Cranberry Research Progress: A Systematic Review of Chemical Composition, Pharmacological Mechanisms, Clinical Applications, and Nutritional Significance
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Selection of Studies
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Illustration Methods
3. Results
3.1. Search Results
3.2. Cranberry Chemical Composition
3.2.1. Proanthocyanidins
3.2.2. Anthocyanin
3.2.3. Flavonols
3.2.4. Phenolic Acid
3.2.5. Triterpenoids
3.2.6. Other Compounds in Cranberry
3.3. Cranberry Pharmacology
3.3.1. Antioxidant Activity
3.3.2. Antimicrobial Activity
3.3.3. Anti-Inflammatory Activity
3.3.4. Anti-Tumor Activity
3.3.5. Other Pharmacological Effects of Cranberry
3.4. Clinical Applications of Cranberries
3.4.1. Urinary Health
3.4.2. Oral Health
3.5. Nutritional Significance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Česonienė, L.; Jasutienė, I.; Šarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina 2009, 45, 992. [Google Scholar] [CrossRef]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2019, 24, 24. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.Y.; Yang, C.; Xu, D.F.; Xia, H.; Yang, L.G.; Sun, G.J. Consumption of cranberry as adjuvant therapy for urinary tract infections in susceptible populations: A systematic review and meta-analysis with trial sequential analysis. PLoS ONE 2021, 16, e0256992. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Hahn, D.; Stephens, J.; Craig, J. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 2023, 4, Cd001321. [Google Scholar]
- Davidson, E.; Zimmermann, B.F.; Jungfer, E.; Chrubasik-Hausmann, S. Prevention of urinary tract infections with Vaccinium products. Phytother. Res. 2014, 28, 465–470. [Google Scholar] [CrossRef]
- Nabih, E.K. Chapter 2-Chemical composition and bioactive compounds of common berries’ by-products. In Berry Bioactive Compound By-Products; Khalifa, I., Nawaz, A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 45–72. [Google Scholar]
- Brown, P.N.; Turi, C.E.; Shipley, P.R.; Murch, S.J. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med. 2012, 78, 630–640. [Google Scholar] [CrossRef]
- Arvinte, O.; Amariei, S. Chemical composition of peatland small cranberry (Vaccinium oxycoccus) for potential use as functional ingredient. Ukr. Food J. 2022, 11, 416–428. [Google Scholar] [CrossRef]
- Sedbare, R.; Raudone, L.; Zvikas, V.; Viskelis, J.; Liaudanskas, M.; Janulis, V. Development and Validation of the UPLC-DAD Methodology for the Detection of Triterpenoids and Phytosterols in Fruit Samples of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Molecules 2022, 27, 4403. Molecules 2022, 27, 4403. [Google Scholar] [CrossRef]
- Xue, L.; Carreiro, B.; Mia, M.S.; Paetau-Robinson, I.; Khoo, C.; Neto, C. Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods 2024, 13, 3136. [Google Scholar] [CrossRef]
- Prasad, S.; Patel, B.; Kumar, P.; Mitra, P.; Lall, R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr. Issues Mol. Biol. 2025, 47, 80. [Google Scholar] [CrossRef]
- Balawejder, M.; Piechowiak, T.; Kapusta, I.; Chęciek, A.; Matłok, N. In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules 2023, 28, 7895. [Google Scholar] [CrossRef]
- Gbinigie, O.A.; Spencer, E.A.; Heneghan, C.J.; Lee, J.J.; Butler, C.C. Cranberry Extract for Symptoms of Acute, Uncomplicated Urinary Tract Infection: A Systematic Review. Antibiotics 2021, 10, 12. [Google Scholar] [CrossRef]
- Witucki, Ł.; Kurpik, M.; Jakubowski, H.; Szulc, M.; Łukasz Mikołajczak, P.; Jodynis-Liebert, J.; Kujawska, M. Neuroprotective Effects of Cranberry Juice Treatment in a Rat Model of Parkinson’s Disease. Nutrients 2022, 14, 2014. [Google Scholar] [CrossRef]
- Mirza, M.A.; Mahmood, S.; Hilles, A.R.; Ali, A.; Khan, M.Z.; Zaidi, S.A.A.; Iqbal, Z.; Ge, Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications—A Review. Pharmaceuticals 2023, 16, 1631. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef] [PubMed]
- Diepeveen, J.; Moerdijk-Poortvliet, T.C.W.; van der Leij, F.R. Molecular insights into human taste perception and umami tastants: A review. J. Food. Sci. 2022, 87, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Urbstaite, R.; Raudone, L.; Janulis, V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry (Vaccinium macrocarpon Aiton). Antioxidants 2022, 11, 250. [Google Scholar] [CrossRef]
- Klavins, L.; Perkons, I.; Mezulis, M.; Viksna, A.; Klavins, M. Procyanidins from Cranberry Press Residues—Extraction Optimization, Purification and Characterization. Plants 2022, 11, 3517. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Saad, A.M.; Alkafaas, S.S.; Elkafas, S.S.; Eldeeb, G.S.; Mohammed, D.M.; Salem, H.M.; Korma, S.A.; Loutfy, S.A.; et al. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int. J. Biol. Macromol. 2024, 277, 134223. [Google Scholar] [CrossRef]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit Physical Features, Phenolic Compounds Profile and Inhibition Activities of Cranberry Cultivars (Vaccinium macrocarpon) Compared to Wild-Grown Cranberry (Vaccinium oxycoccus). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.N.; Murch, S.J.; Shipley, P. Phytochemical Diversity of Cranberry (Vaccinium macrocarpon Aiton) Cultivars by Anthocyanin Determination and Metabolomic Profiling with Chemometric Analysis. J. Agric. Food Chem. 2012, 60, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC-MS/MS and Thiolytic Degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J. Cranberries and Their Bioactive Constituents in Human Health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- Taibi, A.; Lofft, Z.; Laytouni-Imbriaco, B.; Comelli, E.M. The role of intestinal microbiota and microRNAs in the anti-inflammatory effects of cranberry: From pre-clinical to clinical studies. Front. Nutr. 2023, 10, 1092342. [Google Scholar] [CrossRef]
- Kühn, S.; Temelli, F. Recovery of bioactive compounds from cranberry pomace using ternary mixtures of CO2+ethanol+water. J. Supercrit. Fluids 2017, 130, 147–155. [Google Scholar] [CrossRef]
- Alifakı, Y.Ö.; Şakıyan, Ö.; Isci, A. Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods. J. Food Meas. Charact. 2022, 16, 4009–4024. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States: Fruits and Berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
- Viskelis, P.; Rubinskiene, M.; Jasutiene, I.; Sarkinas, A.; Daubaras, R.; Cesoniene, L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009, 74, C157–C161. [Google Scholar] [CrossRef]
- Carpenter, J.L.; Caruso, F.L.; Tata, A.; Vorsa, N.; Neto, C.C. Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon). J. Sci. Food Agric. 2014, 94, 2738–2745. [Google Scholar] [CrossRef]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef] [PubMed]
- Krüger, E.; Will, F.; Kumar, K.; Celejewska, K.; Chartier, P.; Masny, A.; Mott, D.; Petit, A.; Savini, G.; Sønsteby, A. Influence of Post-Flowering Climate Conditions on Anthocyanin Profile of Strawberry Cultivars Grown from North to South Europe. Appl. Sci. 2021, 11, 1326. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Daryanavard, H.; Postiglione, A.E.; Mühlemann, J.K.; Muday, G.K. Flavonols modulate plant development, signaling, and stress responses. Curr. Opin. Plant Biol. 2023, 72, 102350. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef]
- Pillai, J.; Cherian, L.; Taunk, K.; Iype, E.; Dutta, M. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (Mpro). Int. J. Biol. Macromol. 2024, 261, 129655. [Google Scholar] [CrossRef]
- Koga, T.; Ito, H.; Iwaoka, Y.; Noshita, T.; Tai, A. Neurite Outgrowth-Promoting Compounds from the Petals of Paeonia lactiflora in PC12 Cells. Molecules 2022, 27, 7670. [Google Scholar] [CrossRef]
- Bojilov, D.; Manolov, S.; Ahmed, S.; Dagnon, S.; Ivanov, I.; Marc, G.; Oniga, S.; Oniga, O.; Nedialkov, P.; Mollova, S. HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules 2023, 28, 6198. [Google Scholar] [CrossRef]
- Vvedenskaya, I.O.; Vorsa, N. Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci. 2004, 167, 1043–1054. [Google Scholar] [CrossRef]
- Thimóteo, N.S.B.; Iryioda, T.M.V.; Alfieri, D.F.; Rego, B.E.F.; Scavuzzi, B.M.; Fatel, E.; Lozovoy, M.A.B.; Simão, A.N.C.; Dichi, I. Cranberry juice decreases disease activity in women with rheumatoid arthritis. Nutrition 2019, 60, 112–117. [Google Scholar] [CrossRef]
- Afroze, N.; Pramodh, S.; Hussain, A.; Waleed, M.; Vakharia, K. A review on myricetin as a potential therapeutic candidate for cancer prevention. 3 Biotech 2020, 10, 211. [Google Scholar] [CrossRef]
- Gu, L.; Li, Z.; Zhang, X.; Chen, M.; Zhang, X. Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed. Pharmacother. 2023, 161, 114460. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, P.; Maheshwari, U.; Muthukrishnan, A.; Muthuswamy, R.; Anand, K.; Ravindran, B.; Dhanaraj, P.; Balamuralikrishnan, B.; Chang, S.W.; Chung, W.J. Myricetin: Versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS–reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol. Cell. Biochem. 2021, 476, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Joneidi, S.; Alizadeh, S.R.; Ebrahimzadeh, M.A. Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review. Mini Rev. Med. Chem. 2024, 24, 748–766. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fu, M.; Zhu, S.; Liu, J.; Li, Y.; Xue, Z.; Zhou, Z.; Yu, L. Effects of dietary hydroxy-cinnamic acid derivatives on growth, muscle, and intestinal parameters of Tilapia (Oreochromis niloticus). Fish Physiol. Biochem. 2025, 51, 4. [Google Scholar] [CrossRef]
- Hang, D.T.N.; Hoa, N.T.; Bich, H.N.; Mechler, A.; Vo, Q.V. The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics. Phytochemistry 2022, 201, 113281. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, Y. GC-MS Determination of Flavonoids and Phenolic and Benzoic Acids in Human Plasma after Consumption of Cranberry Juice. J. Agric. Food Chem. 2004, 52, 222–227. [Google Scholar] [CrossRef]
- Wang, C.; Zuo, Y. Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chem. 2011, 128, 562–568. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, C.; Zhan, J. Separation, Characterization, and Quantitation of Benzoic and Phenolic Antioxidants in American Cranberry Fruit by GC−MS. J. Agric. Food Chem. 2002, 50, 3789–3794. [Google Scholar] [CrossRef]
- Wu, X.; Xue, L.; Tata, A.; Song, M.; Neto, C.C.; Xiao, H. Bioactive Components of Polyphenol-Rich and Non-Polyphenol-Rich Cranberry Fruit Extracts and Their Chemopreventive Effects on Colitis-Associated Colon Cancer. J. Agric. Food Chem. 2020, 68, 6845–6853. [Google Scholar] [CrossRef]
- Neto, C.C. Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef]
- Xue, L.; Otieno, M.; Colson, K.; Neto, C. Influence of the Growing Region on the Phytochemical Composition and Antioxidant Properties of North American Cranberry Fruit (Vaccinium macrocarpon Aiton). Plants 2023, 12, 3595. [Google Scholar] [CrossRef]
- Kalra, J.; Lingaraju, M.C.; Mathesh, K.; Kumar, D.; Parida, S.; Singh, T.U.; Sharma, A.K.; Kumar, D.; Tandan, S.K. Betulinic acid alleviates dextran sulfate sodium-induced colitis and visceral pain in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Mantzorou, M.; Zarros, A.; Vasios, G.; Theocharis, S.; Pavlidou, E.; Giaginis, C. Cranberry: A Promising Natural Source of Potential Nutraceuticals with Anticancer Activity. Anti-Cancer Agents Med. Chem. 2019, 19, 1672–1686. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Mineral Composition of Wild and Cultivated Blueberries. Biol. Trace Elem. Res. 2018, 181, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Christman, L.; De Benedetto, A.; Johnson, E.; Khoo, C.; Gu, L. Polyphenol-Rich Cranberry Beverage Positively Affected Skin Health, Skin Lipids, Skin Microbiome, Inflammation, and Oxidative Stress in Women in a Randomized Controlled Trial. Nutrients 2024, 16, 3126. [Google Scholar] [CrossRef]
- Currie, T.L.; Engler, M.M.; Olsen, C.H.; Krauthamer, V.; Scott, J.M.; Deuster, P.A.; Flagg, T.P. The Effects of Berry Extracts on Oxidative Stress in Cultured Cardiomyocytes and Microglial Cells: A Potential Cardioprotective and Neuroprotective Mechanism. Molecules 2022, 27, 2789. [Google Scholar] [CrossRef]
- McMurdo, M.E.; Bissett, L.Y.; Price, R.J.; Phillips, G.; Crombie, I.K. Does ingestion of cranberry juice reduce symptomatic urinary tract infections in older people in hospital? A double-blind, placebo-controlled trial. Age Ageing 2005, 34, 256–261. [Google Scholar] [CrossRef]
- Parenteau, F.; Denis, A.; Roberts, M.; Comtois, A.S.; Bergdahl, A. A polyphenol-rich cranberry supplement improves muscle oxidative capacity in healthy adults. Appl. Physiol. Nutr. Metab. 2024, 49, 1047–1054. [Google Scholar] [CrossRef]
- Halliwell, B. Reflections of an aging free radical. Free Radic. Biol. Med. 2020, 161, 234–245. [Google Scholar] [CrossRef]
- Afzal, M.; Redha, A.; AlHasan, R. Anthocyanins Potentially Contribute to Defense against Alzheimer’s Disease. Molecules 2019, 24, 4255. [Google Scholar] [CrossRef]
- Matsumoto, H.; Inaba, H.; Kishi, M.; Tominaga, S.; Hirayama, M.; Tsuda, T. Orally Administered Delphinidin 3-Rutinoside and Cyanidin 3-Rutinoside are Directly Absorbed in Rats and Humans and Appear in the Blood as the Intact Forms. J. Agric. Food Chem. 2001, 49, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Johnson, S.L.; Liu, W.; DaSilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects. Int. J. Mol. Sci. 2018, 19, 461. [Google Scholar] [PubMed]
- Debnath, S.C.; An, D. Antioxidant properties and structured biodiversity in a diverse set of wild cranberry clones. Heliyon 2019, 5, e01493. [Google Scholar] [CrossRef] [PubMed]
- Febvey, A.; Silva, F.; Henriques, B.; Özcan, M.; Teughels, W.; Souza, J.C.M. Root canal disinfection and maintenance of the remnant tooth tissues by using grape seed and cranberry extracts. Odontology 2023, 111, 541–553. [Google Scholar] [CrossRef]
- Castellanos, J.S.; Betancourt, D.E.; Díaz-Báez, D.; Baldión, P.A. Effect of flavonoids from grape seed and cranberry extracts on the microbiological activity of Streptococcus mutans: A systematic review of in vitro studies. BMC Oral Health 2024, 24, 662. [Google Scholar] [CrossRef]
- Febriza, A.; Usman, F.; Rasyid, A.U.M.; Idrus, H.H.; Mokhtar, M.H. Potential role of Manilkara Zapota L in treating bacterial infection. PeerJ 2024, 12, e17890. [Google Scholar] [CrossRef]
- González de Llano, D.; Roldán, M.; Taladrid, D.; Relaño de la Guía, E.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: New Findings Related to the Integrity and Functionality of Intestinal and Urinary Barriers. J. Agric. Food Chem. 2024, 72, 10328–10338. [Google Scholar] [CrossRef]
- Howell, A.B.; Botto, H.; Combescure, C.; Blanc-Potard, A.B.; Gausa, L.; Matsumoto, T.; Tenke, P.; Sotto, A.; Lavigne, J.P. Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: A multicentric randomized double blind study. BMC Infect. Dis. 2010, 10, 94. [Google Scholar] [CrossRef]
- Quan, J.; Zhao, X.; Xiao, Y.; Wu, H.; Di, Q.; Wu, Z.; Chen, X.; Tang, H.; Zhao, J.; Guan, Y.; et al. USP39 Regulates NF-κB–Mediated Inflammatory Responses through Deubiquitinating K48-Linked IκBα. J. Immunol. 2023, 210, 640–652. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Matkowski, A.; Hadzik, J.; Dobrowolska-Czopor, B.; Olchowy, C.; Dominiak, M.; Kubasiewicz-Ross, P. Proanthocyanidins and Flavan-3-Ols in the Prevention and Treatment of Periodontitis—Antibacterial Effects. Nutrients 2021, 13, 165. [Google Scholar] [CrossRef]
- Ben Lagha, A.; Howell, A.; Grenier, D. Highbush blueberry proanthocyanidins alleviate Porphyromonas gingivalis-induced deleterious effects on oral mucosal cells. Anaerobe 2020, 65, 102266. [Google Scholar] [CrossRef]
- Mizutani, K.; Buranasin, P.; Mikami, R.; Takeda, K.; Kido, D.; Watanabe, K.; Takemura, S.; Nakagawa, K.; Kominato, H.; Saito, N.; et al. Effects of Antioxidant in Adjunct with Periodontal Therapy in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Antioxidants 2021, 10, 1304. [Google Scholar] [CrossRef]
- Yang, X.B.; Zhang, L.H.; Xue, J.N.; Wang, Y.C.; Yang, X.; Zhang, N.; Liu, D.; Wang, Y.Y.; Xun, Z.Y.; Li, Y.R.; et al. High incidence combination of multiple primary malignant tumors of the digestive system. World J. Gastroenterol. 2022, 28, 5982–5992. [Google Scholar] [CrossRef] [PubMed]
- Déziel, B.; MacPhee, J.; Patel, K.; Catalli, A.; Kulka, M.; Neto, C.; Gottschall-Pass, K.; Hurta, R. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators. Food Funct. 2012, 3, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Hunzeker, Z.E.; Zhu, Z.; Lequio, M.; Willson, C.M.; Xiao, H.; Wakefield, M.R.; Fang, Y. Cranberry Extract Is a Potent Radiosensitizer for Glioblastoma. Anticancer Res. 2021, 41, 3337–3341. [Google Scholar] [CrossRef] [PubMed]
- Katsargyris, A.; Tampaki, E.C.; Giaginis, C.; Theocharis, S. Cranberry as promising natural source of potential anticancer agents: Current evidence and future perspectives. Anti-Cancer Agents Med. Chem. 2012, 12, 619–630. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Xia, J.; Pan, D.; Sun, G. The Effects of Cranberry Consumption on Glycemic and Lipid Profiles in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 782. [Google Scholar] [CrossRef]
- Kocabas, S.; Sanlier, N. The power of berries against cardiovascular diseases. Nutr. Rev. 2024, 82, 963–977. [Google Scholar] [CrossRef]
- Hotchkiss, A.T.; Renye, J.A., Jr.; White, A.K.; Nunez, A.; Guron, G.K.P.; Chau, H.; Simon, S.; Poveda, C.; Walton, G.; Rastall, R.; et al. Cranberry Arabino-Xyloglucan and Pectic Oligosaccharides Induce Lactobacillus Growth and Short-Chain Fatty Acid Production. Microorganisms 2022, 10, 1346. [Google Scholar] [CrossRef]
- Anitha, K.V.; Krishnan, R. Evaluation of flexural strength and microhardness in Vaccinium macrocarpon (cranberry)-added self-cure polymethyl methacrylate dental resin: An in vitro study. J. Indian Prosthodont. Soc. 2024, 24, 266–272. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Esquivel-Chirino, C.; Bolaños-Carrillo, M.A.; Carmona-Ruiz, D.; Lopéz-Macay, A.; Hernández-Sánchez, F.; Montés-Sánchez, D.; Escuadra-Landeros, M.; Gaitán-Cepeda, L.A.; Maldonado-Frías, S.; Yáñez-Ocampo, B.R.; et al. The Protective Role of Cranberries and Blueberries in Oral Cancer. Plants 2023, 12, 2330. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Raz, R.; Chazan, B.; Dan, M. Cranberry Juice and Urinary Tract Infection. Clin. Infect. Dis. 2004, 38, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, I.; Katsargyris, A.; Theocharis, S.; Giaginis, C. Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr. Res. 2013, 33, 595–607. [Google Scholar] [CrossRef]
- Nussbaumer-Pröll, A.; Hausmann, B.; Weber, M.; Pjevac, P.; Berry, D.; Zeitlinger, M. A Pilot Study on the Impact of Cranberry and Ascorbic Acid Supplementation on the Urinary Microbiome of Healthy Women: A Randomized Controlled Trial. Antibiotics 2025, 14, 278. [Google Scholar] [CrossRef]
- Dimoff, Z.; Lofft, Z.; Liang, F.; Chen, S.; Massara, P.; Wu, D.; Paetau-Robinson, I.; Khoo, C.; Taibi, A.; Comelli, E.M. Data on microRNA expression, predicted gene targets and pathway analysis in response to different concentrations of a cranberry proanthocyanidin-rich extract and its metabolite 3-(4-hydroxyphenyl)-propionic acid in intestinal Caco-2BBe1 cells. Data Brief 2024, 54, 110238. [Google Scholar] [CrossRef]
- Roussel, C.; Chabaud, S.; Lessard-Lord, J.; Cattero, V.; Pellerin, F.A.; Feutry, P.; Bochard, V.; Bolduc, S.; Desjardins, Y. UPEC Colonic-Virulence and Urovirulence are Blunted by Proanthocyanidins-Rich Cranberry Extract Microbial Metabolites in a Gut Model and a 3D Tissue-Engineered Urothelium. Microbiol. Spectr. 2022, 10, e0243221. [Google Scholar] [CrossRef]
- Bansal, K.; Shamoo, A.; Mohapatra, S.; Kalaivani, M.; Batra, P.; Mathur, V.P.; Srivastava, A.; Chaudhry, R. Comparative evaluation of cranberry extract and sodium fluoride as mouth rinses on S. mutans counts in children: A double-blind randomized controlled trial. Eur. Arch. Paediatr. Dent. 2024, 25, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.B.; Silva, I.M.; Dame-Teixeira, N. The action of microbial collagenases in dentinal matrix degradation in root caries and potential strategies for its management: A comprehensive state-of-the-art review. J. Appl. Oral Sci. 2024, 32, e20240013. [Google Scholar] [CrossRef] [PubMed]
- Olczak-Kowalczyk, D.; Turska-Szybka, A.; Twetman, S.; Gozdowski, D.; Piekoszewska-Ziętek, P.; Góra, J.; Wróblewska, M. Effect of tablets containing a paraprobiotic strain and the cranberry extract on caries incidence in preschool children: A randomized controlled trial. Dent. Med. Probl. 2025, 62, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.T.; Cardoso, C.A.B.; Jordão, M.C.; Galvão, R.P.O.; Iscuissati, A.G.S.; Kinoshita, A.M.O.; Buzalaf, M.A.R. Effect of the cranberry (Vaccinium macrocarpon) juice on reducing dentin erosion: An in vitro study. Braz. Oral Res. 2022, 36, e076. [Google Scholar] [CrossRef]
- García-Manríquez, N.; Lozano, C.; Muñoz, A.; Morales, M.F.; Giacaman, R.A. Anticaries properties of natural berries: Systematic literature review. Nutr. Rev. 2024, 82, 302–317. [Google Scholar] [CrossRef]
- Sreenivasan, P.K.; Haraszthy, V.I. Chlorhexidine Improves Hygiene Reducing Oral Polymorphonuclear Leukocytes with Antimicrobial Effects at Distinct Microenvironments amongst Subjects Stratified by Health Status. Antibiotics 2022, 11, 603. [Google Scholar] [CrossRef]
- White, B.L.; Howard, L.R.; Prior, R.L. Release of Bound Procyanidins from Cranberry Pomace by Alkaline Hydrolysis. J. Agric. Food Chem. 2010, 58, 7572–7579. [Google Scholar] [CrossRef]
- Lessard-Lord, J.; Roussel, C.; Lupien-Meilleur, J.; Généreux, P.; Richard, V.; Guay, V.; Roy, D.; Desjardins, Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. npj Biofilms Microbiomes 2024, 10, 18. [Google Scholar] [CrossRef]
- Thorakkattu, P.; Jain, S.; Sivapragasam, N.; Maurya, A.; Tiwari, S.; Dwivedy, A.K.; Koirala, P.; Nirmal, N. Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II. Curr. Nutr. Rep. 2025, 14, 10. [Google Scholar] [CrossRef]
- Denis, M.-C.; Desjardins, Y.; Furtos, A.; Marcil, V.; Dudonné, S.; Montoudis, A.; Garofalo, C.; Delvin, E.; Marette, A.; Levy, E. Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin. Sci. 2014, 128, 197–212. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Feliciano, R.P.; Boeres, A.; Weber, T.; Dos Santos, C.N.; Ventura, M.R.; Heiss, C. Cranberry (poly)phenol metabolites correlate with improvements in vascular function: A double-blind, randomized, controlled, dose-response, crossover study. Mol. Nutr. Food Res. 2016, 60, 2130–2140. [Google Scholar] [CrossRef]
- Chang, H.; Johnson, E.; Khoo, C.; Wang, W.; Gu, L. Cranberry Juice Polyphenols Inhibited the Formation of Advanced Glycation End Products in Collagens, Inhibited Advanced Glycation End Product-Induced Collagen Crosslinking, and Cleaved the Formed Crosslinks. J. Agric. Food Chem. 2022, 70, 15560–15569. [Google Scholar] [CrossRef]
- Khodaei, N.; Houde, M.; Bayen, S.; Karboune, S. Exploring the synergistic effects of essential oil and plant extract combinations to extend the shelf life and the sensory acceptance of meat products: Multi-antioxidant systems. J. Food Sci. Technol. 2023, 60, 679–691. [Google Scholar] [CrossRef]
No. | Compound Name | Molecular | Content | References | ||
---|---|---|---|---|---|---|
Pilgrim | Stevens | Ben Lear | ||||
1 | Delphinidin 3-O-glucoside | C21H21O12+ | 1.2 mg/100 g dm | 0.6 mg/100 g dm | 1.1 mg/100 g dm | [16] |
2 | Cyanidin 3-O-galactoside | C21H21O11+ | 116.5–118.9 mg/100 g dm | 185–191.2 mg/100 g dm | 168.8–172.4 mg/100 g dm | [18] |
3 | Cyanidin-3-O-glucoside | C21H21ClO11 | 5.3–5.5 mg/100 g dm | 7.2 mg/100 g dm | 7.9 mg/100 g dm | [16] |
4 | Cyanidin-3-O-arabinoside | C20H19ClO10 | 59–60.2 mg/100 g dm | 94.6–97.8 mg/100 g dm | 81.6–83.4 mg/100 g dm | [16] |
5 | Peonidin 3-galactoside | C22H23ClO11 | 190.1–192.7 mg/100 g dm | 275.4–281.2 mg/100 g dm | 374.4–381 mg/100 g dm | [16] |
6 | Peonidin 3-Glucoside | C22H23ClO11 | 20.6–21 mg/100 g dm | 30.4–31.2 mg/100 g dm | 50.1–50.7 mg/100 g dm | [18] |
7 | Peonidin 3-arabinoside | C21H21ClO10 | 42.3–42.9 mg/100 g dm | 92.5–94.3 mg/100 g dm | 113.3–115.7 mg/100 g dm | [16] |
8 | Malvidin 3-O-arabinoside | C22H23O11 | 1.2–1.4 mg/100 g dm | 0.8 mg/100 g dm | 1.7 mg/100 g dm | [16] |
No. | Compound Name | Molecular | Content | References | ||
---|---|---|---|---|---|---|
Pilgrim | Stevens | Ben Lear | ||||
1 | Myricetin-3-O-galactoside | C21H20O13 | 343.6–351 mg/100 g dm | 262.2-mg/100 g dm | 146.6–150.4 mg/100 g dm | [16] |
2 | Myricetin-3-O-glucoside | C21H20O13 | 6.4–6.6 mg/100 g dm | 3.8 mg/100 g dm | 1.9 mg/100 g dm | [16] |
3 | Myricetin-3-O-xyloside | C20H18O12 | 28.6–29.4 mg/100 g dm | 14.8–15.2 mg/100 g dm | 6.3–6.5 mg/100 g dm | [16] |
4 | Quercetin-3-O-galactoside | C21H20O12 | 375.1–380.1 mg/100 g dm | 312.5–318.7 mg/100 g dm | 287.7–293.9 mg/100 g dm | [16] |
5 | Myricetin-3-O-glucuronide | C21H18O14 | 43.6–44.4 mg/100 g dm | 27.4–28 mg/100 g dm | 17–17.4 mg/100 g dm | [18] |
6 | quercetin-3-O-pentosyl-pentoside | C25H26O15 | 41–42.2 mg/100 g dm | 38.9–39.7 mg/100 g dm | 41.7–42.7 mg/100 g dm | [18] |
7 | quercetin-3-O-deoxyhexosyl(1-2)deoxyhexoside | C27H30O15 | 25.6–26 mg/100 g dm | 20.4–20.6 mg/100 g dm | 17.2–17.6 mg/100 g dm | [18] |
8 | 3-O-Methylquercetin | C16H12O7 | 55.1–56.6 mg/100 g dm | 57.1–58.7 mg/100 g dm | 33.6–34.2 mg/100 g dm | [16] |
9 | Quercetin-3′-O-glucoside | C21H20O12 | 12.3–12.5 mg/100 g dm | 8.5–8.7 mg/100 g dm | 3.9–4.3 mg/100 g dm | [16] |
10 | Quercetin-3-(3-p-coumaroylglucoside) | C30H26O14 | 2.3 mg/100 g dm | 1.6 mg/100 g dm | 0.8–1 mg/100 g dm | [16] |
11 | Quercetin-3-O-rhamnoside | C21H20O11 | 8.9–9.1 mg/100 g dm | 6.8–7.4 mg/100 g dm | 5.9–6.1 mg/100 g dm | [16] |
No. | Name | Content | Analytical Method | Reference |
---|---|---|---|---|
1 | p-Coumaric acid | 2–245 µg/g dw | HPLC/ESI-MS/MS | [16] |
2 | p-Coumaroyl hexose | 8.6–13.9 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
3 | p-Coumaroyl hexose isomer | 3.6–50.0 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
4 | p-Coumaroyl derivatives | 210–451 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
5 | Chlorogenic acid | 72.00–129.62 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
6 | Caffeic acid | 5–123 µg/g dw | HPLC/ESI-MS/MS | [16] |
7 | Caffeoyl hexoside | 92.7–190.2 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
8 | Caffeoyl hexoside isomer | 10.9–17.5 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
9 | Caffeoyl and derivatives | 39.93–68.28 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
10 | Ferulic acid | 4–39 µg/g dw | HPLC/ESI-MS/MS | [16] |
11 | Total phenolic acid | 327–649 mg/100 g dm | LC/MS Q-TOF and UPLC-PDA-FL | [16] |
Name | Average Amount | Number of Samples | Min | Max | Median |
---|---|---|---|---|---|
Proximates | |||||
Water | 92.3 g | 8 | 92.1 g | 92.5 g | 92.3 g |
Total lipid (fat) | 0.34 g | 8 | 0.16 g | 0.86 g | 0.28 g |
Ash | 0.1 g | 8 | 0 g | 0.15 g | 0.1 g |
Protein | 0 | 0 g | 0 g | 0 g | |
Nitrogen | <0.02 | 8 | |||
Carbohydrates | |||||
Carbohydrate | 7.26 g | ||||
Sugars, Total | 3.41 g | ||||
Sucrose | <0.25 g | ||||
Glucose | 2.7 g | 8 | 2.45 g | 3.03 g | 2.62 g |
Fructose | 0.72 g | 8 | 0.61 g | 0.89 g | 0.68 g |
Lactose | <0.25 g | 8 | |||
Maltose | <0.25 g | 8 | |||
Galactose | <0.1 g | 8 | |||
Organic acids | |||||
Citric acid | 1160 mg | 8 | 997 mg | 1520 mg | 1100 mg |
Malic acid | 756 mg | 8 | 615 mg | 912 mg | 764 mg |
Quinic acid | 1020 mg | 8 | 821 mg | 1220 mg | 1020 mg |
Oxalic acid | <40 mg | 8 | |||
Minerals | |||||
Calcium, Ca | 7 mg | 8 | 5 mg | 10 mg | 5 mg |
Iron, Fe | 0.13 mg | 8 | 0.09 mg | 0.19 mg | 0.11 mg |
Magnesium, Mg | 4.4 mg | 8 | 3.6 mg | 6.6 mg | 3.9 mg |
Phosphorus, P | 3 mg | 8 | 3 mg | 4 mg | 3 mg |
Potassium, K | 71 mg | 8 | 61 mg | 91 mg | 81 mg |
Sodium, Na | 6 mg | 8 | 2 mg | 12 mg | 5 mg |
Zinc, Zn | 0.04 mg | 8 | 0.03 mg | 0.05 mg | 0.04 mg |
Copper, Cu | 0.013 mg | 8 | 0 mg | 0.022 mg | 0.014 mg |
Manganese, Mn | 0.221 mg | 8 | 0.119 mg | 0.271 mg | 0.228 mg |
Vitamins and Other Components | |||||
Vitamin C | <0.63 mg | 8 | |||
Thiamin | 0.018 mg | 8 | 0.015 mg | 0.023 mg | 0.017 mg |
Niacin | 0.01 mg | 8 | 0.006 mg | 0.013 mg | 0.01 mg |
Vitamin B-6 | 0.009 mg | 8 | 0 mg | 0.011 mg | 0.01 mg |
Folate, total | 9 µg | 8 | 0 µg | 21 µg | 8 µg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, C.; Wu, W.; Kong, L.; Xiao, L.; Ma, W.; Zhang, L. Cranberry Research Progress: A Systematic Review of Chemical Composition, Pharmacological Mechanisms, Clinical Applications, and Nutritional Significance. Int. J. Mol. Sci. 2025, 26, 9707. https://doi.org/10.3390/ijms26199707
Xu J, Li C, Wu W, Kong L, Xiao L, Ma W, Zhang L. Cranberry Research Progress: A Systematic Review of Chemical Composition, Pharmacological Mechanisms, Clinical Applications, and Nutritional Significance. International Journal of Molecular Sciences. 2025; 26(19):9707. https://doi.org/10.3390/ijms26199707
Chicago/Turabian StyleXu, Jiao, Chenliang Li, Wei Wu, Lingyang Kong, Lijin Xiao, Wei Ma, and Lihong Zhang. 2025. "Cranberry Research Progress: A Systematic Review of Chemical Composition, Pharmacological Mechanisms, Clinical Applications, and Nutritional Significance" International Journal of Molecular Sciences 26, no. 19: 9707. https://doi.org/10.3390/ijms26199707
APA StyleXu, J., Li, C., Wu, W., Kong, L., Xiao, L., Ma, W., & Zhang, L. (2025). Cranberry Research Progress: A Systematic Review of Chemical Composition, Pharmacological Mechanisms, Clinical Applications, and Nutritional Significance. International Journal of Molecular Sciences, 26(19), 9707. https://doi.org/10.3390/ijms26199707