo | 13.3 g/day for 4 weeks—Naturally obtained through the diet | Significant improvements in executive function and memory have been observed in healthy children (children aged 7–10) | [43] |
| Resveratrol and Resveratrol Butyrate Ester | In vivo | RBEL (Low Dose): 3.33 mg/kg/day; RBEH (High Dose): 6.67 mg/kg/day; 6 weeks during gestation and lactation in rats—In drinking water | Protected offspring from maternal factor-induced hypertension | [28] |
| Hydroxycinnamic acids, flavanols, flavanones, etc. | In vivo | 5–20 mg/day—Naturally obtained through the diet | Improved lipid profile of breast milk | [31] |
| Cranberry (Vaccinium sp.) | In vivo | 20 g/day for 21 days—Naturally obtained through the diet in breastfeeding mothers | Strengthened the antioxidant system of human milk; improved antioxidant status | [32] |
| Resveratrol | In vitro | 60 µM and 120 µM—Experimental condition | Increased apoptosis without affecting normal cells in cell lines derived from osteosarcoma; reduced inflammation; stopped cell migration and enhanced the effect of chemotherapy | [44] |
| Alpha-mangostin, Nordihydroguaiaretic Acid | In vitro | α-mangostin: 10, 15, 20, 40 µM; NDGA: 25, 50, 75, 100, 200 µM; 24 h—Experimental condition | Cytostatic and cytotoxic effects on medulloblastoma have been observed | [49] |
| Resveratrol | In vivo | 0.318% w/v/day after tooth brushing—Oral spray formulation; tested in children | Reduced gingivitis, improved saliva pH in children with plaque-induced gingivitis | [45] |
| Polyphenols from tea, cranberry, and raspberry | In vitro | 0.78–6.25 mg/mL (10–20% brewed tea)—Experimental condition | Inhibited plaque bacteria and biofilm formation; reduced plaque adhesiveness | [50] |
| Resveratrol | In vitro | 2.5, 5, 10, 20, 40 µM—Encapsulated in TPGS microspheres in human keratinocyte HaCaT cells | Potential positive effects of combining RES and TPGS in the treatment of chronic liver disease have been observed | [46] |
| Hydroalcoholic extract of P. oceanica leaves | In vitro | 3 µg/mL—Using nanocarrier systems | Migration of SH-SY5Y cell lines was significantly reduced in neuroblastoma | [51] |
| Polyphenol/ Compound | Research Model | Dosage/Usage | Effects | References |
|---|---|---|---|---|
| Polyphenols from Chokeberry (Aronia melanocarpa) | In vivo | 90 mg/day (capsule) or 300 mL/day (fruit juice)—Extracts/powders in capsules or as fruit juice | Potential reduction in cholesterol and LDL-C; potential reduction in systolic blood pressure (with high doses of anthocyanin); potential increase in fasting blood sugar in people under 50 years of age | [59] |
| Resveratrol | In vivo | Dose of 100 mg/kg/day for dogs for 35 days; doses of 100, 200, and 300 mg/kg/day for mice for 35 days—In dogs, in starch capsule added to basal diet; in mice, via oral gavage | Improved stress-related behaviors in dogs and mice | [70] |
| Pomegranate Extract | In vivo | 740 mg/day for 12 weeks—In capsule form | Reduced inflammatory markers (IL-6 and IL-1β) and systolic blood pressure | [71] |
| Cocoa flavanols (e.g., (−)-epicatechin, (+)-catechin, and proanthocyanidins) | In vivo | 25 gr/day of dark chocolate with a cocoa content of 85% or 88%, five times a week—As nutritional support 40 min before training or competition | Reduced muscle soreness and improved physical performance in young elite soccer players | [61] |
| Coffee and Olive Pomace | In vivo | Coffee grounds containing 10% olive pomace by weight—In feed, throughout the experiment | Led to more exploration and less rest time in mice; this increased fluid consumption in mice by 90% | [72] |
| Almond Hull Extract | In vitro and in vivo models | 0.0625–1 mg/mL (lipase inhibition); 0.1–0.4 mg/mL (cell experiments); 0.1 mg/mL (in vivo studies)—Experimental condition | Inhibited pancreatic lipase activity; reduced intracellular triglyceride accumulation; increased cellular antioxidant capacity; modulated PI3K-AKT signaling; improved insulin resistance | [65] |
| Mulberry (Morus alba) branches and leaves extract | In vivo | 500 mg/kg/day (low dose) or 1000 mg/kg/day (high dose) for 8 weeks—Oral gavage | Effectively improved obesity-related metabolic disorders in obese mice | [66] |
| Glukozil Hesperidin | In vivo | 239 mg G-HES daily on average over 4 weeks—Orally, 1% G-HES added to drinking water | Prevented tubulointerstitial fibrosis and immune activation in rat model | [11] |
| Black Chokeberry (Aronia melanocarpa) | Ex vivo | 1–500 µg/mL; 12 h—Dissected rat aortic rings treated with Ang II, LPS, or high glucose | Reduced inflammation and oxidative stress; modulated vascular responses | [60] |
| Thai Mulberry (Morus alba L.) | In vivo | 100 g/day of CMD for 6 weeks—2 servings per day as a beverage | Reduced systolic and diastolic blood pressure, mean arterial pressure, and triglyceride levels; demonstrated anti-inflammatory effects by stabilizing fasting plasma glucose levels and reducing C-reactive protein levels in obese individuals | [67] |
| Coffee, tea, and red wine | In vivo | For up to 1 cup of coffee or tea per day and up to 1 glass of red wine per day (moderate consumption) for 6 weeks—Naturally obtained through the diet | Reduced perceived stress and depressive symptoms in adults | [69] |
| Resveratrol, Kaempferol, and Proanthocyanidins | In vitro | 30 µM—Experimental condition | Increased anti-inflammatory M2 macrophage activation in mouse J774 and human U937 macrophage cells | [73] |
| Malvidin-3-O-glucoside | In vivo | 12.5 mg/kg/day for 6 weeks—Oral gavage, mixed with drinking water | Reduced stress-related anxiety and depression-like behaviors in mice; reduced inflammation (particularly IL-1β protein levels) | [36] |
| Lingonberry (Vaccinium vitis-idaea L.) | In vivo | A high-fat diet supplemented with 20% by weight of air-dried cranberry powder for 6 weeks—Administered to mice in addition to their high-fat diet | Reduced weight gain in the body and liver; prevented adverse changes in the liver in mice | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koca, B.E.; Sarıtaş, S.; Bechelany, M.; Karav, S. The Functional Role of Polyphenols Across the Human Lifespan. Int. J. Mol. Sci. 2025, 26, 11074. https://doi.org/10.3390/ijms262211074
Koca BE, Sarıtaş S, Bechelany M, Karav S. The Functional Role of Polyphenols Across the Human Lifespan. International Journal of Molecular Sciences. 2025; 26(22):11074. https://doi.org/10.3390/ijms262211074
Chicago/Turabian StyleKoca, Bekir Enes, Sümeyye Sarıtaş, Mikhael Bechelany, and Sercan Karav. 2025. "The Functional Role of Polyphenols Across the Human Lifespan" International Journal of Molecular Sciences 26, no. 22: 11074. https://doi.org/10.3390/ijms262211074
APA StyleKoca, B. E., Sarıtaş, S., Bechelany, M., & Karav, S. (2025). The Functional Role of Polyphenols Across the Human Lifespan. International Journal of Molecular Sciences, 26(22), 11074. https://doi.org/10.3390/ijms262211074

