α1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease
Abstract
:1. Introduction
2. Pharmacology
3. Signal Transduction
4. General Physiology
Blood Pressure
5. α1A-AR Agonists
5.1. Currently Approved Uses
5.2. Heart Failure and Cardioprotection
5.3. Cognition and Memory
6. α1-AR Antagonists
6.1. Currently Approved Uses
6.2. COVID-19/SARS
6.2.1. α1-AR Antagonists May Protect against Severe COVID-19
6.2.2. α1-AR Antagonists May Not Prevent COVID-19 Infection
6.2.3. The Case for Anti-Hyperinflammation as a Direct α1-AR Mediated Effect
6.2.4. The Case for Non-α1-AR Mediated Effects of Quinazoline Antagonists: PGK1
6.3. α1A-AR Activation but α1B-AR Blockage Is Protective
6.4. Other Neurological Benefits of α1-AR Quinazoline Antagonists: Parkinson’s, ALS, PTSD
7. Counterindications
7.1. α1A-AR Blockers but Not Non-Selective Antagonists May Increase Dementia and Depression
7.2. α1-AR Blockers May Increase Risk of Heart Failure
7.3. α1A-AR Blockers May Have Adverse Ocular Effects
8. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahlquist, R.P. A study of the adrenotropic receptors. Am. J. Physiol. Content 1948, 153, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Cotecchia, S.; Schwinn, D.A.; Randall, R.R.; Lefkowitz, R.J.; Caron, M.G.; Kobilka, B.K. Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1988, 85, 7159–7163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, D.M.; Piascik, M.T.; Graham, R.M. Solution-phase library screening for the identification of rare clones: Isolation of an alpha 1D-adrenergic receptor cDNA. Mol. Pharmacol. 1991, 40, 876–883. [Google Scholar] [PubMed]
- Perez, D.M.; Piascik, M.T.; Malik, N.; Gaivin, R.; Graham, R.M. Cloning, expression, and tissue distribution of the rat homo-log of the bovine alpha 1C-adrenergic receptor provide evidence for its classification as the alpha 1A subtype. Mol. Pharm. 1994, 46, 823–831. [Google Scholar]
- Laz, T.M.; Forray, C.; Smith, K.E.; Bard, J.A.; Vaysse, P.J.; Branchek, T.A.; Weinshank, R.L. The rat homologue of the bovine al-pha1c-adrenergic receptor shows the pharmacological properties of the classical alpha1A subtype. Mol. Pharm. 1994, 46, 414–422. [Google Scholar]
- Morrow, A.L.; Creese, I. Characterization of alpha 1-adrenergic receptor subtypes in rat brain: A reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol. Pharmacol. 1986, 29, 321–330. [Google Scholar]
- Perez, D.M. α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front. Pharmacol. 2020, 11, 581098. [Google Scholar] [CrossRef]
- Goetz, A.S.; King, H.K.; Ward, S.D.; True, T.A.; Rimele, T.J.; Saussy, D.L. BMY 7378 is a selective antagonist of the D subtype of α1-adrenoceptors. Eur. J. Pharmacol. 1995, 272, R5–R6. [Google Scholar] [CrossRef]
- Saussy, D.L., Jr.; Goetz, A.S.; Queen, K.L.; King, H.K.; Lutz, M.W.; Rimele, T.J. Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: Further evidence that rat aorta alpha-1 adrenoceptors are of the al-pha-1D-subtype. J. Pharm. Exp. 1996, 278, 136–144. [Google Scholar]
- Deluigi, M.; Morstein, L.; Schuster, M.; Klenk, C.; Merklinger, L.; Cridge, R.R.; de Zhang, L.A.; Klipp, A.; Vacca, S.; Vaid, T.M.; et al. Crystal structure of the α1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat. Commun. 2022, 13, 382. [Google Scholar] [CrossRef]
- Sagratini, G.; Buccioni, M.; Marucci, G.; Poggesi, E.; Skorski, M.; Costanzi, S.; Giardinà, D. Chiral analogues of (+)-cyclazosin as potent α1B-adrenoceptor selective antagonist. Bioorg. Med. Chem. 2018, 26, 3502–3513. [Google Scholar] [CrossRef]
- Papay, R.S.; Macdonald, J.D.; Stauffer, S.R.; Perez, D.M. Characterization of a novel positive allosteric modulator of the α1A-Adrenergic receptor. Curr. Res. Pharmacol. Drug Discov. 2023, 4, 100142. [Google Scholar] [CrossRef]
- Akinaga, J.; Lima, V.; Kiguti, L.R.; Hebeler-Barbosa, F.; Alcántara-Hernández, R.; García-Sáinz, J.A.; Pupo, A.S. Differential phos-phorylation, desensitization, and internalization of a1A-adrenoceptors activated by norepinephrine and oxymetazoline. Mol. Pharm. 2013, 83, 870–881. [Google Scholar] [CrossRef]
- Junior, E.D.D.S.; Sato, M.; Merlin, J.; Broxton, N.; Hutchinson, D.S.; Ventura, S.; Evans, B.A.; Summers, R.J. Factors influencing biased agonism in recombinant cells expressing the human α1A-adrenoceptor. Br. J. Pharmacol. 2017, 174, 2318–2333. [Google Scholar] [CrossRef] [Green Version]
- Hague, C.; Bernstein, L.S.; Ramineni, S.; Chen, Z.; Minneman, K.P.; Hepler, J.R. Selective Inhibition of α1A-Adrenergic Receptor Signaling by RGS2 Association with the Receptor Third Intracellular Loop. J. Biol. Chem. 2005, 280, 27289–27295. [Google Scholar] [CrossRef] [Green Version]
- Perez, D.M.; Deyoung, M.B.; Graham, R.M. Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol. Pharmacol. 1993, 44, 784–795. [Google Scholar]
- Perez-Aso, M.; Segura, V.; Monto, F.; Barettino, D.; Noguera, M.A.; Milligan, G.; D’Ocon, P. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim. Biophys. Acta 2013, 1833, 2322–2333. [Google Scholar] [CrossRef] [Green Version]
- Segura, V.; Pérez-Aso, M.; Montó, F.; Carceller, E.; Noguera, M.A.; Pediani, J.; Milligan, G.; McGrath, I.C.; D’Ocon, P. Differences in the Signaling Pathways of α1A- and α1B-Adrenoceptors Are Related to Different Endosomal Targeting. PLoS ONE 2013, 8, e64996. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.B.; Marshall, I. Characterization of α 1 -adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. Br. J. Pharmacol. 1997, 122, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Somlyo, A.P.; Somlyo, A.V. Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase. Physiol. Rev. 2003, 83, 1325–1358. [Google Scholar] [CrossRef] [Green Version]
- Villalba, N.; Stankevicius, E.; Garcia-Sacristán, A.; Simonsen, U.; Prieto, D. Contribution of both Ca2+ entry and Ca2+ sensiti-zation to the alpha1-adrenergic vasoconstriction of rat penile small arteries. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1157–H1169. [Google Scholar] [CrossRef] [PubMed]
- Wier, W.G.; Morgan, K.G. α1-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 2003, 150, 91–139. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.A.; Milano, C.A.; Shotwell, K.F.; Cho, M.C.; Rockman, H.A.; Lefkowitz, R.J.; Koch, W.J. Transgenic mice with cardiac overexpression of a1B-adrenergic receptors. In vivo a1-adrenergic receptor-mediated regulation of b-adrenergic signaling. J. Biol. Chem. 1997, 272, 21253–21259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalli, A.; Lattion, A.L.; Hummler, E.; Nenniger, M.; Pedrazzini, T.; Aubert, J.F.; Michel, M.C.; Yang, M.; Lembo, G.; Vecchione, C.; et al. Decreased blood pressure response in mice deficient of the a1B-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 11589–11594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.-J.; Fang, L.; Gao, X.-M.; Kiriazis, H.; Feng, X.; Hotchkin, E.; Finch, A.M.; Chaulet, H.; Graham, R.M. Genetic Enhancement of Ventricular Contractility Protects against Pressure-Overload-Induced Cardiac Dysfunction. J. Mol. Cell. Cardiol. 2004, 37, 979–987. [Google Scholar] [CrossRef]
- Du, X.-J.; Gao, X.-M.; Kiriazis, H.; Moore, X.-L.; Ming, Z.; Su, Y.; Finch, A.; Hannan, R.A.; Dart, A.; Graham, R.M. Transgenic α1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc. Res. 2006, 71, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Eckhart, A.D.; Duncan, S.J.; Penn, R.B.; Benovic, J.L.; Lefkowitz, R.J.; Koch, W.J. Hybrid Transgenic Mice Reveal In Vivo Specificity of G Protein–Coupled Receptor Kinases in the Heart. Circ. Res. 2000, 86, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Grupp, I.L.; Lorenz, J.N.; Walsh, R.A.; Boivin, G.P.; Rindt, H. Overexpression of α1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am. J. Physiol. Circ. Physiol. 1998, 275, H1338–H1350. [Google Scholar] [CrossRef]
- Lemire, I.; Ducharme, A.; Tardif, J.-C.; Poulin, F.; Jones, L.R.; Allen, B.G.; Hébert, T.E.; Rindt, H. Cardiac-directed overexpression of wild-type α1B-adrenergic receptor induces dilated cardiomyopathy. Am. J. Physiol. Circ. Physiol. 2001, 281, H931–H938. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Owens, W.A.; Chen, S.; Stevens, M.E.; Kesteven, S.; Arthur, J.F.; Woodcock, E.A.; Feneley, M.P.; Graham, R.M. Targeted α 1A -Adrenergic Receptor Overexpression Induces Enhanced Cardiac Contractility but not Hypertrophy. Circ. Res. 2001, 89, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Methven, L.; Simpson, P.C.; McGrath, J.C. a1A/B-knockout mice explain the native a1D-adrenoceptor’s role in vasoconstriction and show that its location is independent of the other a1-subtypes. Br. J. Pharm. 2009, 158, 1663–1675. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, T.D.; Ishizaka, S.; Nakamura, A.; Swigart, P.M.; Rodrigo, M.; Simpson, G.L.; Cotecchia, S.; Rokosh, G.; Grossman, W.; Foster, E.; et al. The α1A/C- and α1B-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J. Clin. Investig. 2003, 111, 1783–1791. [Google Scholar] [CrossRef]
- Rokosh, D.G.; Simpson, P.C. Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc. Natl. Acad. Sci. USA 2002, 99, 9474–9479. [Google Scholar] [CrossRef] [Green Version]
- Rorabaugh, B.R.; Ross, S.A.; Gaivin, R.J.; Papay, R.S.; McCune, D.F.; Simpson, P.C.; Perez, D.M. α1A- but not α1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc. Res. 2005, 65, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Sanbe, A.; Tanaka, Y.; Fujiwara, Y.; Tsumura, H.; Yamauchi, J.; Cotecchia, S.; Koike, K.; Tsujimoto, G.; Tanoue, A. α 1 -Adrenoceptors are required for normal male sexual function. Br. J. Pharmacol. 2007, 152, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Tanoue, A.; Nasa, Y.; Koshimizu, T.-A.; Shinoura, H.; Oshikawa, S.; Kawai, T.; Sunada, S.; Takeo, S.; Tsujimoto, G. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Investig. 2002, 109, 765–775. [Google Scholar] [CrossRef]
- Wang, B.H.; Du, X.J.; Autelitano, D.J.; Milano, C.A.; Woodcock, E.A. Adverse effects of constitutively active al-pha(1B)-adrenergic receptors after pressure overload in mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H1079–H1086. [Google Scholar] [CrossRef]
- Zuscik, M.; Sands, S.; Ross, S.A.; Waugh, D.; Gaivin, R.J.; Morilak, D.; Perez, D.M. Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy. Nat. Med. 2000, 6, 1388–1394. [Google Scholar] [CrossRef]
- Vecchione, C.; Fratta, L.; Rizzoni, D.; Notte, A.; Poulet, R.; Porteri, E.; Frati, G.; Guelfi, D.; Trimarco, V.; Mulvany, M.J.; et al. Cardiovascular Influences of α 1b -Adrenergic Receptor Defect in Mice. Circulation 2002, 105, 1700–1707. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, C.; Koshimizu, T.-A.; Tanoue, A.; Nasa, Y.; Oikawa, R.; Tomabechi, T.; Fukuda, S.; Shinoura, H.; Oshikawa, S.; Takeo, S.; et al. Two α1-Adrenergic Receptor Subtypes Regulating the Vasopressor Response Have Differential Roles in Blood Pressure Regulation. Mol. Pharmacol. 2004, 67, 912–922. [Google Scholar] [CrossRef] [Green Version]
- Jentzer, J.C.; Vallabhajosyula, S.; Khanna, A.K.; Chawla, L.S.; Busse, L.W.; Kashani, K.B. Management of Refractory Vasodilatory Shock. Chest 2018, 154, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Colling, K.; Banton, K.L.; Beilman, G.J. Vasopressors in Sepsis. Surg. Infect. 2018, 19, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Sacha, G.L.; Bauer, S.R.; Lat, I. Vasoactive Agent Use in Septic Shock: Beyond First-Line Recommendations. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 39, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Balal, S.; Jbari, A.S.; Nitiahpapand, R.; Cook, E.; Akhtar, W.; Din, N.; Sharma, A. Management and outcomes of the small pupil in cataract surgery: Iris hooks, Malyugin ring or phenylephrine? Eye 2020, 35, 2714–2718. [Google Scholar] [CrossRef]
- Ralston, S.; Roohi, M. A Randomized, Controlled Trial of Nasal Phenylephrine in Infants Hospitalized for Bronchiolitis. J. Pediatr. 2008, 153, 795–798.e1. [Google Scholar] [CrossRef]
- Soleimani, G.; Akbarpour, M.; Mohammadi, M. Safety and Efficacy of Phenylephrine Nasal Drops in Bronchiolitis. Iran. J. Pediatr. 2014, 24, 593–597. [Google Scholar]
- Del Rosso, J.Q.; Tanghetti, E. Topical Oxymetazoline Hydrochloride Cream 1% for the Treatment of Persistent Facial Erythema of Rosacea in Adults: A Comprehensive Review of Current Evidence. J. Clin. Aesthetic Dermatol. 2021, 14, 32–37. [Google Scholar]
- Patel, N.U.; Shukla, S.; Zaki, J.; Feldman, S.R. Oxymetazoline hydrochloride cream for facial erythema associated with rosacea. Expert Rev. Clin. Pharmacol. 2017, 10, 1049–1054. [Google Scholar] [CrossRef]
- Jensen, B.C.; Swigart, P.M.; De Marco, T.; Hoopes, C.; Simpson, P.C. α1-Adrenergic Receptor Subtypes in Nonfailing and Failing Human Myocardium. Circ. Hear. Fail. 2009, 2, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Moravec, C.S.; Perez, D.M. Novel proteins associated with human dilated cardiomyopathy: Selective reduction in α1A-adrenergic receptors and increased desensitization proteins. J. Recept. Signal Transduct. 2013, 33, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Steinfath, M.; Chen, Y.-Y.; Lavický, J.; Magnussen, O.; Nose, M.; Rosswag, S.; Schmitz, W.; Scholz, H. Cardiac α1-adrenoceptor densities in different mammalian species. Br. J. Pharmacol. 1992, 107, 185–188. [Google Scholar] [CrossRef]
- Price, D.T.; Lefkowitz, R.J.; Caron, M.G.; Berkowitz, D.; Schwinn, D.A. Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: Implications for human alpha-adrenergic physiology. Mol. Pharmacol. 1994, 45, 171–175. [Google Scholar]
- Scofield, M.A.; Liu, F.; Abel, P.W.; Jeffries, W.B. Quantification of steady state expression of mRNA for α1-adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J. Pharm. Exp. 1995, 275, 1035–1042. [Google Scholar]
- Perez, D.M.; Doze, V.A. Cardiac and neuroprotection regulated by α1-adrenergic receptor subtypes. J. Recept. Signal Transduct. 2011, 31, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ash, T.; Huang, W.; Smith, A.; Huang, H.; Jensen, B. An essential protective role for cardiomyocyte al-pha1A-adrenergic receptors in a mouse model of myocardial infarction. Circ. Res. 2020, 127, A408. [Google Scholar] [CrossRef]
- Perez, D.M. Current Developments on the Role of α1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front. Cell Dev. Biol. 2021, 9, 652152. [Google Scholar] [CrossRef]
- Shi, T.; Papay, R.S.; Perez, D.M. The role of α1-adrenergic receptors in regulating metabolism: Increased glucose tolerance, leptin secretion and lipid oxidation. J. Recept. Signal Transduct. 2016, 37, 124–132. [Google Scholar] [CrossRef]
- Willis, M.S.; Ilaiwy, A.; Montgomery, M.D.; Simpson, P.C.; Jensen, B.C. The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo. Metabolomics 2016, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Collette, K.M.; Zhou, X.D.; Amoth, H.M.; Lyons, M.J.; Papay, R.S.; Sens, D.A.; Perez, D.M.; Doze, V.A. Long-term α1B-adrenergic receptor activation shortens lifespan, while α1A-adrenergic receptor stimulation prolongs lifespan in association with decreased cancer incidence. Age 2014, 36, 1–10. [Google Scholar] [CrossRef]
- Doze, V.A.; Papay, R.S.; Goldenstein, B.L.; Gupta, M.K.; Collette, K.M.; Nelson, B.W.; Lyons, M.J.; Davis, B.A.; Luger, E.J.; Wood, S.G.; et al. Long-Term α1A-Adrenergic Receptor Stimulation Improves Synaptic Plasticity, Cognitive Function, Mood, and Longevity. Mol. Pharmacol. 2011, 80, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-J.; Jang, Y.-N.; Kim, H.-M.; Han, Y.-M.; Seo, H.S.; Eom, Y.; Song, J.-S.; Jeong, J.H.; Jung, T.W. Stimulation of Alpha-1-Adrenergic Receptor Ameliorates Obesity-Induced Cataracts by Activating Glycolysis and Inhibiting Cataract-Inducing Factors. Endocrinol. Metab. 2022, 37, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Balaji, P.; Pachon, R.; Beniamen, D.M.; Vatner, D.E.; Graham, R.M.; Vatner, S.F. Overexpression of Cardiomyocyte α 1A -Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arter. Thromb. Vasc. Biol. 2015, 35, 2451–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beak, J.Y.; Huang, W.; Parker, J.S.; Hicks, S.T.; Patterson, C.; Simpson, P.C.; Ma, A.; Jin, J.; Jensen, B.C. An Oral Selective Alpha-1A Adrenergic Receptor Agonist Prevents Doxorubicin Cardiotoxicity. JACC Basic Transl. Sci. 2017, 2, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Cowley, P.M.; Wang, G.; Swigart, P.M.; Raghunathan, A.; Reddy, N.; Dulam, P.; Lovett, D.H.; Simpson, P.C.; Baker, A.J. Reversal of right ventricular failure by chronic α1A-subtype adrenergic agonist therapy. Am. J. Physiol. Circ. Physiol. 2019, 316, H224–H232. [Google Scholar] [CrossRef]
- Montgomery, M.D.; Chan, T.; Swigart, P.M.; Myagmar, B.-E.; Dash, R.; Simpson, P.C. An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice. PLoS ONE 2017, 12, e0168409. [Google Scholar] [CrossRef] [Green Version]
- Cowley, P.M.; Wang, G.; Chang, A.N.; Makwana, O.; Swigart, P.M.; Lovett, D.H.; Stull, J.T.; Simpson, P.C.; Baker, A.J. The α1A-adrenergic receptor subtype mediates increased contraction of failing right ventricular myocardium. Am. J. Physiol. Circ. Physiol. 2015, 309, H888–H896. [Google Scholar] [CrossRef] [Green Version]
- Schnee, P.M.; Shah, N.; Bergheim, M.; Poindexter, B.J.; Buja, L.M.; Gemmato, C.; Radovancevic, B.; Letsou, G.V.; Frazier, O.H.; Bick, R.J. Location and Density of α- and β-Adrenoreceptor Sub-types in Myocardium After Mechanical Left Ventricular Unloading. J. Hear. Lung Transplant. 2008, 27, 710–717. [Google Scholar] [CrossRef]
- Ross, S.A.; Rorabaugh, B.R.; Chalothorn, D.; Yun, J.; Gonzalez-Cabrera, P.J.; McCune, D.F.; Piascik, M.T.; Perez, D.M. The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc. Res. 2003, 60, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.M.L.; Canan, B.D.; Kilic, A.; Whitson, B.A.; Baker, A.J. Human Myocardium Has a Robust α1A-Subtype Adrenergic Receptor Inotropic Response. J. Cardiovasc. Pharmacol. 2018, 72, 136–142. [Google Scholar] [CrossRef]
- Papay, R.S.; Perez, D.M. α1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes. J. Recept. Signal Transduct. Res. 2021, 41, 138–144. [Google Scholar] [CrossRef]
- Dyck, J.R.; Hopkins, T.A.; Bonnet, S.; Michelakis, E.D.; Young, M.E.; Watanabe, M.; Kawase, Y.; Jishage, K.-I.; Lopaschuk, G.D. Absence of Malonyl Coenzyme A Decarboxylase in Mice Increases Cardiac Glucose Oxidation and Protects the Heart from Ischemic Injury. Circulation 2006, 114, 1721–1728. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Xu, J.; Qin, X.; Hou, Z.; Guo, Y.; Liu, Z.; Wu, J.; Zheng, H.; Zhang, X.; Gao, F. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion. Am. J. Physiol. Metab. 2017, 313, E577–E585. [Google Scholar] [CrossRef] [Green Version]
- Masoud, W.G.; Ussher, J.R.; Wang, W.; Jaswal, J.S.; Wagg, C.S.; Dyck, J.R.; Lygate, C.A.; Neubauer, S.; Clanachan, A.S.; Lopaschuk, G.D. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 2013, 101, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Papay, R.S.; Perez, D.M. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake. J. Recept. Signal Transduct. 2015, 36, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Ussher, J.R.; Wang, W.; Gandhi, M.; Keung, W.; Samokhvalov, V.; Oka, T.; Wagg, C.S.; Jaswal, J.S.; Harris, R.A.; Clanachan, A.S.; et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 2012, 94, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Yurista, S.R.; Chen, S.; Welsh, A.; Tang, W.H.W.; Nguyen, C.T. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time? Curr. Hear. Fail. Rep. 2022, 19, 180–190. [Google Scholar] [CrossRef]
- Ingwall, J.S.; Weiss, R.G. Is the Failing Heart Energy Starved? Circ. Res. 2004, 95, 135–145. [Google Scholar] [CrossRef]
- Izumi, Y.; Zorumski, C.F. Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 1999, 31, 196–202. [Google Scholar] [CrossRef]
- Pankratov, Y.; Lalo, U. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front. Cell. Neurosci. 2015, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.F.; Johnston, D. Frequency-Dependent Noradrenergic Modulation of Long-Term Potentiation in the Hippocampus. Science 1984, 226, 350–352. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Nguyen, P.V.; Abel, T.; Kandel, E.R. Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn. Mem. 1996, 3, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Zhan, S.-Y.; Li, G.-X.; Wang, D.; Li, Y.-S.; Jin, Q.-H. α1-Adrenoceptors in the hippocampal dentate gyrus involved in learning-dependent long-term potentiation during active-avoidance learning in rats. Neuroreport 2016, 27, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Pedarzani, P.; Storm, J.F. Interaction between alpha- and beta-adrenergic receptor agonists modulating the slow Ca(2+)-activated K+ current IAHP in hippocampal neurons. Eur. J. Neurosci. 1996, 8, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Spreng, M.; Cotecchia, S.; Schenk, F. A Behavioral Study of Alpha-1b Adrenergic Receptor Knockout Mice: Increased Reaction to Novelty and Selectively Reduced Learning Capacities. Neurobiol. Learn. Mem. 2001, 75, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Knauber, J.; Müller, W.E. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the α1b-adrenoceptor. Eur. Neuropsychopharmacol. 2000, 10, 423–427. [Google Scholar] [CrossRef]
- Sadalge, A.; Coughlin, L.; Fu, H.; Wang, B.; Valladares, O.; Valentino, R.; A Blendy, J. α1d Adrenoceptor signaling is required for stimulus induced locomotor activity. Mol. Psychiatry 2003, 8, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Mishima, K.; Tanoue, A.; Tsuda, M.; Hasebe, N.; Fukue, Y.; Egashira, N.; Takano, Y.; Kamiya, H.-O.; Tsujimoto, G.; Iwasaki, K.; et al. Characteristics of behavioral abnormalities in α1d-adrenoceptors deficient mice. Behav. Brain Res. 2004, 152, 365–373. [Google Scholar] [CrossRef]
- Gupta, M.K.; Papay, R.S.; Jurgens, C.W.D.; Gaivin, R.J.; Shi, T.; Doze, V.A.; Perez, D.M. α1-Adrenergic Receptors Regulate Neurogenesis and Gliogenesis. Mol. Pharmacol. 2009, 76, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Papay, R.; Gaivin, R.; Jha, A.; Mccune, D.F.; McGrath, J.; Rodrigo, M.C.; Simpson, P.C.; Doze, V.A.; Perez, D.M. Localization of the mouse α1A-adrenergic receptor (AR) in the brain: α1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J. Comp. Neurol. 2006, 497, 209–222. [Google Scholar] [CrossRef]
- Christopoulos, A. Allosteric binding sites on cell-surface receptors: Novel targets for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 198–210. [Google Scholar] [CrossRef]
- Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J. Med. Chem. 2018, 62, 88–127. [Google Scholar] [CrossRef]
- Bevilaqua, L.; Ardenghi, P.; Schröder, N.; Bromberg, E.; Quevedo, J.; Schmitz, P.; Bianchin, M.; Walz, R.; Schaeffer, E.; Medina, J.; et al. Agents that affect cAMP levels or protein kinase A activity modulate memory consolidation when injected into rat hippocampus but not amygdala. Braz. J. Med. Biol. Res. 1997, 30, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Ferry, B.; Roozendaal, B.; McGaugh, J.L. Involvement of α1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur. J. Pharmacol. 1999, 372, 9–16. [Google Scholar] [CrossRef]
- Ferry, B.; Roozendaal, B.; McGaugh, J.L. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between b- and a1- adrenoceptors. J. Neurosci. 1999, 19, 5119–5123. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, T.; McGaugh, J.L. Norepinephrine infused into the basolateral amygdala enhances spatial water maze memory. Neurobiol. Learn Mem. 1999, 71, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Kandel, E.R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 2012, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Kida, S.; Serita, T. Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res. Bull. 2014, 105, 17–24. [Google Scholar] [CrossRef]
- Michel, M.; Mehlburger, L.; Bressel, H.-U.; Goepel, M. Comparison of tamsulosin efficacy in subgroups of patients with lower urinary tract symptoms. Prostate Cancer Prostatic Dis. 1998, 1, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Oestreich, M.C.; Vernooij, R.W.; Sathianathen, N.J.; Hwang, E.C.; Kuntz, G.M.; Koziarz, A.; Scales, C.D.; Dahm, P. Alpha-blockers after shock wave lithotripsy for renal or ureteral stones in adults. Cochrane Database Syst. Rev. 2020, 2020, CD013393. [Google Scholar] [CrossRef]
- Sigala, S.; Dellabella, M.; Milanese, G.; Fornari, S.; Faccoli, S.; Palazzolo, F.; Peroni, A.; Mirabella, G.; Cunico, S.C.; Spano, P.; et al. Evidence for the presence of ?1 adrenoceptor subtypes in the human ureter. Neurourol. Urodynamics 2005, 24, 142–148. [Google Scholar] [CrossRef]
- ALLHAT. Diuretic versus alpha-blocker as first-step antihypertensive therapy: Final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension 2003, 42, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansbart, F.; Kienberger, G.; Sönnichsen, A.; Mann, E. Efficacy and safety of adrenergic alpha-1 receptor antagonists in older adults: A systematic review and meta-analysis supporting the development of recommendations to reduce potentially in-appropriate prescribing. BMC Geriatr. 2022, 22, 771. [Google Scholar] [CrossRef] [PubMed]
- Roehrborn, C.G.; Siami, P.; Barkin, J.; Damião, R.; Major-Walker, K.; Nandy, I.; Morrill, B.B.; Gagnier, R.P.; Montorsi, F. The Effects of Combination Therapy with Dutasteride and Tamsulosin on Clinical Outcomes in Men with Symptomatic Benign Prostatic Hyperplasia: 4-Year Results from the CombAT Study. Eur. Urol. 2010, 57, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Kharb, S.; Brar, K.; Gundgurthi, A.; Mittal, R. Medical management of pheochromocytoma: Role of the endocrinologist. Indian J. Endocrinol. Metab. 2011, 15, S329–S336. [Google Scholar] [CrossRef]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Y.; Chai, Y.; Cheng, W.; Wang, K.; Cao, J.; Hu, X. Association of Clinical and Immunological Characteristics with Disease Severity and Outcomes in 211 Patients With COVID-19 in Wuhan, China. Front. Cell. Infect. Microbiol. 2021, 11, 667487. [Google Scholar] [CrossRef]
- Stavely, R.; Rahman, A.A.; Sahakian, L.; Prakash, M.D.; Robinson, A.M.; Hassanzadeganroudsari, M.; Filippone, R.T.; Fraser, S.; Eri, R.; Bornstein, J.C.; et al. Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated with the Severity of Inflammation in Chronic Colitis. Inflamm. Bowel Dis. 2022, 28, 1229–1243. [Google Scholar] [CrossRef]
- Priyanka, H.P.; ThyagaRajan, S. Selective modulation of lymphoproliferation and cytokine production via intracellular signaling targets by α1- and α2-adrenoceptors and estrogen in splenocytes. Int. Immunopharmacol. 2013, 17, 774–784. [Google Scholar] [CrossRef]
- Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: A review. Front. Pharmacol. 2015, 6, 171. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Carson, M.J.; Nair, M.G. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine 2015, 72, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Grisanti, L.A.; Perez, D.M.; Porter, J.E. Modulation of Immune Cell Function by α1-Adrenergic Receptor Activation. Curr. Top. Membr. 2011, 67, 113–138. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.C.; Swigart, P.M.; Simpson, P.C. Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 379, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Scanzano, A.; Schembri, L.; Rasini, E.; Luini, A.; Dallatorre, J.; Legnaro, M.; Bombelli, R.; Congiu, T.; Cosentino, M.; Marino, F. Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm. Res. 2015, 64, 127–135. [Google Scholar] [CrossRef]
- Heijnen, C.J.; Rouppe van der Voort, C.; van de Pol, M.; Kavelaars, A. Cytokines regulate alpha(1)-adrenergic receptor mRNA expression in human monocytic cells and endothelial cells. J. Neuroimmunol. 2002, 125, 66–72. [Google Scholar] [CrossRef]
- Rouppe van der Voort, C.; Kavelaars, A.; van de Pol, M.; Heijnen, C.J. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes. J. Neuroimmunol. 1999, 95, 165–173. [Google Scholar] [CrossRef]
- Bao, J.-Y.; Huang, Y.; Wang, F.; Peng, Y.-P.; Qiu, Y.-H. Expression of α-AR Subtypes in T Lymphocytes and Role of the α-ARs in Mediating Modulation of T Cell Function. Neuroimmunomodulation 2007, 14, 344–353. [Google Scholar] [CrossRef]
- Enten, G.A.; Gao, X.; Strzelinski, H.R.; Weche, M.; Liggett, S.B.; Majetschak, M. a1B/D-adrenoceptors regulate chemokine re-ceptor-mediated leukocyte migration via formation of heteromeric receptor complexes. Proc. Natl. Acad. Sci. USA 2022, 119, e2123511119. [Google Scholar] [CrossRef] [PubMed]
- Jetschmann, J.U.; Benschop, R.J.; Jacobs, R.; Kemper, A.; Oberbeck, R.; Schmidt, R.E.; Schedlowski, M. Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (CD16+) cells. J. Neuroimmunol. 1997, 74, 159–164. [Google Scholar] [CrossRef]
- Ricci, A.; Bronzetti, E.; Conterno, A.; Greco, S.; Mulatero, P.; Schena, M.; Schiavone, D.; Tayebati, S.K.; Veglio, F.; Amenta, F. α 1 -Adrenergic Receptor Subtypes in Human Peripheral Blood Lymphocytes. Hypertension 1999, 33, 708–712. [Google Scholar] [CrossRef] [Green Version]
- Tayebati, S.K.; Bronzetti, E.; Di Cella, S.M.; Mulatero, P.; Ricci, A.; Rossodivita, I.; Schena, M.; Schiavone, D.; Veglio, F.; Amenta, F. In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J. Auton. Pharmacol. 2000, 20, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Staedtke, V.; Bai, R.-Y.; Kim, K.; Darvas, M.; Davila, M.L.; Riggins, G.J.; Rothman, P.B.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 2018, 564, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Koenecke, A.; Powell, M.; Xiong, R.; Shen, Z.; Fischer, N.; Huq, S.; Khalafallah, A.M.; Trevisan, M.; Sparen, P.; Carrero, J.J.; et al. Alpha-1 adrenergic receptor antagonists to prevent hyperinflammation and death from lower respiratory tract infection. Elife 2021, 10, e61700. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.; Graham, L.; Koenecke, A.; Powell, M.; Xiong, R.; Shen, Z.; Mench, B.; Kinzler, K.W.; Bettegowda, C.; Vogelstein, B.; et al. The Association Between Alpha-1 Adrenergic Receptor Antagonists and In-Hospital Mortality From COVID-19. Front. Med. 2021, 8, 637647. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.W.; Christiansen, C.F.; Heide-Jørgensen, U.; Vogelstein, J.T.; Vogelstein, B.; Bettegowda, C.; Tamang, S.; Athey, S.; Sørensen, H.T. Association of α1-Blocker Receipt With 30-Day Mortality and Risk of Intensive Care Unit Admission Among Adults Hospitalized with Influenza or Pneumonia in Denmark. JAMA Netw. Open 2021, 4, e2037053. [Google Scholar] [CrossRef]
- Konig, M.F.; Powell, M.A.; Staedtke, V.; Bai, R.-Y.; Thomas, D.L.; Fischer, N.M.; Huq, S.; Khalafallah, A.M.; Koenecke, A.; Xiong, R.; et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J. Clin. Investig. 2020, 130, 3345–3347. [Google Scholar] [CrossRef]
- Nishimura, A.; Xie, J.; Kostka, K.; Duarte-Salles, T.; Fernández Bertolín, S.; Aragón, M.; Blacketer, C.; Shoaibi, A.; DuVall, S.L.; Lynch, K.; et al. International cohort study in-dicates no association between alpha-1 blockers and susceptibility to COVID-19 in benign prostatic hyperplasia patients. Front. Pharm. 2022, 13, 945592. [Google Scholar] [CrossRef]
- Lund, J.L.; Richardson, D.B.; Stürmer, T. The Active Comparator, New User Study Design in Pharmacoepidemiology: Historical Foundations and Contemporary Application. Curr. Epidemiol. Rep. 2015, 2, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Schuemie, M.J.; Ryan, P.B.; Man, K.K.; Wong, I.C.; Suchard, M.A.; Hripcsak, G. A plea to stop using the case-control design in retrospective database studies. Stat. Med. 2019, 38, 4199–4208. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, W. Prazosin blocks apoptosis of endothelial progenitor cells through downregulating the Akt/NF κB signaling pathway in a rat cerebral infarction model. Exp. Ther. Med. 2020, 20, 2577–2584. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Gomes, C.E.; Rodrigues-Neto, J.F.; Jeronimo, S.M. Genome-wide association studies of COVID-19: Connecting the dots. Infect. Genet. Evol. 2022, 106, 105379. [Google Scholar] [CrossRef]
- Mustafa, S.; See, H.B.; Seeber, R.M.; Armstrong, S.P.; White, C.W.; Ventura, S.; Ayoub, M.A.; Pfleger, K.D.G. Identification and Profiling of Novel α1A-Adrenoceptor-CXC Chemokine Receptor 2 Heteromer. J. Biol. Chem. 2012, 287, 12952–12965. [Google Scholar] [CrossRef] [Green Version]
- Albee, L.J.; Eby, J.M.; Tripathi, A.; LaPorte, H.M.; Gao, X.; Volkman, B.F.; Gaponenko, V.; Majetschak, M. a1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes with Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J. Am. Heart Assoc. 2017, 6, e006575. [Google Scholar] [CrossRef]
- Gomes, I.; Ayoub, M.A.; Fujita, W.; Jaeger, W.C.; Pfleger, K.D.; Devi, L.A. G Protein–Coupled Receptor Heteromers. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Quitterer, U.; AbdAlla, S. Discovery of Pathologic GPCR Aggregation. Front. Med. 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Gubbi, S.; Nazari, M.A.; Taieb, D.; Klubo-Gwiezdzinska, J.; Pacak, K. Catecholamine physiology and its implications in pa-tients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 978–986. [Google Scholar] [CrossRef]
- Szewczykowski, C.; Mardin, C.; Lucio, M.; Wallukat, G.; Hoffmanns, J.; Schröder, T.; Raith, F.; Rogge, L.; Heltmann, F.; Moritz, M.; et al. Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int. J. Mol. Sci. 2022, 23, 7209. [Google Scholar] [CrossRef]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.-S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Carasa, I.F.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 2019, 129, 4539–4549. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, C.; Li, X.; Wang, T.; Li, Y.; Cao, C.; Ding, Y.; Dong, M.; Finci, L.; Wang, J.-H.; et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat. Chem. Biol. 2014, 11, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.V.; Pantet, O.; Bagnoud, G.; Martinez, A.; Favre, E.; Charrière, M.; Favre, D.; Eckert, P.; Berger, M.M. Metabolic and Nutritional Characteristics of Long-Stay Critically Ill Patients. J. Clin. Med. 2019, 8, 985. [Google Scholar] [CrossRef] [Green Version]
- Lorente, J.A.; Nin, N.; Villa, P.; Vasco, D.; Miguel-Coello, A.B.; Rodriguez, I.; Herrero, R.; Peñuelas, O.; Ruiz-Cabello, J.; Izquierdo-Garcia, J.L. Metabolomic diferences between COVID-19 and H1N1 influenza induced ARDS. Crit. Care 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Viana, M.V.; Pantet, O.; Rd, M.C.; Favre, D.; Piquilloud, L.; Schneider, A.G.; Hurni, C.; Berger, M.M. Specific nutrition and metabolic characteristics of critically ill patients with persistent COVID-19. J. Parenter. Enter. Nutr. 2022, 46, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Chaytow, H.; Carroll, E.; Gordon, D.; Huang, Y.-T.; van der Hoorn, D.; Smith, H.L.; Becker, T.; Becker, C.G.; Faller, K.M.E.; Talbot, K.; et al. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. eBiomedicine 2022, 83. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.D.; Donatucci, C.F.; Page, S.O.; Wilson, K.H.; Schwinn, D.A. Pharmacology of tamsulosin: Saturation-binding isotherms and competition analysis using cloned alpha 1-adrenergic receptor subtypes. Prostate 1997, 33, 55–59. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, S.; Zhao, F.; Wang, Y.; Li, J. Terazosin Analogs Targeting Pgk1 as Neuroprotective Agents: Design, Synthesis, and Evaluation. Front. Chem. 2022, 10, 906974. [Google Scholar] [CrossRef]
- Simmering, J.E.; Welsh, M.J.; Liu, L.; Narayanan, N.S.; Pottegård, A. Association of Glycolysis-Enhancing α-1 Blockers with Risk of Developing Parkinson Disease. JAMA Neurol. 2021, 78, 407. [Google Scholar] [CrossRef]
- Batty, M.; Pugh, R.; Rathinam, I.; Simmonds, J.; Walker, E.; Forbes, A.; Anoopkumar-Dukie, S.; McDermott, C.M.; Spencer, B.; Christie, D.; et al. The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers. Int. J. Mol. Sci. 2016, 17, 1339. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Schraml, E.; Leitinger, G.; Stelzer, I.; Allard, N.; Haas, H.S.; Schauenstein, K.; Sadjak, A. α1-adrenergic drugs modulate differentiation and cell death of human erythroleukemia cells through non adrenergic mechanism. Exp. Cell Res. 2011, 317, 2239–2251. [Google Scholar] [CrossRef]
- Fuchs, R.; Schwach, G.; Stracke, A.; Meier-Allard, N.; Absenger, M.; Ingolic, E.; Haas, H.S.; Pfragner, R.; Sadjak, A. The anti-hypertensive drug prazosin induces apoptosis in the medullary thyroid carcinoma cell line TT. Anticancer Res. 2015, 35, 31–38. [Google Scholar]
- Wang, M.; Chang, W.; Zhang, L.; Zhang, Y. Pyroptotic cell death in SARS-CoV-2 infection: Revealing its roles during the immunopathogenesis of COVID-19. Int. J. Biol. Sci. 2022, 18, 5827–5848. [Google Scholar] [CrossRef]
- Malekinejad, Z.; Aghajani, S.; Jeddi, M.; Qahremani, R.; Shahbazi, S.; Bagheri, Y.; Ahmadian, E. Prazosin Treatment Protects Brain and Heart by Diminishing Oxidative Stress and Apoptotic Pathways After Renal Ischemia Reperfusion. Drug Res. 2022, 72, 336–342. [Google Scholar] [CrossRef]
- Kubacka, M.; Mogilski, S.; Zadrożna, M.; Nowak, B.; Szafarz, M.; Pomierny, B.; Marona, H.; Waszkielewicz, A.; Jawień, W.; Sapa, J.; et al. MH-76, a Novel Non-Quinazoline α1-Adrenoceptor Antagonist, but Not Prazosin Reduces Inflammation and Improves Insulin Signaling in Adipose Tissue of Fructose-Fed Rats. Pharmaceuticals 2021, 14, 477. [Google Scholar] [CrossRef]
- Kubacka, M.; Zadrożna, M.; Nowak, B.; Kotańska, M.; Filipek, B.; Waszkielewicz, A.M.; Marona, H.; Mogilski, S. Reversal of cardiac, vascular, and renal dysfunction by non-quinazoline α1-adrenolytics in DOCA-salt hypertensive rats: A comparison with prazosin, a quinazoline-based α1-adrenoceptor antagonist. Hypertens. Res. 2019, 42, 1125–1141. [Google Scholar] [CrossRef]
- Yun, J.; Gaivin, R.J.; McCune, D.F.; Boongird, A.; Papay, R.S.; Ying, Z.; Gonzalez-Cabrera, P.J.; Najm, I.; Perez, D.M. Gene expression profile of neurodegeneration induced by 1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain 2003, 126, 2667–2681. [Google Scholar] [CrossRef]
- Zuscik, M.J.; Chalothorn, D.; Hellard, D.; Deighan, C.; McGee, A.; Daly, C.J.; Waugh, D.J.J.; Ross, S.A.; Gaivin, R.J.; Morehead, A.J.; et al. Hypotension, Autonomic Failure, and Cardiac Hypertrophy in Transgenic Mice Overexpressing the α1B-Adrenergic Receptor. J. Biol. Chem. 2001, 276, 13738–13743. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Hatanaka, T.; Yuyama, H.; Ukai, M.; Noguchi, Y.; Ohtake, A.; Taguchi, K.; Sasamata, M.; Miyata, K. Tamsulosin Potently and Selectively Antagonizes Human Recombinant .ALPHA.1A/1D-Adrenoceptors: Slow Dissociation from the .ALPHA.1A-Adrenoceptor May Account for Selectivity for .ALPHA.1A-Adrenoceptor over .ALPHA.1B-Adrenoceptor Subtype. Biol. Pharm. Bull. 2012, 35, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Sasane, R.; Bartels, A.; Field, M.; Sierra, M.I.; Duvvuri, S.; Gray, D.L.; Pin, S.S.; Renger, J.J.; Stone, D.J. Parkinson disease among patients treated for benign prostatic hyperplasia with α1 adrenergic receptor antagonists. J. Clin. Investig. 2021, 131, e145112. [Google Scholar] [CrossRef]
- Shi, T.; Gaivin, R.J.; McCune, D.F.; Gupta, M.; Perez, D.M. Dominance of the α1B-Adrenergic Receptor and its Subcellular Localization in Human and TRAMP Prostate Cancer Cell Lines. J. Recept. Signal Transduct. 2007, 27, 27–45. [Google Scholar] [CrossRef]
- Gonzalez-Cabrera, P.J.; Shi, T.; Yun, J.; McCune, D.F.; Rorabaugh, B.R.; Perez, D.M. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes. Endocrinology 2004, 145, 5157–5167. [Google Scholar] [CrossRef] [Green Version]
- Manzo, E.; Lorenzini, I.; Barrameda, D.; O’Conner, A.G.; Barrows, J.M.; Starr, A.; Kovalik, T.; Rabichow, B.E.; Lehmkuhl, E.M.; Shreiner, D.D.; et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 2019, 8, e45114. [Google Scholar] [CrossRef] [PubMed]
- Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE 2011, 6, e17514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, U.; Arshad, A.R.; Jawed, A.; Eqbal, F.; Imran, L.; Khan, Z.; Ijaz, F. Glycolysis: The Next Big Breakthrough in Parkinson’s Disease. Neurotox. Res. 2022, 40, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Strope, T.A.; Birky, C.J.; Wilkins, H.M. The Role of Bioenergetics in Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 9212. [Google Scholar] [CrossRef]
- Perera, N.D.; Turner, B.J. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis. Neurochem. Res. 2015, 41, 544–553. [Google Scholar] [CrossRef]
- Schultz, J.L.; Brinker, A.N.; Xu, J.; Ernst, S.E.; Tayyari, F.; Rauckhorst, A.J.; Liu, L.; Uc, E.Y.; Taylor, E.B.; Simmering, J.E.; et al. A pilot to assess target engagement of terazosin in Parkinson’s disease. Park. Relat. Disord. 2021, 94, 79–83. [Google Scholar] [CrossRef]
- Li, T.; Yang, S.; She, X.; Yan, Q.; Zhang, P.; Zhu, H.; Wang, F.; Luo, X.; Sun, X. Modulation of α-adrenoceptor signalling protects photoreceptors after retinal detachment by inhibiting oxidative stress and inflammation. Br. J. Pharmacol. 2018, 176, 801–813. [Google Scholar] [CrossRef] [Green Version]
- Geracioti, T.D.; Baker, D.G.; Ekhator, N.N.; West, S.A.; Hill, K.K.; Bruce, A.B.; Schmidt, D.; Rounds-Kugler, B.; Yehuda, R.; Keck, P.E.; et al. CSF Norepinephrine Concentrations in Posttraumatic Stress Disorder. Am. J. Psychiatry 2001, 158, 1227–1230. [Google Scholar] [CrossRef]
- Mellman, T.A.; Kumar, A.; Kulick-Bell, R.; Kumar, M.; Nolan, B. Nocturnal/daytime urine noradrenergic measures and sleep in combat-related PTSD. Biol. Psychiatry 1995, 38, 174–179. [Google Scholar] [CrossRef]
- Southwick, S.M.; Krystal, J.H.; Morgan, C.A.; Johnson, D.; Nagy, L.M.; Nicolaou, A.; Heninger, G.R.; Charney, D.S. Abnormal Noradrenergic Function in Posttraumatic Stress Disorder. Arch. Gen. Psychiatry 1993, 50, 266–274. [Google Scholar] [CrossRef]
- Raskind, M.A.; Peskind, E.R.; Kanter, E.D.; Petrie, E.C.; Radant, A.; Thompson, C.E.; Dobie, D.J.; Hoff, D.; Rein, R.J.; Straits-Tröster, K.; et al. Reduction of Nightmares and Other PTSD Symptoms in Combat Veterans by Prazosin: A Placebo-Controlled Study. Am. J. Psychiatry 2003, 160, 371–373. [Google Scholar] [CrossRef]
- Raskind, M.A.; Peskind, E.R.; Hoff, D.J.; Hart, K.L.; Holmes, H.A.; Warren, D.; Shofer, J.; O’Connell, J.; Taylor, F.; Gross, C.; et al. A Parallel Group Placebo Controlled Study of Prazosin for Trauma Nightmares and Sleep Disturbance in Combat Veterans with Post-Traumatic Stress Disorder. Biol. Psychiatry 2007, 61, 928–934. [Google Scholar] [CrossRef]
- Raskind, M.A.; Peterson, K.; Williams, T.; Hoff, D.J.; Hart, K.; Holmes, H.; Homas, D.; Hill, J.; Daniels, C.; Calohan, J.; et al. A Trial of Prazosin for Combat Trauma PTSD With Nightmares in Active-Duty Soldiers Returned from Iraq and Afghanistan. Am. J. Psychiatry 2013, 170, 1003–1010. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, R.; Vitiello, M.V.; Yang, L.; Zhang, H.; Shi, Y.; Sanford, L.D.; Tang, X. Efficacy and acceptability of psychotherapeutic and pharmacological interventions for trauma-related nightmares: A systematic review and network meta-analysis. Neurosci. Biobehav. Rev. 2022, 139, 104717. [Google Scholar] [CrossRef]
- Yücel, D.E.; van Emmerik, A.A.; Souama, C.; Lancee, J. Comparative efficacy of imagery rehearsal therapy and prazosin in the treatment of trauma-related nightmares in adults: A meta-analysis of randomized controlled trials. Sleep Med. Rev. 2019, 50, 101248. [Google Scholar] [CrossRef]
- Raskind, M.A.; Peskind, E.R.; Chow, B.; Harris, C.; Davis-Karim, A.; Holmes, H.A.; Hart, K.L.; McFall, M.; Mellman, T.A.; Reist, C.; et al. Trial of Prazosin for Post-Traumatic Stress Disorder in Military Veterans. N. Engl. J. Med. 2018, 378, 507–517. [Google Scholar] [CrossRef]
- Duan, Y.; Grady, J.J.; Albertsen, P.C.; Wu, Z.H. Tamsulosin and the risk of dementia in older men with benign prostatic hyperplasia. Pharmacoepidemiol. Drug Saf. 2018, 27, 340–348. [Google Scholar] [CrossRef]
- Latvala, L.; Tiihonen, M.; Murtola, T.J.; Hartikainen, S.; Tolppanen, A. Use of α1-adrenoceptor antagonists tamsulosin and alfuzosin and the risk of Alzheimer’s disease. Pharmacoepidemiol. Drug Saf. 2022. [Google Scholar] [CrossRef]
- Tae, B.S.; Jeon, B.J.; Choi, H.; Cheon, J.; Park, J.Y.; Bae, J.H. α-Blocker and Risk of Dementia in Patients with Benign Prostatic Hyperplasia: A Nationwide Population Based Study Using the National Health Insurance Service Database. J. Urol. 2019, 202, 362–368. [Google Scholar] [CrossRef]
- Dintica, C.S.; Yaffe, K. Epidemiology and Risk Factors for Dementia. Psychiatr. Clin. N. Am. 2022, 45, 677–689. [Google Scholar] [CrossRef]
- Leritz, E.C.; McGlinchey, R.E.; Kellison, I.; Rudolph, J.L.; Milberg, W.P. Cardiovascular Disease Risk Factors and Cognition in the Elderly. Curr. Cardiovasc. Risk Rep. 2011, 5, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corley, J.; Conte, F.; Harris, S.E.; Taylor, A.M.; Redmond, P.; Russ, T.C.; Deary, I.J.; Cox, S.R. Predictors of longitudinal cognitive ageing from age 70 to 82 including APOE e4 status, early-life and lifestyle factors: The Lothian Birth Cohort 1936. Mol. Psychiatry 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yoshida, M.; Emoto, H.; Ishii, H. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: Basic studies. Eur. J. Pharmacol. 2000, 405, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.F.M.; Aroniadou-Anderjaska, V.; Manion, S.T.; Hough, C.J.; Li, H. Stress Impairs α1A Adrenoceptor-Mediated Noradrenergic Facilitation of GABAergic Transmission in the Basolateral Amygdala. Neuropsychopharmacology 2003, 29, 45–58. [Google Scholar] [CrossRef]
- Doze, V.A.; Handel, E.M.; Jensen, K.A.; Darsie, B.; Luger, E.J.; Haselton, J.R.; Talbot, J.N.; Rorabaugh, B.R. α1A- and α1B-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse. Brain Res. 2009, 1285, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Yoshida, S.; Matsuki, T.; Jaiswal, M.K.; Seki, K. The α1-adrenergic receptors in the amygdala regulate the induction of learned despair through protein kinase C-beta signaling. Behav. Pharmacol. 2020, 32, 73–85. [Google Scholar] [CrossRef]
- Holanda, V.A.; Oliveira, M.C.; Junior, E.D.D.S.; Gavioli, E.C. Tamsulosin facilitates depressive-like behaviors in mice: Involvement of endogenous glucocorticoids. Brain Res. Bull. 2021, 178, 29–36. [Google Scholar] [CrossRef]
- Kim, Y.J.; Tae, B.S.; Bae, J.H. Cognitive Function and Urologic Medications for Lower Urinary Tract Symptoms. Int. Neurourol. J. 2020, 24, 231–240. [Google Scholar] [CrossRef]
- Wong, S.Y.; Hong, A.; Leung, J.; Kwok, T.; Leung, P.C.; Woo, J. Lower urinary tract symptoms and depressive symptoms in elderly men. J. Affect. Disord. 2006, 96, 83–88. [Google Scholar] [CrossRef]
- Yang, Y.J.; Koh, J.S.; Ko, H.J.; Cho, K.J.; Kim, J.C.; Lee, S.-J.; Pae, C.-U. The Influence of Depression, Anxiety and Somatization on the Clinical Symptoms and Treatment Response in Patients with Symptoms of Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Hyperplasia. J. Korean Med. Sci. 2014, 29, 1145–1151. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-U.; So, A.-H.; Park, J.-I.; Lee, S.; Oh, I.-H.; Oh, C.-M. Association between benign prostatic hyperplasia and suicide in South Korea: A nationwide retrospective cohort study. PLoS ONE 2022, 17, e0265060. [Google Scholar] [CrossRef]
- Lusty, A.; Siemens, D.R.; Tohidi, M.; Whitehead, M.; Tranmer, J.; Nickel, J.C. Cardiac Failure Associated with Medical Therapy of Benign Prostatic Hyperplasia: A Population Based Study. J. Urol. 2021, 205, 1430–1437. [Google Scholar] [CrossRef]
- Schilit, S.; Benzeroual, K.E. Silodosin: A selective α1A-adrenergic receptor antagonist for the treatment of benign prostatic hyperplasia. Clin. Ther. 2009, 31, 2489–2502. [Google Scholar] [CrossRef]
- Chang, D.F.; Campbell, J.R. Intraoperative floppy iris syndrome associated with tamsulosin. J. Cataract. Refract. Surg. 2005, 31, 664–673. [Google Scholar] [CrossRef]
- Nakamura, S.; Taniguchi, T.; Suzuki, F.; Akagi, Y.; Muramatsu, I. Evaluation of α1-adrenoceptors in the rabbit iris: Pharmacological characterization and expression of mRNA. Br. J. Pharmacol. 1999, 127, 1367–1374. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, F.; Taniguchi, T.; Nakamura, S.; Akagi, Y.; Kubota, C.; Satoh, M.; Muramatsu, I. Distribution of alpha-1 adrenoceptor subtypes in RNA and protein in rabbit eyes. Br. J. Pharmacol. 2002, 135, 600–608. [Google Scholar] [CrossRef]
- Wang, R.-F.; Lee, P.-Y.; Mittag, T.W.; Podos, S.M.; Serle, J.B. Effect of 5-methylurapidil, an a1a-adrenergic antagonist and 5-hydroxytryptamine1a agonist, on aqueous humor dynamics in monkeys and rabbits. Curr. Eye Res. 1997, 16, 769–775. [Google Scholar] [CrossRef]
- Zhan, G.-L.; Toris, C.B.; Camras, C.B.; Wang, Y.-L.; Yablonski, M.E. Bunazosin Reduces Intraocular Pressure in Rabbits by Increasing Uveoscleral Outflow. J. Ocul. Pharmacol. Ther. 1998, 14, 217–228. [Google Scholar] [CrossRef]
- Ida, Y.; Sato, T.; Watanabe, M.; Umetsu, A.; Tsugeno, Y.; Furuhashi, M.; Hikage, F.; Ohguro, H. The Selective α1 Antagonist Tamsulosin Alters ECM Distributions and Cellular Metabolic Functions of ARPE 19 Cells in a Concentration-Dependent Manner. Bioengineering 2022, 9, 556. [Google Scholar] [CrossRef]
- Bell, C.M.; Hatch, W.V.; Fischer, H.D.; Cernat, G.; Paterson, J.M.; Gruneir, A.; Gill, S.S.; Bronskill, S.E.; Anderson, G.M.; Rochon, P.A. Association Between Tamsulosin and Serious Ophthalmic Adverse Events in Older Men Following Cataract Surgery. JAMA 2009, 301, 1991–1996. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.F.; Campbell, J.R.; Colin, J.; Schweitzer, C. Prospective Masked Comparison of Intraoperative Floppy Iris Syndrome Severity with Tamsulosin versus Alfuzosin. Ophthalmology 2014, 121, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I.P.; Sergentanis, T.N. Risk Factors for Intraoperative Floppy Iris Syndrome: A Meta-Analysis. Ophthalmology 2011, 118, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Haridas, A.; Syrimi, M.; Al-Ahmar, B.; Hingorani, M. Intraoperative floppy iris syndrome (IFIS) in patients receiving tamsulosin or doxazosin—A UK-based comparison of incidence and complication rates. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 1541–1545. [Google Scholar] [CrossRef] [PubMed]
- Herd, M.K. Intraoperative floppy-iris syndrome with doxazosin. J. Cataract. Refract. Surg. 2007, 33, 562. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Huang, L.-C.; Tsai, S.H.L.; Chen, Y.-J.; Wu, C.-L.; Kang, Y.-N. Risk of intraoperative floppy iris syndrome among selective alpha-1 blockers—A consistency model of 6,488 cases. Front. Med. 2022, 9, 941130. [Google Scholar] [CrossRef]
Drug | Receptor Selectivity | Current Indications | Potential Indications |
---|---|---|---|
Agonists | |||
Non-selective | |||
Norepinephrine | α1 = α2 = β | Septic and refractory | |
Epinephrine | α1 = α2 = β | shock, Cardiopulmonary arrest | |
Hypotension | |||
Selective | |||
Phenylephrine | α1 > α2 >> β | Pupil dilation, Rosacea | |
Oxymetazoline | α1A > α1D = α1B | Nasal decongestion, Rosacea | |
Methoxamine | α1A > α1D > α1B | Septic and refractory shock | |
Cirazoline | α1A > α1D > α1B | HF, Ischemia, cataracts | |
A-61603 | α1A > α1D = α1B | HF, Ischemia, cataracts | |
Dabuzalgron | α1A >> α1D = α1B | HF, Ischemia, cataracts | |
Cmpd-3 1 | α1A >> α1D > α1B | AD, HF, Ischemia, cataracts | |
Antagonists | |||
Non-selective | |||
Prazosin | α1A = α1D = α1B | BPH, Therapy-resistant | COVID-19/SARS, PD, |
Doxazosin | α1A = α1D = α1B | Hypertension, | ALS, PTSD, |
Terazosin | α1A = α1D = α1B | Pheochromocytoma | Hyperinflammation |
Alfuzosin | α1A = α1D = α1B | ||
Selective | |||
BMY7378 | α1D > α1A >> α1B | ||
Tamsulosin | α1A = α1D > α1B | BPH, Pheochromocytoma | |
Silodosin | α1A > α1D >> α1B | BPH | |
5-Methylurapidil | α1A > α1D > α1B | ||
WB4101 | α1A = α1D > α1B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, D.M. α1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4188. https://doi.org/10.3390/ijms24044188
Perez DM. α1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(4):4188. https://doi.org/10.3390/ijms24044188
Chicago/Turabian StylePerez, Dianne M. 2023. "α1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 4: 4188. https://doi.org/10.3390/ijms24044188