Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking of Human and Bovine Lactoferrin-Derived AMPs to the Surface of Lactone Hydrolyzing Enzymes, His6-OPH and PvdQ Acylase
2.2. Catalytic and Physical–Chemical Characteristics of His6-OPH in Combination with Bovine Lactoferrin and Lactoferricin
2.3. Estimation of Antimicrobial Characteristics of Bovine Lactoferrin and Lactoferricin against Different Microorganisms in the Presence and in the Absence of His6-OPH
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Computational Methods
4.3. Hydrolysis of Bovine Lactoferrin to Lactoferricin and Its Purification
4.4. Preparation of the Enzyme and Its Combinations with AMPs with Their Further Characterization
4.5. Determination of Antimicrobial Activity of Bovine Lactoferrin and Lactoferricin with or without His6-OPH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Jamrozik, E.; Heriot, G.S. Ethics and antibiotic resistance. Br. Med. Bull. 2022, 141, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Büyükkiraz, E.M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919. [Google Scholar]
- Zhang, C.; Yang, M. Antimicrobial peptides: From design to clinical application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef]
- Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; et al. Integrated evolutionaryanalysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 2019, 10, 4538. [Google Scholar] [CrossRef]
- Maron, B.; Rolff, J.; Friedman, J.; Hayouka, Z. Antimicrobial peptide combination can hinder resistance evolution. Microbiol. Spectr. 2022, 10, e00973-22. [Google Scholar] [CrossRef]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez Oliván, L.M. Antioxidant and antimicrobial peptides derived from food proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef]
- Bielecka, M.; Cichosz, G.; Czeczot, H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates-A review. Int. Dairy J. 2021, 127, 105208. [Google Scholar] [CrossRef]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Morton, J.D.; Bekhit, A.E.D.A.; Carne, A.; Mason, S.L. Amino acid sequences of lactoferrin from red deer (Cervus elaphus) milk and antimicrobial activity of its derived peptides lactoferricin and lactoferrampin. Foods 2021, 10, 1305. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.B.; Heyden, E.L.; Pretorius, E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front. Immunol. 2020, 11, 1221. [Google Scholar] [CrossRef] [PubMed]
- Gruden, Š.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
- Ianiro, G.; Rosa, L.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G.; Cutone, A. Lactoferrin: From the structure to the functional orchestration of iron homeostasis. BioMetals 2022, 1–26. [Google Scholar] [CrossRef]
- Barakat, A.; Al-Majid, A.M.; Lotfy, G.; Ali, M.; Mostafa, A.; Elshaier, Y.A. Drug repurposing of lactoferrin combination in a nanodrug delivery system to combat severe acute respiratory syndrome coronavirus-2 infection. Dr. Sulaiman Al Habib Med. J. 2021, 3, 104–112. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, D.A.; Arredondo-Beltrán, I.G.; Canizalez-Roman, A.; Flores-Villaseñor, H.; Nazmi, K.; Bolscher, J.G.; León-Sicairos, N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem. Cell Biol. 2021, 99, 149–158. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Payne, R.J.; Carter, D.A. Lactoferrin-derived peptide lactofungin is potently synergistic with amphotericin B. Antimicrob. Agents Chemother. 2020, 64, e00842-20. [Google Scholar] [CrossRef]
- Małaczewska, J.; Kaczorek-Łukowska, E.; Wójcik, R.; Siwicki, A.K. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet. Res. 2019, 15, 318. [Google Scholar] [CrossRef]
- Mahdi, L.; Mahdi, N.; Musafer, H.; Al-Joofy, I.; Essa, R.; Zwain, L.; Salmana, I.; Mater, H.; Al-Alak, S.; Al-Oqaili, R. Treatment strategy by lactoperoxidase and lactoferrin combination: Immunomodulatory and antibacterial activity against multidrug-resistant Acinetobacter baumannii. Microb. Pathog. 2018, 114, 147–152. [Google Scholar] [CrossRef]
- Murata, M.; Wakabayashi, H.; Yamauchi, K.; Abe, F. Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin. J. Dairy Sci. 2013, 96, 4891–4898. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Cole, N.; Dutta, D.; Kumar, N.; Willcox, M.D. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J. Biomed. Mater. Res. Part B Appl. Biomater. J. 2017, 105, 2612–2617. [Google Scholar] [CrossRef]
- Fernandes, K.E.; Carter, D.A. The antifungal activity of lactoferrin and its derived peptides: Mechanisms of action and synergy with drugs against fungal pathogens. Front. Microbiol. 2017, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Sijbrandij, T.; Ligtenberg, A.J.; Nazmi, K.; Veerman, E.C.; Bolscher, J.G.; Bikker, F.J. Effects of lactoferrin derived peptides on simulants of biological warfare agents. World J. Microbiol. Biotechnol 2017, 33, 3. [Google Scholar] [CrossRef] [PubMed]
- Tanhaeian, A.; Nazifi, N.; Ahmadi, S.F.; Akhlaghi, M. Comparative study of antimicrobial activity between some medicine plants and recombinant Lactoferrin peptide against some pathogens of cultivated button mushroom. Arch. Microbiol. 2020, 9, 2525–2532. [Google Scholar] [CrossRef]
- Striednig, B.; Hilbi, H. Bacterial quorum sensing and phenotypic heterogeneity: How the collective shapes the individual. Trends Microbiol. 2022, 30, 379–389. [Google Scholar] [CrossRef]
- Tian, X.; Ding, H.; Ke, W.; Wang, L. Quorum sensing in fungal species. Annu. Rev. Microbiol. 2021, 75, 449–469. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert Rev. Anti-Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Kusada, H.; Zhang, Y.; Tamaki, H.; Kimura, N.; Kamagata, Y. Novel N-acyl homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities. Front. Microbiol. 2019, 10, 455. [Google Scholar] [CrossRef]
- Rezzoagli, C.; Archetti, M.; Mignot, I.; Baumgartner, M.; Kümmerli, R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 2020, 18, e3000805. [Google Scholar] [CrossRef] [PubMed]
- Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. “Universal” antimicrobial combination of bacitracin and His6-OPH with lactonase activity, acting against various bacterial and yeast cells. Int. J. Mol. Sci. 2022, 23, 9400. [Google Scholar] [CrossRef] [PubMed]
- Aslanli, A.; Lyagin, I.; Efremenko, E. Charges’ interaction in polyelectrolyte (nano) complexing of His6-OPH with peptides: Unpredictable results due to imperfect or useless concept? Int. J. Biol. Macromol. 2019, 140, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Aslanli, A.; Lyagin, I.; Stepanov, N.; Presnov, D.; Efremenko, E. Bacterial cellulose containing combinations of antimicrobial peptides with various QQ enzymes as a prototype of an “enhanced antibacterial” dressing: In silico and in vitro data. Pharmaceutics 2020, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.; Lyagin, I.; Votchitseva, Y.; Sirotkina, M.; Varfolomeyev, S. Polyhistidine-containing organophosphorus hydrolase with outstanding properties. Biocatal. Biotransformation 2007, 25, 103–108. [Google Scholar] [CrossRef]
- Andersen, J.H.; Osbakk, S.A.; Vorland, L.H.; Traavik, T.; Gutteberg, T.J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antivir. Res. 2001, 51, 141–149. [Google Scholar] [CrossRef]
- Huertas Mendez, N.D.J.; Vargas Casanova, Y.; Gomez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; Garcia Castaneda, J.E. Synthetic peptides derived from bovine lactoferricin exhibit antimicrobial activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017, 22, 452. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Klyachko, N.L.; Bronich, T.; Zavyalova, N.V.; Jiang, Y.; Kabanov, A.V. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J. Control Release 2017, 247, 175–181. [Google Scholar] [CrossRef]
- Lyagin, I.; Stepanov, N.; Maslova, O.; Senko, O.; Aslanli, A.; Efremenko, E. Not a mistake but a feature: Promiscuous activity of enzymes meeting mycotoxins. Catalysts 2022, 12, 1095. [Google Scholar] [CrossRef]
- Lyagin, I.V.; Efremenko, E.N. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates. Biochimie 2018, 144, 115–121. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021, 9, 1940. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Ugarova, N.N.; Lomakina, G.Y.; Senko, O.V.; Stepanov, N.A.; Maslova, O.V.; Aslanly, A.G.; Lyagin, I.V. Bioluminescent ATP-Metry: Practical Aspects; Scientific Library: Moscow, Russia, 2022; 376p, ISBN 978-5-907497-77-1. [Google Scholar] [CrossRef]
- Jorge, P.; Alves, D.; Pereira, M.O. Catalysing the way towards antimicrobial effectiveness: A systematic analysis and a new online resource for antimicrobial–enzyme combinations against Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Antimicrob. Agents 2019, 53, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Laulund, A.S.; Schwartz, F.A.; Christophersen, L.; Høiby, N.; Svendsen, J.S.M.; Stensen, W.; Thomsen, K.; Cavanagh, J.P.; Moser, C. Lactoferricin-inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds. J. Glob. Antimicrob. Resist. 2022, 29, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Intorasoot, S.; Intorasoot, A.; Tawteamwong, A.; Butr-Indr, B.; Phunpae, P.; Tharinjaroen, C.S.; Wattananandkul, U.; Sangboonruang, S.; Khantipongse, J. In vitro antimycobacterial activity of human lactoferrin-derived peptide, d-hlf 1-11, against susceptible and drug-resistant Mycobacterium tuberculosis and its synergistic effect with rifampicin. Antibiotics 2022, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Sánchez, L.A.; Kong, W.; Lu, T.; Miller, M.J. Efficacy of nisin derivatives with improved biochemical characteristics, alone and in combination with endolysin PlyP100 to control Listeria monocytogenes in laboratory-scale Queso Fresco. Food Microbiol. 2021, 94, 103668. [Google Scholar] [CrossRef]
- Blumenthal, I.; Davis, L.R.; Berman, C.M.; Griswold, K.E. Nonclassical antagonism between human lysozyme and AMPs against Pseudomonas aeruginosa. FEBS Open Bio. 2021, 11, 705–713. [Google Scholar] [CrossRef]
- Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016, 21, 752. [Google Scholar] [CrossRef]
- Djokic, L.; Stankovic, N.; Galic, I.; Moric, I.; Radakovic, N.; Šegan, S.; Pavic, A.; Senerovic, L. Novel quorum quenching YtnP lactonase from Bacillus paralicheniformis reduces Pseudomonas aeruginosa virulence and increases antibiotic efficacy in vivo. Front. Microbiol. 2022, 13, 1812. [Google Scholar] [CrossRef]
- Aslanli, A.; Lyagin, I.; Efremenko, E. Novel approach to Quorum Quenching: Rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase. Biol. Chem. 2018, 399, 869–879. [Google Scholar] [CrossRef]
- Vega-Bautista, A.; de la Garza, M.; Carrero, J.C.; Campos-Rodríguez, R.; Godínez-Victoria, M.; Drago-Serrano, M.E. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int. J. Mol. Sci. 2019, 20, 4707. [Google Scholar] [CrossRef]
- Chen, P.W.; Jheng, T.T.; Shyu, C.L.; Mao, F.C. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens. J. Dairy Sci. 2013, 96, 1438–1446. [Google Scholar] [CrossRef]
- Wu, H.; Gao, Y.; Li, S.; Bao, X.; Wang, J.; Zheng, N. Lactoferrin alleviated AFM1-induced apoptosis in intestinal NCM 460 cells through the autophagy pathway. Foods 2021, 11, 23. [Google Scholar] [CrossRef]
- Zheng, N.; Zhang, H.; Li, S.; Wang, J.; Liu, J.; Ren, H.; Gao, Y. Lactoferrin inhibits aflatoxin B1-and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 2018, 150, 77–85. [Google Scholar] [CrossRef]
- Lyagin, I.; Efremenko, E. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 2019, 24, e2362. [Google Scholar] [CrossRef] [PubMed]
- Lyagin, I.; Maslova, O.; Stepanov, N.; Efremenko, E. Degradation of mycotoxins in mixtures by combined proteinous nanobiocatalysts: In silico, in vitro and in vivo. Int. J. Biol. Macromol. 2022, 218, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Errante, F.; Ledwoń, P.; Latajka, R.; Rovero, P.; Papini, A.M. Cosmeceutical peptides in the framework of sustainable wellness economy. Front. Chem. 2020, 8, 572923. [Google Scholar] [CrossRef] [PubMed]
- Pryshchepa, O.; Pomastowski, P.; Rafińska, K.; Gołębiowski, A.; Rogowska, A.; Monedeiro-Milanowski, M.; Sagandykova, G.; Michalke, B.; Schmitt-Kopplin, P.; Gloc, M.; et al. Synthesis, physicochemical characterization, and antibacterial performance of silver—Lactoferrin complexes. Int. J. Mol. Sci. 2022, 23, 7112. [Google Scholar] [CrossRef]
- Manzoni, P.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M.G.; Messner, H.; Stolfi, I.; Decembrino, L.; Laforgia, N.; Vagnarelli, F.; et al. Italian task force for the study and prevention of neonatal fungal infections, italian society of neonatology. bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: A randomized trial. JAMA 2009, 302, 1421–1428. [Google Scholar] [CrossRef]
- Aguirre-Guataqui, K.; Márquez-Torres, M.; Pineda-Castañeda, H.M.; Vargas-Casanova, Y.; Ceballos-Garzon, A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E.; Parra-Giraldo, C.M. Chimeric peptides derived from bovine lactoferricin and buforin II: Antifungal activity against reference strains and clinical isolates of Candida spp. Antibiotics 2022, 11, 1561. [Google Scholar] [CrossRef]
- Obozina, A.S.; Komedchikova, E.N.; Kolesnikova, O.A.; Iureva, A.M.; Kovalenko, V.L.; Zavalko, F.A.; Rozhnikova, T.V.; Tereshina, E.D.; Mochalova, E.N.; Shipunova, V.O. Genetically encoded self-assembling protein nanoparticles for the targeted delivery in vitro and in vivo. Pharmaceutics 2023, 15, 231. [Google Scholar] [CrossRef]
- Bruno, F.; Malvaso, A.; Canterini, S.; Bruni, A.C. Antimicrobial peptides (AMPs) in the pathogenesis of Alzheimer’s disease: Implications for diagnosis and treatment. Antibiotics 2022, 11, 726. [Google Scholar] [CrossRef]
- Aslanli, A.; Lyagin, I.; Efremenko, E. Decarboxylases as hypothetical targets for actions of organophosphates: Molecular modeling for prediction of hidden and unexpected health threats. Food Chem. Toxicol. 2022, 161, 112856. [Google Scholar] [CrossRef] [PubMed]
- Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007, 35, W522–W525. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and Auto-DockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Tomita, M.; Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 1991, 74, 4137–4142. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.; Li-Chan, E.C. Production of lactoferricin and other cationic peptides from food grade bovine lactoferrin with various iron saturation levels. J. Agric. Food Chem. 2007, 55, 493–501. [Google Scholar] [CrossRef]
- Gattiker, A.; Bienvenut, W.V.; Bairoch, A.; Gasteiger, E. FindPept, a tool to identify unmatched masses in peptide mass fingerprinting protein identification. Proteomics 2002, 2, 1435–1444. [Google Scholar] [CrossRef]
- Efremenko, E.; Votchitseva, Y.; Plieva, F.; Galaev, I.; Mattiasson, B. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography. Appl. Microbiol. Biotechnol. 2006, 70, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Veselov, M.M.; Uporov, I.V.; Efremova, M.V.; Le-Deygen, I.M.; Prusov, A.N.; Shchetinin, I.V.; Savchenko, A.G.; Golovin, Y.I.; Kabanov, A.V.; Klyachko, N.L. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS Omega 2022, 7, 20644–20655. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct. Funct. Genet. 2005, 61, 704–721. [Google Scholar] [CrossRef]
- Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 2001, 98, 10037–10041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AMPs [Reference] | Amino Acid Sequence of AMPs | Target of Action [MIC *, µg/mL] |
---|---|---|
Human Lfcin (1–11;17–41) [22,23,24,25] | GRRRSVQWCAVTKCFQWQRNMRKVRGPPVSCIKRDS | G(+) bacteria G(−) bacteria [>200] |
Bovine Lfcin (17–41); β-sheets [22,23,24,25] | FKCRRWQWRMKKLGAPSITCVRRAF | G(+) bacteria [0.3–500] G(−) bacteria [1.6–>1000] Yeasts [0.31–400] |
Human Lfampin (268–284) [24,25,26] | WNLLRQAQEKFGKDKSP | G(+) bacteria [4.3–20] ** G(−) bacteria [5.8–25] ** Candida albicans [0.7–2.1] ** |
Bovine Lfampin (268–284) [24,25,26] | WKLLSKAQEKFGKNKSR | |
Human Lf(1–11) [24,25] | GRRRSVQWCAV | G(+) bacteria [1.6–6.3] G(−) bacteria [6.3–12.5] Candida sp. [>12.5] |
Bovine Lf(1–11) [17,18] | APRKNVRWCTI |
AMP | Enzyme | pH | Area, % | Affinity, (kJ × mol−1) | |||
---|---|---|---|---|---|---|---|
Near Active Sites | Total | Mean | Median | Range | |||
Lfcin H * (linear) | His6-OPH | 7.5 | 0.1 | 10.3 | −10.9 | −11.1 ± 0.6 | −10.4 (−11.4) |
10.5 | 0.1 | 21.8 | −13.0 | −13.7 ± 1.1 | −12.2 (−13.7) | ||
PvdQ acylase | 7.5 | 0.7 | 13.0 | −19.9 | −19.9 ± 0.2 | −19.7 (−20.1) | |
Lfcin H (cyclic) | His6-OPH | 7.5 | 0.3 | 12.3 | −15.2 | −15.1 ± 0.7 | −14.6 (−15.9) |
10.5 | 0 | 14.1 | −13.8 | −13.8 ± 0.6 | −13.4 (−14.2) | ||
PvdQ acylase | 7.5 | 0.7 | 13.8 | −24.2 | −24.3 ± 0.3 | −23.8 (−24.4) | |
Lfcin B * (linear) | His6-OPH | 7.5 | 0.1 | 16.1 | −22.5 | −22.2 ± 1.1 | −21.4 (−23.3) |
10.5 | 0.3 | 18.2 | −21.0 | −20.9 ± 1.1 | −19.8 (−22.1) | ||
PvdQ acylase | 7.5 | 0.6 | 14.7 | −24.5 | −24.3 ± 0.9 | −23.8 (−25.0) | |
Lfcin B (cyclic) | His6-OPH | 7.5 | 0.2 | 18.3 | −27.6 | −26.8 ± 2.1 | −25.6 (−30.0) |
10.5 | 0.2 | 19.7 | −26.1 | −27.6 ± 2.1 | −24.7 (−27.6) | ||
PvdQ acylase | 7.5 | 0.7 | 10.5 | −31.5 | −31.4 ± 0.4 | −31.4 (−31.8) | |
Lfampin H | His6-OPH | 7.5 | 0.1 | 13.3 | −22.6 | −22.4 ± 0.8 | −21.9 (−23.3) |
10.5 | 0.1 | 14.9 | −24.6 | −24.7 ± 0.9 | −24.0 (−24.7) | ||
PvdQ acylase | 7.5 | 0.7 | 12.6 | −30.4 | −30.1 ± 0.5 | −30.1 (−30.9) | |
Lfampin B | His6-OPH | 7.5 | 0.2 | 17.9 | −18.9 | −18.6 ± 1.0 | −18.1 (−19.6) |
10.5 | 0.1 | 19.5 | −19.8 | −19.5 ± 0.9 | −18.9 (−20.8) | ||
PvdQ acylase | 7.5 | 0.7 | 11.7 | −27.5 | −27.6 ± 0.5 | −27.2 (−28.0) | |
Lf(1-11) H | His6-OPH | 7.5 | 0.2 | 10.6 | −25.8 | −25.7 ± 0.8 | −25.1 (−26.4) |
10.5 | 0.4 | 12.6 | −27.5 | −27.4 ± 1.1 | −26.8 (−28.0) | ||
PvdQ acylase | 7.5 | 0.7 | 8.3 | −25.5 | −24.9 ± 1,4 | −24.4 (−26.6) | |
Lf(1-11) B | His6-OPH | 7.5 | 0.3 | 17.1 | −27.8 | −27.4 ± 1.0 | −26.9 (−28.9) |
10.5 | 0.1 | 12.9 | −25.3 | −25.1 ± 1.0 | −24.7 (−25.5) | ||
PvdQ acylase | 7.5 | 0.7 | 9.6 | −27.1 | −27.2 ± 0.6 | −26.8 (−27.2) |
Enzyme or Complex | Km (μM) | Vmax × E0−1 (s−1) | Vmax ·× E0−1 × Km −1 (103 s−1·M−1) |
---|---|---|---|
Substrate—Paraoxon | |||
His6-OPH | 10.5 ± 2 | 5040 ± 140 | (480 ± 105) × 103 |
His6-OPH/Lactoferrin | 6 ± 1 | 3270 ± 190 | (545 ± 123) × 103 |
His6-OPH/Lfcin | 9 ± 1 | 5590 ± 120 | (621 ± 82) × 103 |
Substrate—N-(-3-oxo-dodecanoyl)-homoserine lactone | |||
His6-OPH | 101 ± 7 | 1.8 ± 0.05 | 17.8 ± 1.7 |
His6-OPH/Lactoferrin | 68 ± 4 | 1.2 ± 0.02 | 17.6 ± 1.3 |
His6-OPH/Lfcin | 82 ± 6 | 2.9 ± 0.04 | 35.4 ± 3.1 |
Substrate—Zearalenon | |||
His6-OPH | 3400 ± 97 | 0.15 ± 0.01 | 0.044 ± 0.004 |
His6-OPH/Lactoferrin | 2000 ± 67 | 0.12 ± 0.01 | 0.058 ± 0.007 |
His6-OPH/Lfcin | 2500 ± 82 | 0.16 ± 0.02 | 0.065 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes. Int. J. Mol. Sci. 2023, 24, 3566. https://doi.org/10.3390/ijms24043566
Aslanli A, Domnin M, Stepanov N, Efremenko E. Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes. International Journal of Molecular Sciences. 2023; 24(4):3566. https://doi.org/10.3390/ijms24043566
Chicago/Turabian StyleAslanli, Aysel, Maksim Domnin, Nikolay Stepanov, and Elena Efremenko. 2023. "Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes" International Journal of Molecular Sciences 24, no. 4: 3566. https://doi.org/10.3390/ijms24043566