Coenzyme Q10 Ameliorates Chemotherapy-Induced Neurotoxicity in iPSC-Derived Neurons by Reducing Oxidative Stress
Abstract
1. Introduction
2. Results
2.1. Confirmation of Pluripotency in iPSC Lines
2.2. Confirmation of iPSC Differentiation into Motor Neurons (MNs)
2.3. Potential Protective Effects of CoQ10 on iPSC-MNPs Viability Following Exposure to Chemotherapeutic Agents
2.4. CoQ10 Effect on Chemotherapy-Induced ROS Levels in iPSC-MNPs
2.5. Effect of CoQ10 on Mitochondrial Membrane Potential (MMP) in Chemotherapy-Treated iPSC-MNPs
3. Discussion
4. Materials and Methods
4.1. Immunophenotyping of iPSCs
4.2. hiPSCs Karyotyping
4.3. Neuronal Differentiation
4.4. Immunofluorescence Staining of Neurons
4.5. Chemotherapy Compounds Preparation
4.6. Cell Viability Assay (MTT)
4.7. LDH Assay
4.8. Reactive Oxygen Species (ROS) Assay
4.9. Mitochondrial Membrane Potential (MMP)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juthani, R.; Punatar, S.; Mittra, I. New Light on Chemotherapy Toxicity and Its Prevention. BJC Rep. 2024, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced Peripheral Neuropathy: A Current Review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ranadive, N.; Kinra, M.; Nampoothiri, M.; Arora, D.; Mudgal, J. An Overview on Chemotherapy-Induced Cognitive Impairment and Potential Role of Antidepressants. Curr. Neuropharmacol. 2020, 18, 838–851. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef]
- Zhang, S. Chemotherapy-Induced Peripheral Neuropathy and Rehabilitation: A Review. Semin. Oncol. 2021, 48, 193–207. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Kacem, H.; Cimini, A.; d’Angelo, M.; Castelli, V. Molecular and Cellular Involvement in CIPN. Biomedicines 2024, 12, 751. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Abed, A.; Zihlif, M.; Khader, H.A.; Hasoun, L.; Al-Imam, A.; Shawabkeh, M.J.A.; Fino, L.B.; Alsa’d, A.A.; Al-Shajlawi, M.; Alsayed, A.R. Natural Agents’ Role in Cancer Chemo-Resistance Prevention and Treatment: Molecular Mechanisms and Therapeutic Prospects. Pharm. Pract. (Granada) 2024, 22, 1–23. [Google Scholar] [CrossRef]
- Owida, H.A.; Abed, A.Y.; Altalbawy, F.; Abbot, V.; Jakhonkulovna, S.M.; Mohammad, S.I.; Vasudevan, A.; Khalaf, R.M.; Zwamel, A.H. NLRP3 Inflammasome-Based Therapies by Natural Products: A New Development in the Context of Cancer Therapy. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 11073–11092. [Google Scholar] [CrossRef]
- da Silva Machado, C.; Mendonça, L.M.; Venancio, V.d.P.; Bianchi, M.L.P.; Antunes, L.M.G. Coenzyme Q10 Protects Pc12 Cells from Cisplatin-Induced DNA Damage and Neurotoxicity. Neurotoxicology 2013, 36, 10–16. [Google Scholar] [CrossRef]
- Park, J.; Park, H.-H.; Choi, H.; Kim, Y.S.; Yu, H.-J.; Lee, K.-Y.; Lee, Y.J.; Kim, S.H.; Koh, S.-H. Coenzyme Q10 Protects Neural Stem Cells against Hypoxia by Enhancing Survival Signals. Brain Res. 2012, 1478, 64–73. [Google Scholar] [CrossRef]
- Rauchová, H. Coenzyme Q10 Effects in Neurological Diseases. Physiol. Res. 2021, 70, S683–S714. [Google Scholar] [CrossRef]
- Bagheri, S.; Haddadi, R.; Saki, S.; Kourosh-Arami, M.; Rashno, M.; Mojaver, A.; Komaki, A. Neuroprotective Effects of Coenzyme Q10 on Neurological Diseases: A Review Article. Front. Neurosci. 2023, 17, 1188839. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mishra, R.; Singh, G. Neuroprotective Potential of Coenzyme Q10. In Natural Molecules in Neuroprotection and Neurotoxicity; Elsevier: Amsterdam, The Netherlands, 2024; pp. 493–508. [Google Scholar]
- Ivan, A.; Lukinich-Gruia, A.T.; Cristea, I.-M.; Pricop, M.-A.; Calma, C.L.; Paunescu, A.; Tatu, C.A.; Galuscan, A.; Paunescu, V. In Vitro Antioxidant Effects of Coenzyme Q10 on Cellular Metabolism in Aged Mesenchymal Stem Cells. Appl. Sci. 2025, 15, 2783. [Google Scholar] [CrossRef]
- Ebadi, M.; Govitrapong, P.; Sharma, S.; Muralikrishnan, D.; Shavali, S.; Pellett, L.; Schafer, R.; Albano, C.; Eken, J. Ubiquinone (coenzyme q10) and Mitochondria in Oxidative Stress of Parkinson’s Disease. Neurosignals 2001, 10, 224–253. [Google Scholar] [CrossRef] [PubMed]
- Park, H.W.; Park, C.G.; Park, M.; Lee, S.H.; Park, H.R.; Lim, J.; Paek, S.H.; Choy, Y. Bin Intrastriatal Administration of Coenzyme Q10 Enhances Neuroprotection in a Parkinson’s Disease Rat Model. Sci. Rep. 2020, 10, 9572. [Google Scholar] [CrossRef]
- Ababneh, N.A.; Al-Kurdi, B.; Ali, D.; Abuarqoub, D.; Barham, R.; Salah, B.; Awidi, A. Establishment of a Human Induced Pluripotent Stem Cell (IPSC) Line (JUCTCi010-A) from a Healthy Jordanian Female Skin Dermal Fibroblasts. Stem Cell Res. 2020, 47, 101891. [Google Scholar] [CrossRef]
- Ababneh, N.A.; Al-Kurdi, B.; Jamali, F.; Awidi, A. A Comparative Study of the Capability of MSCs Isolated from Different Human Tissue Sources to Differentiate into Neuronal Stem Cells and Dopaminergic-like Cells. PeerJ 2022, 10, e13003. [Google Scholar] [CrossRef]
- Gharandouq, M.H.; Ismail, M.A.; Saleh, T.; Zihlif, M.; Ababneh, N.A. Metformin Protects Human Induced Pluripotent Stem Cell (HiPSC)-Derived Neurons from Oxidative Damage Through Antioxidant Mechanisms. Neurotox. Res. 2025, 43, 15. [Google Scholar] [CrossRef]
- Romito, A.; Cobellis, G. Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int. 2016, 2016, 9451492. [Google Scholar] [CrossRef]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative Stress and Nerve Damage: Role in Chemotherapy Induced Peripheral Neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef]
- Garrido-Maraver, J.; Cordero, M.D.; Oropesa-Avila, M.; Vega, A.F.; de la Mata, M.; Pavon, A.D.; Alcocer-Gomez, E.; Calero, C.P.; Paz, M.V.; Alanis, M.; et al. Clinical Applications of Coenzyme Q10. Front. Biosci. (Landmark Ed.) 2014, 19, 619–633. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Singh, C.; Singh, A. Coenzyme Q10 a Mitochondrial Restorer for Various Brain Disorders. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 2197–2222. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Miura, M.; Yanai, S.; Nishimune, H. Coenzyme Q10 Supplementation Improves the Motor Function of Middle-Aged Mice by Restoring the Neuronal Activity of the Motor Cortex. Sci. Rep. 2023, 13, 4323. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A. A Review on Mitochondrial Restorative Mechanism of Antioxidants in Alzheimer’s Disease and Other Neurological Conditions. Front. Pharmacol. 2015, 6, 206. [Google Scholar] [CrossRef]
- Yousef, A.O.S.; Fahad, A.A.; Abdel Moneim, A.E.; Metwally, D.M.; El-Khadragy, M.F.; Kassab, R.B. The Neuroprotective Role of Coenzyme Q10 Against Lead Acetate-Induced Neurotoxicity Is Mediated by Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities. Int. J. Environ. Res. Public Health 2019, 16, 2895. [Google Scholar] [CrossRef]
- Bianchi, F.; Malboubi, M.; Li, Y.; George, J.H.; Jerusalem, A.; Szele, F.; Thompson, M.S.; Ye, H. Rapid and Efficient Differentiation of Functional Motor Neurons from Human IPSC for Neural Injury Modelling. Stem Cell Res. 2018, 32, 126–134. [Google Scholar] [CrossRef]
- Ahmad, R.; Wolber, W.; Eckardt, S.; Koch, P.; Schmitt, J.; Semechkin, R.; Geis, C.; Heckmann, M.; Brüstle, O.; McLaughlin, J.K.; et al. Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells. PLoS ONE 2012, 7, e42800. [Google Scholar] [CrossRef]
- Hargreaves, I.P. Coenzyme Q10 as a Therapy for Mitochondrial Disease. Int. J. Biochem. Cell Biol. 2014, 49, 105–111. [Google Scholar] [CrossRef]
- Jing, L.; He, M.-T.; Chang, Y.; Mehta, S.L.; He, Q.-P.; Zhang, J.-Z.; Li, P.A. Coenzyme Q10 Protects Astrocytes from ROS-Induced Damage through Inhibition of Mitochondria-Mediated Cell Death Pathway. Int. J. Biol. Sci. 2015, 11, 59–66. [Google Scholar] [CrossRef]
- Celebi, N.; Cil, H.; Cil, O.; Canbay, O.; Onur, R.; Aypar, U. Protective Effect of Coenzyme Q10 in Paclitaxel-Induced Peripheral Neuropathy in Rats. Neurosciences 2013, 18, 133–137. [Google Scholar]
- Scasso, F.; Sprio, A.E.; Canobbio, L.; Scanarotti, C.; Manini, G.; Berta, G.N.; Bassi, A.M. Dietary Supplementation of Coenzyme Q10 plus Multivitamins to Hamper the ROS Mediated Cisplatin Ototoxicity in Humans: A Pilot Study. Heliyon 2017, 3, e00251. [Google Scholar] [CrossRef] [PubMed]
- Okudan, N.; Belviranlı, M.; Sezer, T. Potential Protective Effect of Coenzyme Q10 on Doxorubicin-Induced Neurotoxicity and Behavioral Disturbances in Rats. Neurochem. Res. 2022, 47, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Ahuja, P.; Kapil, L.; Sharma, D.; Singh, C.; Singh, A. Coenzyme Q10 Ameliorates Chemotherapy-Induced Cognitive Impairment in Mice: A Preclinical Study. Mol. Biol. Rep. 2024, 51, 930. [Google Scholar] [CrossRef] [PubMed]
- Yahyazadeh, A.; Başak, F.; Demirel, M.A. Efficacy of Coenzyme Q10 and Curcumin on Antioxidant Enzyme Activity and Hippocampal Alteration Following Exposure to Cyclophosphamide in Male Rat. Tissue Cell 2024, 86, 102296. [Google Scholar] [CrossRef]
- Ababneh, N.A.; Al-Kurdi, B.; Ali, D.; Barham, R.; Sharar, N.; Mrahleh, M.M.; Salah, B.; Awidi, A. Generation of a Human Induced Pluripotent Stem Cell (IPSC) Line (JUCTCi011-A) from Skin Fibroblasts of a Healthy Jordanian Male Subject. Stem Cell Res. 2020, 48, 101923. [Google Scholar] [CrossRef]
- Du, Z.-W.; Chen, H.; Liu, H.; Lu, J.; Qian, K.; Huang, C.-L.; Zhong, X.; Fan, F.; Zhang, S.-C. Generation and Expansion of Highly Pure Motor Neuron Progenitors from Human Pluripotent Stem Cells. Nat. Commun. 2015, 6, 6626. [Google Scholar] [CrossRef]
- Smulders, P.S.H.; Heikamp, K.; Hermanides, J.; Hollmann, M.W.; Ten Hoope, W.; Weber, N.C. Chemotherapy-Induced Peripheral Neuropathy Models Constructed from Human Induced Pluripotent Stem Cells and Directly Converted Cells: A Systematic Review. Pain 2024, 165, 1914–1925. [Google Scholar] [CrossRef]
- Choi, H.; Park, H.-H.; Koh, S.-H.; Choi, N.-Y.; Yu, H.-J.; Park, J.; Lee, Y.J.; Lee, K.-Y. Coenzyme Q10 Protects against Amyloid Beta-Induced Neuronal Cell Death by Inhibiting Oxidative Stress and Activating the P13K Pathway. Neurotoxicology 2012, 33, 85–90. [Google Scholar] [CrossRef]
- Hernández-Pérez, O.R.; Juárez-Navarro, K.J.; Diaz, N.F.; Padilla-Camberos, E.; Beltran-Garcia, M.J.; Cardenas-Castrejon, D.; Corona-Perez, H.; Hernández-Jiménez, C.; Díaz-Martínez, N.E. Biomolecules Resveratrol + Coenzyme Q10 Recover the Cell State of Human Mesenchymal Stem Cells after 1-Methyl-4-Phenylpyridinium-Induced Damage and Improve Proliferation and Neural Differentiation. Front. Neurosci. 2022, 16, 929590. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ababneh, N.A.; AlDiqs, R.; Gharandouq, M.H.; Ismail, M.A.; Barham, R.; Nairat, F.; Hamdan, O.; Mussa, Q.; Sarhan, M.; Masri, A.T.; et al. Coenzyme Q10 Ameliorates Chemotherapy-Induced Neurotoxicity in iPSC-Derived Neurons by Reducing Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 9647. https://doi.org/10.3390/ijms26199647
Ababneh NA, AlDiqs R, Gharandouq MH, Ismail MA, Barham R, Nairat F, Hamdan O, Mussa Q, Sarhan M, Masri AT, et al. Coenzyme Q10 Ameliorates Chemotherapy-Induced Neurotoxicity in iPSC-Derived Neurons by Reducing Oxidative Stress. International Journal of Molecular Sciences. 2025; 26(19):9647. https://doi.org/10.3390/ijms26199647
Chicago/Turabian StyleAbabneh, Nidaa A., Razan AlDiqs, Mohammad H. Gharandouq, Mohammad A. Ismail, Raghda Barham, Fairouz Nairat, Omar Hamdan, Qais Mussa, Momen Sarhan, Amira T. Masri, and et al. 2025. "Coenzyme Q10 Ameliorates Chemotherapy-Induced Neurotoxicity in iPSC-Derived Neurons by Reducing Oxidative Stress" International Journal of Molecular Sciences 26, no. 19: 9647. https://doi.org/10.3390/ijms26199647
APA StyleAbabneh, N. A., AlDiqs, R., Gharandouq, M. H., Ismail, M. A., Barham, R., Nairat, F., Hamdan, O., Mussa, Q., Sarhan, M., Masri, A. T., Abu-Humaidan, A., Al Shboul, S., Abuhammad, A., Awidi, A., & Saleh, T. (2025). Coenzyme Q10 Ameliorates Chemotherapy-Induced Neurotoxicity in iPSC-Derived Neurons by Reducing Oxidative Stress. International Journal of Molecular Sciences, 26(19), 9647. https://doi.org/10.3390/ijms26199647