Arthrospira Platensis Attenuates Endothelial Inflammation and Monocyte Activation
Abstract
1. Introduction
2. Results
2.1. Spirulina Treatment Does Not Induce Cytotoxicity in HUVECs
2.2. Spirulina Attenuates Endothelial Inflammation and Modulates Angiogenic Signalling in HUVECs
2.3. Spirulina Attenuates Monocyte Activation and Foam Cell Formation in THP-1 Cells
2.4. Spirulina Attenuates NF-κB Signalling in HUVECs Under Basal and TNF-α-Induced Conditions
2.5. Spirulina Attenuates Monocyte Adhesion to Activated Endothelium
2.6. Structural Similarity Analysis Identifies Functional Mimicry Between Spirulina Metabolites and HUVEC-Interacting Molecules
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Culture Conditions
4.2. Preparation of Spirulina Extract
4.3. MTS Assay
4.4. Monocyte–Endothelium Adhesion Assay
4.5. RNA Extraction and Real-Time PCR
4.6. Bioinformatics Analysis
4.7. Biochemical Structural Comparison
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Erkan, A.; Ekici, B.; Uğurlu, M.; İş, G.; Şeker, R.; Demirtaş, S.; Korkmaz, Ş. The role of bilirubin and its protective function against coronary heart disease. Herz 2014, 39, 711–715. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 12 April 2025).
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Tabas, I.; García-Cardeña, G.; Owens, G.K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 2015, 209, 13–22. [Google Scholar] [CrossRef]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Singh, M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep. 2015, 7, 08. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Sprangers, R.L.H.; Stam, F.; Smid, H.E.C.; Stehouwer, C.D.A.; Hellemans, I.M. Multidisciplinary structured lifestyle intervention reduces the estimated risk of cardiovascular morbidity and mortality. Neth. Heart J. 2004, 12, 443–449. [Google Scholar]
- Celletti, F.L.; Waugh, J.M.; Amabile, P.G.; Brendolan, A.; Hilfiker, P.R.; Dake, M.D. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. 2001, 7, 425–429. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005, 438, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M. Molecular Biology of the VEGF and the VEGF Receptor Family. Semin. Thromb. Hemost. 2000, 26, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Moulton, K.S. Angiogenesis in atherosclerosis: Gathering evidence beyond speculation. Curr. Opin. Lipidol. 2006, 17, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Romanian J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Kanemitsu, K.; Hassan, B.D.; Mdivnishvili, M.; Abbas, N. The Impact of Lifestyle Intervention Programs on Long-Term Cardiac Event-Free Survival in Patients with Established Coronary Artery Disease. Cureus 2024, 16, e76585. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P. Intake and time dependence of blueberry flavonoid–induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef]
- Martínez-Sámano, J.; Torres-Montes de Oca, A.; Luqueño-Bocardo, O.I.; Torres-Durán, P.V.; Juárez-Oropeza, M.A. Spirulina maxima Decreases Endothelial Damage and Oxidative Stress Indicators in Patients with Systemic Arterial Hypertension: Results from Exploratory Controlled Clinical Trial. Mar. Drugs 2018, 16, 496. [Google Scholar] [CrossRef]
- Zhao, J. Nutraceuticals, Nutritional Therapy, Phytonutrients, and Phytotherapy for Improvement of Human Health: A Perspective on Plant Biotechnology Application. Recent Pat. Biotechnol. 2007, 1, 75–97. [Google Scholar] [CrossRef]
- Romay, C.; Ledón, N.; González, R. Effects of phycocyanin extract on prostaglandin E2 levels in mouse ear inflammation test. Arzneimittelforschung-Drug Res. 2000, 50, 1106–1109. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Calder, P.C. Mechanisms of Action of (n-3) Fatty Acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Leite, M.; Martins, D.; Ferreira, A.C.; Silva, C.; Trindade, F.; Saraiva, F.; Vitorino, R.; Barros, R.; Lima, P.A.; Leite-Moreira, A.; et al. The Role of Chlorella and Spirulina as Adjuvants of Cardiovascular Risk Factor Control: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2025, 17, 943. [Google Scholar] [CrossRef] [PubMed]
- Prete, V.; Abate, A.C.; Di Pietro, P.; De Lucia, M.; Vecchione, C.; Carrizzo, A. Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases. Nutrients 2024, 16, 642. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol. 2006, 6, 508–519. [Google Scholar] [CrossRef]
- Yanai, H.; Yoshino, T.; Takahashi, K.; Ninomiya, Y.; Akagi, T. Regulation of interleukin-2 receptor gamma chain mRNA expression in human monocytic cell line THP-1. Acta Medica Okayama 1996, 50, 145–150. [Google Scholar]
- Brown, M.S.; Basu, S.K.; Falck, J.R.; Ho, Y.K.; Goldstein, J.L. The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol. Struct. 1980, 13, 67–81. [Google Scholar] [CrossRef]
- Geng, Y.J.; Hansson, G.K. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J. Clin. Investig. 1992, 89, 1322–1330. [Google Scholar] [CrossRef]
- Yue, T.-L.; Mckenna, P.J.; Gu, J.-L.; Feuerstein, G.Z. Interleukin-8 is chemotactic for vascular smooth muscle cells. Eur. J. Pharmacol. 1993, 240, 81–84. [Google Scholar] [CrossRef]
- Bouloumié, A. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc. Res. 1999, 41, 773–780. [Google Scholar] [CrossRef]
- Liao, G.; Gao, B.; Gao, Y.; Yang, X.; Cheng, X.; Ou, Y. Phycocyanin Inhibits Tumorigenic Potential of Pancreatic Cancer Cells: Role of Apoptosis and Autophagy. Sci. Rep. 2016, 6, 34564. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Choi, J.-W.; Lee, M.-K.; Choi, Y.-H.; Nam, T.-J. Spirulina Crude Protein Promotes the Migration and Proliferation in IEC-6 Cells by Activating EGFR/MAPK Signaling Pathway. Mar. Drugs 2019, 17, 205. [Google Scholar] [CrossRef]
- Damiano, V.; Caputo, R.; Garofalo, S.; Bianco, R.; Rosa, R.; Merola, G.; Gelardi, T.; Racioppi, L.; Fontanini, G.; De Placido, S.; et al. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc. Natl. Acad. Sci. USA 2007, 104, 12468–12473. [Google Scholar] [CrossRef]
Combined | Assay Description | Combined Count |
---|---|---|
CHEMBL3559503 | Inhibition of VEGF-stimulated network formation in HUVEC at 1 uM | 158 |
CHEMBL3780449 | Downregulation of MMP-2 expression in HUVECs at 0.2 to 0.5 uM after 24 h by Western blot analysis | 35 |
CHEMBL3787168 | Inhibition of simulated ischemia/reperfusion-induced human HUVEC death assessed as increase in tubular mitochondria levels at 30 ug/mL after 2 h by Hoechst 33, 342 dye-based fluorescence assay (Rvb = 11.3 ± 2.1%) | 33 |
CHEMBL3786354 | Inhibition of simulated ischemia/reperfusion-induced cytochrome C release in HUVECs at 30 ug/mL after 2 h by fluorescence assay (Rvb = 75.3 ± 5.2%) | 25 |
CHEMBL4845725 | Pro-angiogenic activity in HUVECs assessed as organization of capillary network formation by measuring increase in branch point number count at 50 nM measured after 6 h by inverted microscopy relative to Ac-HPLW-NH2 | 20 |
CHEMBL1630373 | Antiangiogenic activity in HUVECs cocultured with human PaSMC assessed as reduction in total tube length at 125 nM after 72 h | 19 |
CHEMBL3115403 | Induction of proapoptosis in VEGF-treated HUVECs assessed as increase in caspase 3 activity at 25 to 100 ng/mL after 8 h by fluorimetric assay | 19 |
CHEMBL4063339 | Protection against simulated ischemia/reperfusion injury-induced cell death in HUVECs assessed as increase in cell viability at 30 ug/mL treated for 12 h under normoxic condition prior to simulated ischemia for 2 h followed by compound washout measured 3 h post reperfusion | 13 |
CHEMBL4070823 | Protection against simulated ischemia/reperfusion injury-induced cell death in HUVECs assessed as increase in cell viability at 30 ug/mL treated for 12 h under normoxic condition prior to simulated ischemia for 2 h followed by compound washout measured 3 h post reperfusion | 13 |
CHEMBL4780091 | Cytotoxicity against HUVEC assessed as cell viability at 100 uM after 72 h by MTT assay relative to control | 13 |
CHEMBL4074157 | Protection against simulated ischemia/reperfusion injury-induced cell death in HUVECs assessed as increase in cell viability at 30 ug/mL treated for 12 h under normoxic condition prior to simulated ischemia for 2 h followed by compound washout measured 3 h post reperfusion | 12 |
CHEMBL4073555 | Protection against simulated ischemia and reperfusion injury-induced mitochondrial oxidative damage in HUVECs assessed as reduction in cytochrome c release at 30 ug/mL treated for 12 h under normoxic condition prior to simulated ischemia for 2 h followed by compound washout measured 3 h post reperfusion by MitoProbe-based immuno-fluorescence assay (Rvb = 71.2 ± 4.5%) | 11 |
CHEMBL4075508 | Protection against simulated ischemia/reperfusion injury-induced mitochondrial oxidative damage in HUVECs assessed as increase in tubular mitochondrial cells at 30 ug/mL pretreated for 12 h followed by compound washout and subsequent ischemia simulation for 2 h in presence of compound prior to 3 h reperfusion under drug-free medium by MitoProbe-based confocal microscopic analysis | 11 |
CHEMBL4076966 | Protection against simulated ischemia/reperfusion injury-induced cell death in HUVECs assessed as increase in cell viability at 30 ug/mL treated for 12 h under normoxic condition prior to simulated ischemia for 2 h followed by compound washout measured 3 h post reperfusion | 11 |
CHEMBL412927 | Downregulation of VEGFR2 expression in VEGFA-stimulated HUVECs at 5 to 20 uM after 24 h by Western blot analysis | 9 |
CHEMBL1083318 | Antiinvasive activity in VEGF-stimulated HUVECs assessed as cellular migration after 24 h by fluorescence assay relative to control | 7 |
CHEMBL4238261 | Antimigratory activity in HUVECs at 25 uM after 8 h by crystal violet staining-based Boyden chamber assay relative to control | 7 |
CHEMBL4860306 | Anti-angiogenic activity against HUVECs assessed as inhibition of tubular structure formation at 10 uM incubated for 6 days by Matrigel-based phase-contrast microscopic analysis | 7 |
CHEMBL1085966 | Antiinvasive activity in VEGF-stimulated HUVECs assessed as cellular migration after 24 h by fluorescence assay relative to control | 5 |
CHEMBL1085981 | Antiinvasive activity in VEGF-stimulated HUVECs assessed as cellular migration after 24 h by fluorescence assay relative to control | 5 |
HUVEC_ChemblID | Spirulina_ChebiID | Similarity |
---|---|---|
CHEMBL3559503 | CHEBI: 63224 | 0.90797546 |
CHEMBL3559503 | CHEBI: 77896 | 0.90797546 |
CHEMBL3559503 | CHEBI: 191199 | 0.902439024 |
CHEMBL3559503 | CHEBI: 57692 | 0.896969697 |
CHEMBL3559503 | CHEBI: 58897 | 0.896551724 |
CHEMBL3559503 | CHEBI: 57364 | 0.885057471 |
CHEMBL3559503 | CHEBI: 62727 | 0.879518072 |
CHEMBL3559503 | CHEBI: 78513 | 0.879518072 |
CHEMBL3559503 | CHEBI: 57527 | 0.87654321 |
CHEMBL3559503 | CHEBI: 57964 | 0.875 |
CHEMBL3559503 | CHEBI: 57288 | 0.873563218 |
CHEMBL3559503 | CHEBI: 58342 | 0.872093023 |
CHEMBL3559503 | CHEBI: 57384 | 0.872093023 |
CHEMBL3559503 | CHEBI: 57287 | 0.870588235 |
CHEMBL3559503 | CHEBI: 57328 | 0.870588235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, I.; Costabile, V.; Smaldone, G.; Franzese, M.; Soricelli, A.; D’Agostino, A. Arthrospira Platensis Attenuates Endothelial Inflammation and Monocyte Activation. Int. J. Mol. Sci. 2025, 26, 7844. https://doi.org/10.3390/ijms26167844
Leone I, Costabile V, Smaldone G, Franzese M, Soricelli A, D’Agostino A. Arthrospira Platensis Attenuates Endothelial Inflammation and Monocyte Activation. International Journal of Molecular Sciences. 2025; 26(16):7844. https://doi.org/10.3390/ijms26167844
Chicago/Turabian StyleLeone, Ilaria, Valentino Costabile, Giovanni Smaldone, Monica Franzese, Andrea Soricelli, and Anna D’Agostino. 2025. "Arthrospira Platensis Attenuates Endothelial Inflammation and Monocyte Activation" International Journal of Molecular Sciences 26, no. 16: 7844. https://doi.org/10.3390/ijms26167844
APA StyleLeone, I., Costabile, V., Smaldone, G., Franzese, M., Soricelli, A., & D’Agostino, A. (2025). Arthrospira Platensis Attenuates Endothelial Inflammation and Monocyte Activation. International Journal of Molecular Sciences, 26(16), 7844. https://doi.org/10.3390/ijms26167844