Neurotensin Gene rs2234762 C>G Variant Associates with Reduced Circulating Pro-NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children
Abstract
:1. Introduction
2. Results
2.1. NTS Gene Variants and Pro-NT Concentrations
2.2. Screening for Sequence Variations in NTS Gene
2.3. NTS rs2234762 Variant and Metabolic Phenotype at the Baseline
2.4. NTS Gene Variant and Metabolic Phenotype at the Follow-Up Evaluation
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Clinical Evaluations and Laboratory Assessment
4.3. DNA Sequence Variations and Genotyping of the NTS Gene
4.4. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carraway, R.E.; Leeman, S.E. The amino acid sequence of a hypothalamic peptide neurotensin. J. Biol. Chem. 1975, 250, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Virella, J.; Leinninger, G. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021, 162, bqab038. [Google Scholar] [CrossRef] [PubMed]
- Boudin, H.; Pelaprat, D.; Rostene, W.; Beaudet, A. Cellular distribution of neurotensin receptors in rat brain: Immunohistochemical study using an antipeptide antibody against the cloned high affinity receptor. J. Comp. Neurol. 1996, 373, 76–89. [Google Scholar] [CrossRef]
- Mazella, J.; Beraud-Dufour, S.; Devader, C.; Massa, F.; Coppola, T. Neurotensin and its receptors in the control of glucose homeostasis. Front. Endocrinol. 2012, 3, 143. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, A.M.; Bloom, S.R.; Long, R.G.; Fletcher, D.R.; Christofides, N.D.; Fitzpatrick, M.L.; Baron, J.H. Effect of neurotensin on gastric function in man. Lancet 1980, 315, 987–989. [Google Scholar] [CrossRef]
- Read, N.W.; McFarlane, A.; Kinsman, R.I.; Bates, T.E.; Blackhall, N.W.; Farrar, G.B.; Hall, J.C.; Moss, G.; Morris, A.P.; O’Neill, B.; et al. Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology 1984, 86, 274–280. [Google Scholar] [CrossRef]
- Spiller, R.C.; Trotman, I.F.; Adrian, T.E.; Bloom, S.R.; Misiewicz, J.J.; Silk, D.B. Further characterisation of the ‘ileal brake’ reflex in man–effect of ileal infusion of partial digests of fat, protein, and starch on jejunal motility and release of neurotensin, enteroglucagon, and peptide YY. Gut 1988, 29, 1042–1051. [Google Scholar] [CrossRef]
- Fawad, A.; Fernandez, C.; Bergmann, A.; Struck, J.; Nilsson, P.M.; Bennet, L.; Orho-Melander, M.; Melander, O. Magnitude of rise in proneurotensin is related to amount of triglyceride appearance in blood after standardized oral intake of both saturated and unsaturated fat. Lipids. Health. Dis. 2020, 19, 191. [Google Scholar] [CrossRef]
- Saiyasit, N.; Chunchai, T.; Apaijai, N.; Pratchayasakul, W.; Sripetchwandee, J.; Chattipakorn, N.; Chattipakorn, S.C. Chronic high-fat diet consumption induces an alteration in plasma/brain neurotensin signaling, metabolic disturbance, systemic inflammation/oxidative stress, brain apoptosis, and dendritic spine loss. Neuropeptides 2020, 82, 102047. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Zaytseva, Y.Y.; Liu, Y.; Rychahou, P.; Jiang, K.; Starr, M.E.; Kim, J.T.; Harris, J.W.; Yiannikouris, F.B.; et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 2016, 533, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Melander, O.; Maisel, A.S.; Almgren, P.; Manjer, J.; Belting, M.; Hedblad, B.; Engström, G.; Kilger, U.; Nilsson, P.; Bergmann, A.; et al. Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA 2012, 308, 1469–1475. [Google Scholar] [CrossRef] [Green Version]
- von Loeffelholz, C.; Gissey, L.C.; Schumann, T.; Henke, C.; Kurzbach, A.; Struck, J.; Bergmann, A.; Hanefeld, M.; Schatz, U.; Bornstein, S.R.; et al. The anorexigenic peptide neurotensin relates to insulin sensitivity in obese patients after BPD or RYGB metabolic surgery. Int. J. Obes. 2018, 42, 2057–2061. [Google Scholar] [CrossRef]
- Barchetta, I.; Cimini, F.A.; Capoccia, D.; Bertoccini, L.; Ceccarelli, V.; Chiappetta, C.; Leonetti, F.; Di Cristofano, C.; Silecchia, G.; Orho-Melander, M.; et al. Neurotensin Is a Lipid-Induced Gastrointestinal Peptide Associated with Visceral Adipose Tissue Inflammation in Obesity. Nutrients. 2018, 10, 526. [Google Scholar] [CrossRef] [Green Version]
- Fawad, A.; Nilsson, P.M.; Struck, J.; Bergmann, A.; Melander, O.; Bennet, L. The association between plasma proneurotensin and glucose regulation is modified by country of birth. Sci. Rep. 2019, 9, 13640. [Google Scholar] [CrossRef] [Green Version]
- Barchetta, I.; Cimini, F.A.; Leonetti, F.; Capoccia, D.; Di Cristofano, C.; Silecchia, G.; Orho-Melander, M.; Melander, O.; Cavallo, M.G. Increased Plasma Proneurotensin Levels Identify NAFLD in Adults With and Without Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 2253–2260. [Google Scholar] [CrossRef]
- Fawad, A.; Bergmann, A.; Schulte, J.; Butt, Z.A.; Nilsson, P.M.; Bennet, L.; Orho-Melander, M.; Melander, O. Plasma Proneurotensin and Prediction of Cause-Specific Mortality in a Middle-aged Cohort During Long-term Follow-up. J. Clin. Endocrinol. Metab. 2022, 107, e1204–e1211. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Lyass, A.; Liu, Y.; Gaggin, H.; Trebnick, A.; Maisel, A.S.; D’Agostino, R.B., Sr.; Wang, T.J.; Massaro, J.; Vasan, R.S. Circulating Proneurotensin Concentrations and Cardiovascular Disease Events in the Community: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1692–1697. [Google Scholar] [CrossRef] [Green Version]
- Barchetta, I.; Bertoccini, L.; Sentinelli, F.; Bailetti, D.; Marini, G.; Cimini, F.A.; Ceccarelli, V.; Struck, J.; Schulte, J.; Loche, S.; et al. Circulating pro-neurotensin levels predict bodyweight gain and metabolic alterations in children. Nutr. Metab. Cardiovasc. Dis. 2021, 10, 902–910. [Google Scholar] [CrossRef]
- Marondel, I.; Renault, B.; Lieman, J.; Ward, D.; Kucherlapati, R. Physical mapping of the human neurotensin gene (NTS) between markers D12S1444 and D12S81 on chromosome 12q21. Genomics 1996, 38, 243–245. [Google Scholar] [CrossRef]
- Kislauskis, E.; Bullock, B.; McNeil, S.; Dobner, P.R. The rat gene encoding neurotensin and neuromedin N. Structure; tissue-specific expression; and evolution of exon sequences. J. Biol. Chem. 1988, 263, 4963–4968. [Google Scholar] [CrossRef]
- Ratner, C.; He, Z.; Grunddal, K.V.; Skov, L.J.; Hartmann, B.; Zhang, F.; Feuchtinger, A.; Bjerregaard, A.; Christoffersen, C.; Tschöp, M.H.; et al. Long-Acting Neurotensin Synergizes with Liraglutide to Reverse Obesity Through a Melanocortin-Dependent Pathway. Diabetes 2019, 68, 1329–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodworth, H.L.; Beekly, B.G.; Batchelor, H.M.; Bugescu, R.; Perez-Bonilla, P.; Schroeder, L.E.; Leinninger, G.M. Lateral Hypothalamic Neurotensin Neurons Orchestrate Dual Weight Loss Behaviors via Distinct Mechanisms. Cell Rep. 2017, 21, 3116–3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souazé, F.; Forgez, P. Molecular and cellular regulation of neurotensin receptor under acute and chronic agonist stimulation. Peptides 2006, 27, 2493–2501. [Google Scholar] [CrossRef] [PubMed]
- Barchetta, I.; Baroni, M.G.; Melander, O.; Cavallo, M.G. New Insights in the Control of Fat Homeostasis: The Role of Neurotensin. Int. J. Mol. Sci. 2022, 23, 2209. [Google Scholar] [CrossRef] [PubMed]
- Peloso, G.M.; Rader, D.J.; Gabriel, S.; Kathiresan, S.; Daly, M.J.; Neale, B.M. Phenotypic extremes in rare variant study designs. Eur. J. Hum. Genet. 2016, 24, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.C.; Kiss, R.S.; Pertsemlidis, A.; Marcel, Y.L.; McPherson, R.; Hobbs, H.H. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004, 305, 869–872. [Google Scholar] [CrossRef]
- Romeo, S.; Pennacchio, L.A.; Fu, Y.; Boerwinkle, E.; Tybjaerg-Hansen, A.; Hobbs, H.H.; Cohen, J.C. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat. Genet. 2007, 39, 513–516. [Google Scholar] [CrossRef]
- Guey, L.T.; Kravic, J.; Melander, O.; Burtt, N.P.; Laramie, J.M.; Lyssenko, V.; Jonsson, A.; Lindholm, E.; Tuomi, T.; Isomaa, B.; et al. Power in the phenotypic extremes: A simulation study of power in discovery and replication of rare variants. Genet. Epidemiol. 2011, 35, 236–246. [Google Scholar] [CrossRef]
- Heid, I.M.; Huth, C.; Loos, R.J.; Kronenberg, F.; Adamkova, V.; Anand, S.S.; Ardlie, K.; Biebermann, H.; Bjerregaard, P.; Boeing, H.; et al. Meta-analysis of the INSIG2 association with obesity including 74,345 individuals: Does heterogeneity of estimates relate to study design? PLoS Genet. 2009, 5, e1000694. [Google Scholar] [CrossRef]
- Wang, X.; Gulhati, P.; Li, J.; Dobner, P.R.; Weiss, H.; Townsend, C.M., Jr.; Evers, B.M. Characterization of promoter elements regulating the expression of the human neurotensin/neuromedin N gene. J. Biol. Chem. 2011, 286, 542–554. [Google Scholar] [CrossRef] [Green Version]
- Riezzo, G.; Chimienti, G.; Clemente, C.; D’Attoma, B.; Orlando, A.; Mammone Rinaldi, C.; Russo, F. Colonic transit time and gut peptides in adult patients with slow and normal colonic transit constipation. Biomed Res. Int. 2017, 2017, 3178263. [Google Scholar] [CrossRef]
- Russo, F.; Chimienti, G.; Clemente, C.; Riezzo, G.; D’Attoma, B.; Martulli, M. Gastric activity and gut peptides in patients with functional dyspepsia: Postprandial distress syndrome versus epigastric pain syndrome. J. Clin. Gastroenterol. 2017, 51, 136–144. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Meroni, M.; Petta, S.; Longo, M.; Alisi, A.; Soardo, G.; Valenti, L.; Miele, L.; Grimaudo, S.; Pennisi, G.; et al. Neurotensin up-regulation is associated with advanced fibrosis and hepatocellular carcinoma in patients with MAFLD. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids. 2020, 10, 158765. [Google Scholar] [CrossRef]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Invest. 2006, 29, 581–593. [Google Scholar] [CrossRef]
- Tanner, J.M. Normal growth and techniques of growth assessment. Clin. Endocrinol. Metabol. 1986, 15, 411–451. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Barchetta, I.; Dule, S.; Bertoccini, L.; Cimini, F.A.; Sentinelli, F.; Bailetti, D.; Marini, G.; Barbonetti, A.; Locge, S.; Cossu, E.; et al. The single-point insulin sensitivity estimator (SPISE) index is a strong predictor of abnormal glucose metabolism in overweight/obese children: A long-term follow-up study. J. Endocrinol. Investig. 2022, 45, 43–51. [Google Scholar] [CrossRef]
Non-Standardized β Coefficient | Standard Error | Standardized β Coefficient | p-Value | |
---|---|---|---|---|
Age | 2.648 | 0.883 | 0.441 | 0.003 |
BMI | −1.024 | 0.553 | −0.216 | 0.066 |
Sex (M vs. F) | 3.310 | 3.027 | 0.086 | 0.276 |
Tanner stage | −2.570 | 4.628 | −0.067 | 0.580 |
Triglycerides | 0.082 | 0.049 | 0.138 | 0.098 |
rs2234762 (yes vs. no) | −9.659 | 3.171 | −0.239 | 0.003 |
Genotypes | p | ||
---|---|---|---|
CC n = 594 | CG+GG n = 338 | ||
Sex (M vs. F) | 328/266 | 163/175 | 0.039 * |
Age (years) | 10.4 ± 3.2 | 10.3 ± 3.2 | 0.769 |
Tanner stage 1/≥2 | 299/289 | 168/169 § | 0.770 |
Pro-NT (pmol/L) | 31.6 ± 20.8 | 22.2 ± 13.5 | 0.007 |
BMI (kg/m2) | 27.6 ± 4.2 | 27.3 ± 4.8 | 0.327 |
SDS-BMI | 2.1 ± 0.4 | 2 ± 0.4 | 0.062 |
SBP (mm/Hg) | 106.2 ± 14.6 | 105.4 ± 14.9 | 0.398 |
DBP (mm/Hg) | 62.2 ± 8.8 | 61 ± 8.7 | 0.046 |
TC (mg/dL) | 168.3 ± 32.5 | 167.3 ± 32 | 0.193 |
TG (mg/dL) | 63.1 ± 38.1 | 63.5 ± 41.4 | 0.881 |
HDL-C (mg/dL) | 51.3 ± 12 | 51.6 ± 12.4 | 0.692 |
LDL-C (mg/dL) | 104.3 ± 28.8 | 100.6 ± 26.6 | 0.043 |
AST (U/L) | 24.7 ± 12 | 25.6 ± 5.9 | 0.318 |
ALT (U/L) | 23.4 ± 11.7 | 22.4 ± 13.5 | 0.253 |
FBG 0′ (mg/dL) | 89 ± 7.4 | 89 ± 8 | 0.899 |
FBG 120′ (mg/dL) | 105.3 ± 17 | 106.5 ± 24.5 | 0.407 |
FSI 0′ (μUI/mL) | 15.4 ± 9.5 | 14 ± 8.5 | 0.036 |
FSI 120′ (μUI/mL) | 63.1 ± 53.5 | 60.7 ± 48.8 | 0.505 |
HOMA-IR | 3.4 ± 2.2 | 3.1 ± 2 | 0.033 |
HOMA-β | 223.8 ± 146 | 211.8 ± 233.6 | 0.037 |
ISI | 6.7 ± 5.1 | 7.4 ± 6.4 | 0.068 |
SPISE | 6.8 ± 1.6 | 6.9 ± 1.7 | 0.215 |
Non-Standardized β Coefficient | Standard Error | Standardized β Coefficient | p-Value | |
---|---|---|---|---|
Age | −0.023 | 0.030 | −0.035 | 0.444 |
BMI | 0.161 | 0.018 | 0.338 | <0.001 |
Sex (M vs. F) | 0.262 | 0.135 | 0.062 | 0.053 |
Tanner stage | 0.694 | 0.178 | 0.164 | <0.001 |
rs2234762 (yes vs. no) | −0.279 | 0.136 | −0.063 | 0.041 |
Variable | OR | 95% CI | p |
---|---|---|---|
Age | 0.851 | 0.768–0.942 | 0.002 |
Gender | 0.679 | 0.332–1.386 | 0.287 |
BMI | 1.282 | 1.173–1.401 | <0.001 |
rs2234762 | 0.461 | 0.216–0.983 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentinelli, F.; Barchetta, I.; Cimini, F.A.; Dule, S.; Bailetti, D.; Cossu, E.; Barbonetti, A.; Totaro, M.; Melander, O.; Cavallo, M.G.; et al. Neurotensin Gene rs2234762 C>G Variant Associates with Reduced Circulating Pro-NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children. Int. J. Mol. Sci. 2023, 24, 6460. https://doi.org/10.3390/ijms24076460
Sentinelli F, Barchetta I, Cimini FA, Dule S, Bailetti D, Cossu E, Barbonetti A, Totaro M, Melander O, Cavallo MG, et al. Neurotensin Gene rs2234762 C>G Variant Associates with Reduced Circulating Pro-NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children. International Journal of Molecular Sciences. 2023; 24(7):6460. https://doi.org/10.3390/ijms24076460
Chicago/Turabian StyleSentinelli, Federica, Ilaria Barchetta, Flavia Agata Cimini, Sara Dule, Diego Bailetti, Efisio Cossu, Arcangelo Barbonetti, Maria Totaro, Olle Melander, Maria Gisella Cavallo, and et al. 2023. "Neurotensin Gene rs2234762 C>G Variant Associates with Reduced Circulating Pro-NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children" International Journal of Molecular Sciences 24, no. 7: 6460. https://doi.org/10.3390/ijms24076460
APA StyleSentinelli, F., Barchetta, I., Cimini, F. A., Dule, S., Bailetti, D., Cossu, E., Barbonetti, A., Totaro, M., Melander, O., Cavallo, M. G., & Baroni, M. G. (2023). Neurotensin Gene rs2234762 C>G Variant Associates with Reduced Circulating Pro-NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children. International Journal of Molecular Sciences, 24(7), 6460. https://doi.org/10.3390/ijms24076460