Zheng, Q.; Jiang, Z.; Ni, X.; Yang, S.; Jiao, P.; Wu, J.; Xiong, L.; Yuan, J.; Wang, J.; Jian, J.;
et al. Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 2746.
https://doi.org/10.3390/ijms24032746
AMA Style
Zheng Q, Jiang Z, Ni X, Yang S, Jiao P, Wu J, Xiong L, Yuan J, Wang J, Jian J,
et al. Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. International Journal of Molecular Sciences. 2023; 24(3):2746.
https://doi.org/10.3390/ijms24032746
Chicago/Turabian Style
Zheng, Qingyuan, Zhengyu Jiang, Xinmiao Ni, Song Yang, Panpan Jiao, Jiejun Wu, Lin Xiong, Jingping Yuan, Jingsong Wang, Jun Jian,
and et al. 2023. "Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer" International Journal of Molecular Sciences 24, no. 3: 2746.
https://doi.org/10.3390/ijms24032746
APA Style
Zheng, Q., Jiang, Z., Ni, X., Yang, S., Jiao, P., Wu, J., Xiong, L., Yuan, J., Wang, J., Jian, J., Wang, L., Yang, R., Chen, Z., & Liu, X.
(2023). Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. International Journal of Molecular Sciences, 24(3), 2746.
https://doi.org/10.3390/ijms24032746