The Effect of Thyroid Function on GDF15 Levels
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Assessment of Covariates
4.3. Laboratory Assays
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Cardiovascular Diseases Risks Collaborators. Global, Regional, and National Burden of Cardiovascular Diseases and Risk Factors in 204 Countries and Territories, 1990–2023. J. Am. Coll. Cardiol. 2025; Preprint. [CrossRef]
- Razvi, S.; Jabbar, A.; Pingitore, A.; Danzi, S.; Biondi, B.; Klein, I.; Peeters, R.; Zaman, A.; Iervasi, G. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 2018, 71, 1781–1796. [Google Scholar] [CrossRef]
- Gauthier, K.; Flamant, F. Nongenomic, TRbeta-dependent, thyroid hormone response gets genetic support. Endocrinology 2014, 155, 3206–3209. [Google Scholar] [CrossRef]
- Grais, I.M.; Sowers, J.R. Thyroid and the heart. Am. J. Med. 2014, 127, 691–698. [Google Scholar] [CrossRef]
- Ryan, D.; Gershinsky, R.; Gronich, N.; Yahav, A.; Barnett-Griness, O.; Schliamser, J.E.; Saliba, W.; Danon, A. Association between amiodarone and thyrotoxicosis in patients with atrial fibrillation and hypothyroidism. Heart Rhythm. 2025; In Press. [Google Scholar] [CrossRef]
- Fadel, B.M.; Ellahham, S.; Ringel, M.D.; Lindsay, J., Jr.; Wartofsky, L.; Burman, K.D. Hyperthyroid heart disease. Clin. Cardiol. 2000, 23, 402–408. [Google Scholar] [CrossRef]
- Peixoto de Miranda, E.J.; Bittencourt, M.S.; Pereira, A.C.; Goulart, A.C.; Santos, I.S.; Lotufo, P.A.; Bensenor, I.M. Subclinical hypothyroidism is associated with higher carotid intima-media thickness in cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutr. Metab. Cardiovasc. Dis. 2016, 26, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Filigheddu, F.; Orru, M.; AlGhatrif, M.; Steri, M.; Pilia, M.G.; Scuteri, A.; Lobina, M.; Piras, M.G.; Delitala, G.; et al. No evidence of association between subclinical thyroid disorders and common carotid intima medial thickness or atherosclerotic plaque. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 1104–1110. [Google Scholar] [CrossRef][Green Version]
- Yao, Z.; Gao, X.; Liu, M.; Chen, Z.; Yang, N.; Jia, Y.M.; Feng, X.M.; Xu, Y.; Yang, X.C.; Wang, G. Diffuse Myocardial Injuries are Present in Subclinical Hypothyroidism: A Clinical Study Using Myocardial T1-mapping Quantification. Sci. Rep. 2018, 8, 4999. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Grillo, A.; Antonello, R.M.; Cola, M.F.; Dobrinja, C.; Fabris, B.; Giudici, F. Meta-analysis on the Association Between Thyroid Hormone Disorders and Arterial Stiffness. J. Endocr. Soc. 2022, 6, bvac016. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P. Subclinical Hyperthyroidism and the Cardiovascular Disease. Horm. Metab. Res. 2017, 49, 723–731. [Google Scholar] [CrossRef]
- Baek, S.J.; Eling, T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol. Ther. 2019, 198, 46–58. [Google Scholar] [CrossRef]
- Tsai, V.W.W.; Husaini, Y.; Sainsbury, A.; Brown, D.A.; Breit, S.N. The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metab. 2018, 28, 353–368. [Google Scholar] [CrossRef]
- Brown, D.A.; Breit, S.N.; Buring, J.; Fairlie, W.D.; Bauskin, A.R.; Liu, T.; Ridker, P.M. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: A nested case-control study. Lancet 2002, 359, 2159–2163. [Google Scholar] [CrossRef]
- Xu, X.Y.; Nie, Y.; Wang, F.F.; Bai, Y.; Lv, Z.Z.; Zhang, Y.Y.; Li, Z.J.; Gao, W. Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation. J. Biol. Chem. 2014, 289, 10084–10094. [Google Scholar] [CrossRef]
- Xu, J.; Kimball, T.R.; Lorenz, J.N.; Brown, D.A.; Bauskin, A.R.; Klevitsky, R.; Hewett, T.E.; Breit, S.N.; Molkentin, J.D. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ. Res. 2006, 98, 342–350. [Google Scholar] [CrossRef]
- Anand, I.S.; Kempf, T.; Rector, T.S.; Tapken, H.; Allhoff, T.; Jantzen, F.; Kuskowski, M.; Cohn, J.N.; Drexler, H.; Wollert, K.C. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 2010, 122, 1387–1395. [Google Scholar] [CrossRef]
- Wallentin, L.; Hijazi, Z.; Andersson, U.; Alexander, J.H.; De Caterina, R.; Hanna, M.; Horowitz, J.D.; Hylek, E.M.; Lopes, R.D.; Asberg, S.; et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation 2014, 130, 1847–1858. [Google Scholar] [CrossRef]
- Shin, M.Y.; Kim, J.M.; Kang, Y.E.; Kim, M.K.; Joung, K.H.; Lee, J.H.; Kim, K.S.; Kim, H.J.; Ku, B.J.; Shong, M. Association between Growth Differentiation Factor 15 (GDF15) and Cardiovascular Risk in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. J. Korean Med. Sci. 2016, 31, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Klein, I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 2004, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Scuteri, A.; Maioli, M.; Mangatia, P.; Vilardi, L.; Erre, G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva Med. 2019, 110, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Steri, M.; Pilia, M.G.; Dei, M.; Lai, S.; Delitala, G.; Schlessinger, D.; Cucca, F. Menopause modulates the association between thyrotropin levels and lipid parameters: The SardiNIA study. Maturitas 2016, 92, 30–34. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L.; Yang, X.; Zhong, J. Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. J. Am. Heart Assoc. 2019, 8, e012826. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Lagerqvist, B.; Lindahl, B.; Olofsson, S.; Allhoff, T.; Peter, T.; Siegbahn, A.; Venge, P.; Drexler, H.; et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation 2007, 116, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Kempf, T.; Peter, T.; Olofsson, S.; James, S.; Johnston, N.; Lindahl, B.; Horn-Wichmann, R.; Brabant, G.; Simoons, M.L.; et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 2007, 115, 962–971. [Google Scholar] [CrossRef]
- Hagstrom, E.; James, S.K.; Bertilsson, M.; Becker, R.C.; Himmelmann, A.; Husted, S.; Katus, H.A.; Steg, P.G.; Storey, R.F.; Siegbahn, A.; et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: Results from the PLATO study. Eur. Heart J. 2016, 37, 1325–1333. [Google Scholar] [CrossRef]
- Schopfer, D.W.; Ku, I.A.; Regan, M.; Whooley, M.A. Growth differentiation factor 15 and cardiovascular events in patients with stable ischemic heart disease (The Heart and Soul Study). Am. Heart J. 2014, 167, 186–192.e1. [Google Scholar] [CrossRef]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Nyarady, B.B.; Kiss, L.Z.; Bagyura, Z.; Merkely, B.; Dosa, E.; Lang, O.; Kohidai, L.; Pallinger, E. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease. Biomed. Pharmacother. 2024, 174, 116475. [Google Scholar] [CrossRef] [PubMed]
- de Jager, S.C.; Bermudez, B.; Bot, I.; Koenen, R.R.; Bot, M.; Kavelaars, A.; de Waard, V.; Heijnen, C.J.; Muriana, F.J.; Weber, C.; et al. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J. Exp. Med. 2011, 208, 217–225. [Google Scholar] [CrossRef]
- Bonaterra, G.A.; Zugel, S.; Thogersen, J.; Walter, S.A.; Haberkorn, U.; Strelau, J.; Kinscherf, R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J. Am. Heart Assoc. 2012, 1, e002550. [Google Scholar] [CrossRef]
- Johnen, H.; Kuffner, T.; Brown, D.A.; Wu, B.J.; Stocker, R.; Breit, S.N. Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE(-/-) mice from the development of atherosclerosis. Cardiovasc. Pathol. 2012, 21, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, J.; Vestweber, D.; Zarbock, A. GDF-15 prevents platelet integrin activation and thrombus formation. J. Thromb. Haemost. 2013, 11, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Arslan, D.; Buyukinan, M.; Uysal, C.; Deniz, C.D. Evaluation of cardiovascular risk by growth-differentiation factor-15 and tissue Doppler imaging in children with subclinical hypothyroidism. Endocrine 2019, 65, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, M.; Chen, Y.; Zhang, S.; Ying, H.; Song, Z.; Lu, Y.; Li, X.; Xiong, X.; Jiang, J. Elevated Serum Growth Differentiation Factor 15 Levels in Hyperthyroid Patients. Front. Endocrinol. 2018, 9, 793. [Google Scholar] [CrossRef] [PubMed]
- Arinaga-Hino, T.; Ide, T.; Akiba, J.; Suzuki, H.; Kuwahara, R.; Amano, K.; Kawaguchi, T.; Sano, T.; Inoue, E.; Koga, H.; et al. Growth differentiation factor 15 as a novel diagnostic and therapeutic marker for autoimmune hepatitis. Sci. Rep. 2022, 12, 8759. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Essien, A.E.; Lu, W.; Jin, H.; Pan, L.; Li, Y.; Xiao, W. Growth differentiation factor 15 as a potential diagnostic biomarker for rheumatoid arthritis: A systematic review. Bone Jt. Res. 2025, 14, 389–397. [Google Scholar] [CrossRef]
- Xu, W.D.; Huang, Q.; Yang, C.; Li, R.; Huang, A.F. GDF-15: A Potential Biomarker and Therapeutic Target in Systemic Lupus Erythematosus. Front. Immunol. 2022, 13, 926373. [Google Scholar] [CrossRef]
- Nakayasu, E.S.; Syed, F.; Tersey, S.A.; Gritsenko, M.A.; Mitchell, H.D.; Chan, C.Y.; Dirice, E.; Turatsinze, J.V.; Cui, Y.; Kulkarni, R.N.; et al. Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a Target for Type 1 Diabetes Intervention. Cell Metab. 2020, 31, 363–374. [Google Scholar] [CrossRef]
- Amstad, A.; Coray, M.; Frick, C.; Barro, C.; Oechtering, J.; Amann, M.; Wischhusen, J.; Kappos, L.; Naegelin, Y.; Kuhle, J.; et al. Growth differentiation factor 15 is increased in stable MS. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e675. [Google Scholar] [CrossRef]


| Female | Male | Total | |
|---|---|---|---|
| n | 2429 | 1984 | 4413 |
| Age | 47.4 (35.6–60.6) | 49.0 (37.1–63.3) * | 48.1 (36.2–61.8) |
| BMI, Kg/m2 | 24.0 (21.2–27.7) | 26.6 (24.1–29.2) # | 25.4 (22.4–28.7) |
| Waist, cm | 81 (74–90) | 92 (86–100) # | 87 (78–95) |
| TSH (mUI/mL) | 1.71 (1.17–2.51) | 1.40 (0.98–2.04) # | 1.54 (1.08–2.33) |
| FT4 (ng/dL) | 1.06 (0.96–1.20) | 1.07 (0.97–1.21) | 1.06 (0.96–1.20) |
| GDF15, pg/mL | 202.7 (156.4–277.4) | 204.4 (155.4–290.5) | 203.6 (155.9–281.3) |
| Diabetes, n (%) | 104 (3.7%) | 103 (5.0%) * | 307 (4.3%) |
| Hypertension, n (%) | 785 (28.1%) | 804 (39.3%) # | 1589 (32.8%) |
| Smokers, n (%) | 399 (14.3%) | 496 (24.2%) # | 895 (18.5%) |
| TPOAb positivity, n (%) | 531 (19.0%) # | 206 (10.1%) | 737 (15.2%) |
| TGAb positivity, n (%) | 340 (12.1%) # | 121 (5.9%) | 461 (9.5%) |
| Variable | Rho | p |
|---|---|---|
| Age | 0.619 | <0.001 |
| BMI | 0.254 | <0.001 |
| HbA1c | 0.276 | <0.001 |
| TSH | −0.108 | <0.001 |
| FT4 | −0.019 | <0.001 |
| TPOAb | −0.087 | 0.029 |
| Smoke | −0.048 | <0.001 |
| Total cholesterol | −0.071 | <0.001 |
| LDL | 0.043 | 0.004 |
| HDL | −0.034 | 0.028 |
| Triglycerides | 0.178 | <0.001 |
| Variable | Beta | t | Std. Err. | p |
|---|---|---|---|---|
| Age | 0.416 | 28.82 | 0.165 | <0.001 |
| TSH | 0.031 | 2.55 | 1.354 | 0.011 |
| FT4 | −0.030 | −2.25 | 10.580 | 0.024 |
| Total cholesterol | −0.088 | −6.77 | 0.060 | <0.001 |
| Diabetes | 0.194 | 14.79 | 12.141 | <0.001 |
| Hypertension | 0.041 | 3.06 | 5.345 | 0.002 |
| Smoke | 0.037 | 2.86 | 6.267 | 0.004 |
| Variable | GFD15 (pg/mL) | GFD15 (pg/mL) |
|---|---|---|
| Abs Standard Cut-Off # | Abs High Cut-Off ## | |
| TPOAb | ||
| Negative | 260.5 (201.2–192.9) * | 260.6 (201.4–361.7) ** |
| Positive | 250.1 (192.9–335.8) | 240.6 (176.2–314.2) |
| TGAb | ||
| Negative | 258.5 (200.2–360.0) | 257.4 (199.5–356.7) |
| Positive | 262.3 (196.9–330.5) | 270.2 (209.3–346.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profili, N.I.; Fiorillo, E.; Orrù, V.; Cucca, F.; Delitala, A.P. The Effect of Thyroid Function on GDF15 Levels. Int. J. Mol. Sci. 2025, 26, 11073. https://doi.org/10.3390/ijms262211073
Profili NI, Fiorillo E, Orrù V, Cucca F, Delitala AP. The Effect of Thyroid Function on GDF15 Levels. International Journal of Molecular Sciences. 2025; 26(22):11073. https://doi.org/10.3390/ijms262211073
Chicago/Turabian StyleProfili, Nicia I., Edoardo Fiorillo, Valeria Orrù, Francesco Cucca, and Alessandro P. Delitala. 2025. "The Effect of Thyroid Function on GDF15 Levels" International Journal of Molecular Sciences 26, no. 22: 11073. https://doi.org/10.3390/ijms262211073
APA StyleProfili, N. I., Fiorillo, E., Orrù, V., Cucca, F., & Delitala, A. P. (2025). The Effect of Thyroid Function on GDF15 Levels. International Journal of Molecular Sciences, 26(22), 11073. https://doi.org/10.3390/ijms262211073
