Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture
Abstract
:1. Introduction
2. Results
2.1. Cytometric Analysis
2.2. Analysis of Proliferation
2.3. Analysis of Gene Expression (SOX2, POU5F1)
- Before cell culture and after 3 days of culture (p = 0.0002);
- Before cell culture and after 6 days of culture (p = 0.0002);
- Before cell culture and after 9 days of culture (p = 0.0002).
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Methods
4.2.1. Peripheral Blood Stem Cells Isolation
4.2.2. Sample Preparation to Cytometric Analysis and Magnetic Separation
4.2.3. Cytometric Analysis
4.2.4. Magnetic Cell Separation
4.2.5. Cell Cultures
4.2.6. Cells Proliferation Analysis
4.2.7. RNA Isolation
4.2.8. Assessment of RNA Purity and Concentration
4.2.9. Reverse Transcriptions
4.2.10. SOX2 and POU5F1 Gene Expression
4.2.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratajczak, M.; Kucia, M.; Majka, M.; Reca, R.; Ratajczak, J. Heterogeneous populations of bone marrow stem cells—Are we spotting on the same cells from the different angles? Folia Histochem. Cytobiol. 2004, 42, 139–146. [Google Scholar] [PubMed]
- Kucia, M.; Zuba-Surma, E.; Wysoczynski, M.; Dobrowolska, H.; Reca, R.; Ratajczak, J.; Ratajczak, M.Z. Physiological and Pathological consequences of identyfication of very small embryonic like (VSEL) stem cells in adult bone marrow. J. Physiol. Pharmacol. 2006, 57, 5–18. [Google Scholar] [PubMed]
- D’Arena, G.; Musto, P.; Cascavilla, N.; Di Giorgio, G.; Zendoli, F.; Carotenuto, M. Human umbilical cord blood: Immunophenotypic heterogeneity of CD34+ hematopoietic progenitor cells. Haematologica 1996, 81, 404–409. [Google Scholar] [PubMed]
- Pietras, E.M.; Warr, M.R.; Passegué, E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011, 195, 709–720. [Google Scholar] [CrossRef]
- Bryder, D.; Rossi, D.; Weissman, I. Hematopoietic stem cells: The paradigmatic tissue-specific stem cell. Am. J. Pathol. 2006, 169, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 2006, 6, 93–106. [Google Scholar] [CrossRef]
- Lemoli, R.M.; D’Addio, A. Hematopoietic stem cell moblilization. Haematologica 2008, 93, 321–324. [Google Scholar] [CrossRef] [Green Version]
- Lymperi, S.; Ferraro, F. The HSC niche concept has turned 31. Has our knowledge matured? Ann. N. Y. Acad. Sci. 2010, 1192, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Lilly, A.J.; Johnson, W.E.; Bunce, C.M. The Haematopoietic Stem Cell Niche: New Insights into the Mechanisms Regulating Haematopoietic Stem Cell Behaviour. Stem Cells Int. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Basak, G.W.; Jędrzejczak, W. Mobilizacja krwiotwórczych komórek macierzystych—Wczoraj i dziś. Hematologia 2012, 1, 9–24. [Google Scholar]
- Young, R. Control of the Embryonic Stem Cell State. Cell 2011, 144, 940–954. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Maki, C.; Pacchiarotti, J.; Csontos, S.; Pham, J.; Slepko, N.; Patel, A.; Silva, F. Pluripotent marker expression and differentiation of human second trimester Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2007, 362, 491–497. [Google Scholar] [CrossRef]
- Trivanović, D.; Kocić, J.; Mojsilović, S.; Krstić, A.; Ilić, V.; Okić-Đorđević, I.; Santibanez, J.; Jovčić, G.; Terzić, M.; Bugarski, D. Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly. Srp. Arh. Celok. Lek. 2013, 141, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Carlin, R.; Davis, D.; Weiss, M.; Schultz, B.; Troyer, D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 2006, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Somal, A.; Bhat, I.A.; Pandey, S.; Panda, B.S.; Thakur, N.; Sarkar, M.; Chandra, V.; Saikumar, G.; Sharma, G.T. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells. PLoS ONE 2016, 11, e0156821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świstowska, M.; Gil-Kulik, P.; Krzyżanowski, A.; Bielecki, T.; Czop, M.; Kwaśniewska, A.; Kocki, J. Potential Effect of SOX2 on the Cell Cycle of Wharton’s Jelly Stem Cells (WJSCs). Oxid. Med. Cell. Longev. 2019, 2019, 5084689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassiotou, F.; Beltran, A.; Chetwynd, E.; Stuebe, A.M.; Twigger, A.-J.; Metzger, P.; Trengove, N.; Lai, C.T.; Filgueira, L.; Blancafort, P.; et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem. Cells 2012, 30, 2164–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twigger, A.-J.; Hepworth, A.R.; Lai, C.T.; Chetwynd, E.; Stuebe, A.M.; Blancafort, P.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci. Rep. 2015, 5, 12933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Wei, X.; Ling, J.; Wu, L.; Xiao, Y. Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J. Endod. 2011, 37, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Izadpanah, R.; Trygg, C.; Patel, B.; Kriedt, C.; Dufour, J.; Gimble, J.M.; Bunnell, B.A. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell Biochem. 2006, 99, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Riekstina, U.; Cakstina, I.; Parfejevs, V.; Hoogduijn, M.; Jankovskis, G.; Muiznieks, I.; Muceniece, R.; Ancans, J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem. Cell Rev. 2009, 5, 378–386. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, Y.H.; Jung, H.S.; Paik, S.; Lee, J.W. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif. 2011, 44, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Bylund, M.; Andersson, E.; Novitch, B.; Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 2003, 6, 1162–1168. [Google Scholar] [CrossRef]
- Graham, V.; Khudyakov, J.; Ellis, P.; Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 2003, 39, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Bani-Yaghoub, M.; Tremblay, R.G.; Lei, J.X.; Zhang, D.; Zurakowski, B.; Sandhu, J.K.; Smith, B.; Ribecco-Lutkiewicz, M.; Kennedy, J.; Walker, P.R.; et al. Role of Sox2 in the development of the mouse neocortex. Dev. Biol. 2006, 295, 52–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagi, S.; Masui, S.; Niwa, H.; Saito, T.; Shimazaki, T.; Okano, H.; Nishimoto, M.; Muramatsu, M.; Iwama, A.; Okuda, A. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett. 2008, 582, 2811–2815. [Google Scholar] [CrossRef] [Green Version]
- Wegner, M. SOX after SOX: SOX expression regulates neurogenesis. Genes Dev. 2011, 25, 2423–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaenisch, R.; Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008, 132, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Garcia, M.; Ning, H.; Banie, L.; Guo, Y.-L.; Lue, T.F.; Lin, C.-S.; Ramakrishnan, V.M.; Boyd, N.L.; Brett, E.; et al. Defining stem and progenitor cells within adipose tissue. Stem. Cells Dev. 2008, 17, 1053–1063. [Google Scholar] [CrossRef]
- Pozzobon, M.; Piccoli, M.; Ditadi, A.; Bollini, S.; Destro, R.; André-Schmutz, I.; Masiero, L.; Lenzini, E.; Zanesco, L.; Petrelli, L.; et al. Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: Implications for therapy. Stem Cells Dev. 2009, 18, 497–510. [Google Scholar] [CrossRef]
- Kerkis, I.; Kerkis, A.; Dozortsev, D.; Stukart-Parsons, G.C.; Massironi, S.M.G.; Pereira, L.V.; Caplan, A.I.; Cerruti, H.F. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 2006, 184, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kotoula, V.; Papamichos, S.I.; Lambropoulos, A.F. Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem. Cells 2008, 26, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, A.P.; Cesselli, D.; Bergamin, N.; Marcon, P.; Rigo, S.; Puppato, E.; D’Aurizio, F.; Verardo, R.; Piazza, S.; Pignatelli, A.; et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood 2007, 110, 3438–3446. [Google Scholar] [CrossRef]
- Taha, M.; Javeri, A.; Rohban, S.; Mowla, S. Upregulation of pluripotency markers in adipose tissue-derived stem cells by miR-302 and leukemia inhibitory factor. Biomed. Res. Int. 2014, 2014, 941486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Roh, E.Y.; Shin, S.; Jung, N.H.; Song, E.Y.; Chang, J.Y.; Kim, B.J.; Jeon, H.W. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. Biomed. Res. Int. 2013, 2013, 428726. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Cai, J.; Dong, D.; Chen, Y.; Liu, X.; Wang, Y.; Zhou, Y. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells. PLoS ONE 2015, 10, e0141346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, H.; Klimek, P.; Cioch, M. Otrzymywanie obwodowych komórek krwiotwórczych oraz badanie ich żywotności w produkcie aferezy przed i po krioprezerwacji. Diagn. Lab. 2014, 50, 249–254. [Google Scholar]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocya-nate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Content of CD34-Positive Cells in the Leukapheresis Products (%) | |
---|---|
Minimum | 6.1 |
Maximum | 13.35 |
Mean | 7.03 |
Median | 7.32 |
SD | 3.3 |
Gene | Group | p-Value (One-Way ANOVA; Unequal N HSD for Post-Hoc Tests) | |||
---|---|---|---|---|---|
PBSC | Cell Culture 3 Days | Cell Culture 6 Days | Cell Culture 9 Days | ||
SOX2 (logRQ) | PBSC | 0.0002 * | 0.000 2* | 0.0002 * | |
cell culture 3 days | 0.0002 * | 0.3354 | 0.3448 | ||
cell culture 6 days | 0.0002 * | 0.3354 | 0.9990 | ||
cell culture 9 days | 0.0002 * | 0.3448 | 0.9990 | ||
POU5F1 (logRQ) | PBSC | 0.0002 * | 0.0002 * | 0.0002 * | |
cell culture 3 days | 0.0002 * | 0.3105 | 0.4467 | ||
cell culture 6 days | 0.0002 * | 0.3105 | 0.9839 | ||
cell culture 9 days | 0.0002 * | 0.4467 | 0.9839 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świstowska, M.; Gil-Kulik, P.; Czop, M.; Wieczorek, K.; Macheta, A.; Petniak, A.; Cioch, M.; Hus, M.; Szuta, M.; Rahnama-Hezavah, M.; et al. Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture. Int. J. Mol. Sci. 2023, 24, 4186. https://doi.org/10.3390/ijms24044186
Świstowska M, Gil-Kulik P, Czop M, Wieczorek K, Macheta A, Petniak A, Cioch M, Hus M, Szuta M, Rahnama-Hezavah M, et al. Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture. International Journal of Molecular Sciences. 2023; 24(4):4186. https://doi.org/10.3390/ijms24044186
Chicago/Turabian StyleŚwistowska, Małgorzata, Paulina Gil-Kulik, Marcin Czop, Katarzyna Wieczorek, Arkadiusz Macheta, Alicja Petniak, Maria Cioch, Marek Hus, Mariusz Szuta, Mansur Rahnama-Hezavah, and et al. 2023. "Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture" International Journal of Molecular Sciences 24, no. 4: 4186. https://doi.org/10.3390/ijms24044186