Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial?
Abstract
:1. Introduction
2. Results
2.1. Factors of Influence on Neurite Outgrowth in Explant Cultures
2.2. Effects of Neurotrophins on Neurite Outgrowth
2.2.1. Number of Neurite Endings
2.2.2. Median Neurite Length
2.3. Effects of Electrical Stimulation on Neurite Outgrowth
2.3.1. Number of Neurite Endings
2.3.2. Median Neurite Length
2.3.3. Outgrowth Direction
2.4. Quantification of Neurotrophic Receptors
2.4.1. TrkB
2.4.2. TrkC
2.4.3. P75NTR
2.5. Explant Morphology
2.6. Results Summary
3. Discussion
3.1. The Organotypic Explant Culture System
3.2. Effects of Neurotrophins
3.3. Effects of Electrical Stimulation
4. Material and Methods
4.1. Organotypic Explant Cultures
4.2. Electrical Stimulation
4.3. Immunostainings and Histology
4.4. Image Acquisition, Processing, and Evaluation
4.5. Statistical Evaluation
5. Conclusions and Implications for Cochlear Implantation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, L.M.; Kamenov, K.; Briant, P.S.; Orji, A.U.; Steinmetz, J.D.; Abdoli, A.; Abdollahi, M.; Abu-Gharbieh, E.; Afshin, A.; Ahmed, H.; et al. Hearing Loss Prevalence and Years Lived with Disability, 1990-2019: Findings from the Global Burden of Disease Study 2019. Lancet 2021, 397, 996–1009. [Google Scholar] [CrossRef]
- Shukla, A.; Harper, M.; Pedersen, E.; Goman, A.; Suen, J.J.; Price, C.; Applebaum, J.; Hoyer, M.; Lin, F.R.; Reed, N.S. Hearing Loss, Loneliness, and Social Isolation: A Systematic Review. Otolaryngol. Head Neck Surg. 2020, 162, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.R. Hearing Loss and Cognition among Older Adults in the United States. J. Gerontol. Ser. A 2011, 66, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Gstoettner, W.; Franz, P.; Hamzavi, J.; Plenk, H.; Baumgartner, W.; Czerny, C. Intracochlear Position of Cochlear Implant Electrodes. Acta Otolaryngol. 1999, 119, 229–233. [Google Scholar] [CrossRef]
- Hahnewald, S.; Tscherter, A.; Marconi, E.; Streit, J.; Widmer, H.R.; Garnham, C.; Benav, H.; Mueller, M.; Löwenheim, H.; Roccio, M.; et al. Response Profiles of Murine Spiral Ganglion Neurons on Multi-Electrode Arrays. J. Neural. Eng. 2015, 13, 016011. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, R.K.; Hatsushika, S.; Clark, G.M. Electrical Stimulation of the Auditory Nerve: The Effect of Electrode Position on Neural Excitation. Hear Res. 1993, 66, 108–120. [Google Scholar] [CrossRef]
- O’Leary, S.J.; Richardson, R.R.; McDermott, H.J. Principles of Design and Biological Approaches for Improving the Selectivity of Cochlear Implant Electrodes. J. Neural. Eng. 2009, 6, 055002. [Google Scholar] [CrossRef] [PubMed]
- Hartnick, C.J.; Staecker, H.; Malgrange, B.; Lefebvre, P.P.; Liu, W.; Moonen, G.; van de Water, T.R. Neurotrophic Effects of BDNF and CNTF, Alone and in Combination, on Postnatal Day 5 Rat Acoustic Ganglion Neurons. J. Neurobiol. 1996, 30, 246–254. [Google Scholar] [CrossRef]
- Malgrange, B.; Lefebvre, P.; van de Water, T.R.; Staecker, H.; Moonen, G. Effects of Neurotrophins on Early Auditory Neurones in Cell Culture. Neuroreport 1996, 7, 913–917. [Google Scholar] [CrossRef]
- Rousset, F.; Schmidbauer, D.; Fink, S.; Adel, Y.; Obexer, B.; Müller, M.; Glueckert, R.; Löwenheim, H.; Senn, P. Phoenix Auditory Neurons as 3R Cell Model for High Throughput Screening of Neurogenic Compounds. Hear Res. 2022, 414, 108391. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Schulze, J.; Warwas, D.P.; Ehlert, N.; Lenarz, T.; Warnecke, A.; Behrens, P. Long-Term Delivery of Brain-Derived Neurotrophic Factor (BDNF) from Nanoporous Silica Nanoparticles Improves the Survival of Spiral Ganglion Neurons in Vitro. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwieger, J.; Warnecke, A.; Lenarz, T.; Esser, K.H.; Scheper, V.; Forsythe, J. Neuronal Survival, Morphology and Outgrowth of Spiral Ganglion Neurons Using a Defined Growth Factor Combination. PLoS ONE 2015, 10, e0133680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szobota, S.; Mathur, P.D.; Siegel, S.; Black, K.A.; Saragovi, H.U.; Foster, A.C.; Uri Saragovi, H.; Foster, A.C. BDNF, NT-3 and Trk Receptor Agonist Monoclonal Antibodies Promote Neuron Survival, Neurite Extension, and Synapse Restoration in Rat Cochlea Ex Vivo Models Relevant for Hidden Hearing Loss. PLoS ONE 2019, 14, e0224022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wefstaedt, P.; Scheper, V.; Lenarz, T.; Stöver, T. Brain-Derived Neurotrophic Factor/Glial Cell Line-Derived Neurotrophic Factor Survival Effects on Auditory Neurons Are Not Limited by Dexamethasone. Neuroreport 2005, 16, 2011–2014. [Google Scholar] [CrossRef]
- Evans, A.J.; Thompson, B.C.; Wallace, G.G.; Millard, R.; O’Leary, S.J.; Clark, G.M.; Shepherd, R.K.; Richardson, R.T. Promoting Neurite Outgrowth from Spiral Ganglion Neuron Explants Using Polypyrrole/BDNF-Coated Electrodes. J. Biomed. Mater. Res. A 2009, 91A, 241–250. [Google Scholar] [CrossRef]
- Frick, C.; Fink, S.; Schmidbauer, D.; Rousset, F.; Eickhoff, H.; Tropitzsch, A.; Kramer, B.; Senn, P.; Glueckert, R.; Rask-Andersen, H.; et al. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sci. 2020, 10, 580. [Google Scholar] [CrossRef]
- Kondo, K.; Pak, K.; Chavez, E.; Mullen, L.; Euteneuer, S.; Ryan, A.F. Changes in Responsiveness of Rat Spiral Ganglion Neurons to Neurotrophins across Age: Differential Regulation of Survival and Neuritogenesis. Int. J. Neurosci. 2013, 123, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Mou, K.; Hunsberger, C.L.; Cleary, J.M.; Davis, R.L. Synergistic Effects of BDNF and NT-3 on Postnatal Spiral Ganglion Neurons. J. Comp. Neurol. 1997, 386, 529–539. [Google Scholar] [CrossRef]
- Richardson, R.T.; Thompson, B.; Moulton, S.; Newbold, C.; Lum, M.G.; Cameron, A.; Wallace, G.; Kapsa, R.; Clark, G.; O’Leary, S. The Effect of Polypyrrole with Incorporated Neurotrophin-3 on the Promotion of Neurite Outgrowth from Auditory Neurons. Biomaterials 2007, 28, 513–523. [Google Scholar] [CrossRef]
- Sun, G.; Liu, W.; Fan, Z.; Zhang, D.; Han, Y.; Xu, L.; Qi, J.; Zhang, S.; Gao, B.T.; Bai, X.; et al. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro. Neural. Plast. 2016, 2016, 4280407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueckert, R.; Bitsche, M.; Miller, J.M.; Zhu, Y.; Prieskorn, D.M.; Altschuler, R.A.; Schrott-Fischer, A. Deafferentiation-Associated Changes in Afferent and Efferent Processes in the Guinea Pig Cochlea and Afferent Regeneration with Chronic Intrascalar Brain-Derived Neurotrophic Factor and Acidic Fibroblast Growth Factor. J. Comp. Neurol. 2008, 507, 1602–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenith, S.; Versnel, H.; Agterberg, M.J.H.; de Groot, J.C.M.J.; Sedee, R.-J.; Grolman, W.; Klis, S.F.L. Spiral Ganglion Cell Survival after Round Window Membrane Application of Brain-Derived Neurotrophic Factor Using Gelfoam as Carrier. Hear Res. 2011, 272, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Havenith, S.; Versnel, H.; Klis, S.F.L.; Grolman, W. Local Delivery of Brain-Derived Neurotrophic Factor on the Perforated Round Window Membrane in Guinea Pigs. Otol. & Neurotol. 2015, 36, 705–713. [Google Scholar] [CrossRef]
- Landry, T.G.; Wise, A.K.; Fallon, J.B.; Shepherd, R.K. Spiral Ganglion Neuron Survival and Function in the Deafened Cochlea Following Chronic Neurotrophic Treatment. Hear Res. 2011, 282, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Landry, T.G.; Fallon, J.B.; Wise, A.K.; Shepherd, R.K. Chronic Neurotrophin Delivery Promotes Ectopic Neurite Growth from the Spiral Ganglion of Deafened Cochleae without Compromising the Spatial Selectivity of Cochlear Implants. J. Comp. Neurol. 2013, 521, 2818–2832. [Google Scholar] [CrossRef] [Green Version]
- Leake, P.A.; Rebscher, S.J.; Dore‘, C.; Akil, O. AAV-Mediated Neurotrophin Gene Therapy Promotes Improved Survival of Cochlear Spiral Ganglion Neurons in Neonatally Deafened Cats: Comparison of AAV2-HBDNF and AAV5-HGDNF. J. Assoc. Res. Otolaryngol. 2019, 20, 341–361. [Google Scholar] [CrossRef]
- Leake, P.A.; Hradek, G.T.; Hetherington, A.M.; Stakhovskaya, O. Brain-Derived Neurotrophic Factor Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats. J. Comp. Neurol. 2011, 519, 1526–1545. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, S.L.; Shepherd, R.K. Exogenous BDNF Rescues Rat Spiral Ganglion Neurons In Vivo. Otol. & Neurotol. 2005, 26, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Chi, D.H.; O’Keeffe, L.J.; Kruszka, P.; Raphael, Y.; Altschuler, R.A. Neurotrophins Can Enhance Spiral Ganglion Cell Survival after Inner Hair Cell Loss. Int. J. Dev. Neurosci. 1997, 15, 631–643. [Google Scholar] [CrossRef]
- Rejali, D.; Lee, V.A.; Abrashkin, K.A.; Humayun, N.; Swiderski, D.L.; Raphael, Y. Cochlear Implants and Ex Vivo BDNF Gene Therapy Protect Spiral Ganglion Neurons. Hear Res. 2007, 228, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staecker, H.; Kopke, R.; Malgrange, B.; Lefebvre, P.; van de Water, T.R. NT-3 and/or BDNF Therapy Prevents Loss of Auditory Neurons Following Loss of Hair Cells. Neuroreport 1996, 7, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Vink, H.A.; van Dorp, W.C.; Thomeer, H.G.X.M.; Versnel, H.; Ramekers, D. Bdnf Outperforms Trkb Agonist 7,8,3′-Thf in Preserving the Auditory Nerve in Deafened Guinea Pigs. Brain Sci. 2020, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Vink, H.A.; Versnel, H.; Kroon, S.; Klis, S.F.L.; Ramekers, D. BDNF-Mediated Preservation of Spiral Ganglion Cell Pe-ripheral Processes and Axons in Comparison to That of Their Cell Bodies. Hear Res. 2021, 400, 108114. [Google Scholar] [CrossRef] [PubMed]
- Vink, H.A.; Ramekers, D.; Thomeer, H.G.X.M.; Versnel, H. Combined Brain-Derived Neurotrophic Factor and Neu-rotrophin-3 Treatment Is Preferred over Either One Separately in the Preservation of the Auditory Nerve in Deafened Guinea Pigs. Front Mol. Neurosci. 2022, 15, 504. [Google Scholar] [CrossRef]
- Wise, A.K.; Richardson, R.; Hardman, J.; Clark, G.; O’Leary, S. Resprouting and Survival of Guinea Pig Cochlear Neurons in Response to the Administration of the Neurotrophins Brain-Derived Neurotrophic Factor and Neurotrophin-3. J. Comp. Neurol. 2005, 487, 147–165. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-Regulated Signalling Pathways. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- Teng, K.K.; Felice, S.; Kim, T.; Hempstead, B.L. Understanding Proneurotrophin Actions: Recent Advances and Challenges. Dev. Neurobiol. 2010, 70, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Ernfors, P.; van de Water, T.; Loring, J.; Jaenisch, R. Complementary Roles of BDNF and NT-3 in Vestibular and Auditory Development. Neuron 1995, 14, 1153–1164. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, B.; Silos-Santiago, I.; Smeyne, R.; Fagan, A.; Barbacid, M. Reduction and Loss of Inner Ear Innervation in TrkB and TrkC Receptor Knockout Mice: A Whole Mount DiI and Scanning Electron Microscopic Analysis. Audit Neurosci. 1995, 1, 401–417. [Google Scholar]
- Davis, R.L. Gradients of Neurotrophins, Ion Channels, and Tuning in the Cochlea. Neurosci. 2003, 9, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Green, S.H.; Bailey, E.; Wang, Q.; Davis, R.L. The Trk A, B, C’s of Neurotrophins in the Cochlea. Anatomical. Record 2012, 295, 1877–1895. [Google Scholar] [CrossRef] [PubMed]
- Hartshorn, D.O.; Miller, J.M.; Altschuler, R.A. Protective Effect of Electrical Stimulation in the Deafened Guinea Pig Cochlea. Otolaryngol. Head Neck Surg. 1991, 104, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, S.; Stöver, T.; Kawamoto, K.; Prieskorn, D.M.; Altschuler, R.A.; Miller, J.M.; Raphael, Y. Glial Cell Line-Derived Neurotrophic Factor and Chronic Electrical Stimulation Prevent VIII Cranial Nerve Degeneration Following Denervation. J. Comp. Neurol. 2002, 454, 350–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leake, P.A.; Hradek, G.T.; Snyder, R.L. Chronic Electrical Stimulation by a Cochlear Implant Promotes Survival of Spiral Ganglion Neurons after Neonatal Deafness. J. Comp. Neurol. 1999, 412, 543–562. [Google Scholar] [CrossRef]
- Leake, P.A.; Stakhovskaya, O.; Hetherington, A.; Rebscher, S.J.; Bonham, B. Effects of Brain-Derived Neurotrophic Factor (BDNF) and Electrical Stimulation on Survival and Function of Cochlear Spiral Ganglion Neurons in Deafened, Developing Cats. JARO J. Assoc. Res. Otolaryngol. 2013, 14, 187–211. [Google Scholar] [CrossRef] [Green Version]
- Leake, P.A.; Hradek, G.T.; Vollmer, M.; Rebscher, S.J. Neurotrophic Effects of GM1 Ganglioside and Electrical Stimulation on Cochlear Spiral Ganglion Neurons in Cats Deafened as Neonates. J. Comp. Neurol. 2007, 501, 837–853. [Google Scholar] [CrossRef] [Green Version]
- Lousteau, R.J. Increased Spiral Ganglion Cell Survival in Electrically Stimulated, Deafened Guinea Pig Cochleae. Laryngoscope 1987, 97, 836–842. [Google Scholar] [CrossRef]
- Mitchell, A.; Miller, J.M.; Finger, P.A.; Heller, J.W.; Raphael, Y.; Altschuler, R.A. Effects of Chronic High-Rate Electrical Stimulation on the Cochlea and Eighth Nerve in the Deafened Guinea Pig. Hear Res. 1997, 105, 30–43. [Google Scholar] [CrossRef]
- Scheper, V.; Seidel-Effenberg, I.; Lenarz, T.; Stöver, T.; Paasche, G. Consecutive Treatment with Brain-Derived Neurotrophic Factor and Electrical Stimulation Has a Protective Effect on Primary Auditory Neurons. Brain Sci. 2020, 10, 559. [Google Scholar] [CrossRef]
- Agterberg, M.J.H.; Versnel, H.; de Groot, J.C.M.J.; van den Broek, M.; Klis, S.F.L. Chronic Electrical Stimulation Does Not Prevent Spiral Ganglion Cell Degeneration in Deafened Guinea Pigs. Hear Res. 2010, 269, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Kawano, A.; Seldon, H.L.; Shepherd, R.K.; Funasaka, S.; Clark, G.M. Effects of Chronic Electrical Stimulation on Spiral Ganglion Neuron Survival and Size in Deafened Kittens. Laryngoscope 1998, 108, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.; Limb, C.J.; Ryugo, D.K. The Effect of Cochlear-Implant-Mediated Electrical Stimulation on Spiral Ganglion Cells in Congenitally Deaf White Cats. J. Assoc. Res. Otolaryngol. 2010, 11, 587–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coco, A.; Epp, S.B.; Fallon, J.B.; Xu, J.; Millard, R.E.; Shepherd, R.K. Does Cochlear Implantation and Electrical Stimulation Affect Residual Hair Cells and Spiral Ganglion Neurons? Hear Res. 2007, 225, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Parkins, C.W.; Webster, D.B. Does Electrical Stimulation of Deaf Cochleae Prevent Spiral Ganglion Degeneration. Hear Res. 1999, 133, 27–39. [Google Scholar] [CrossRef]
- Shepherd, R.K.; Matsushima, J.; Martin, R.L.; Clark, G.M. Cochlear Pathology Following Chronic Electrical Stimulation of the Auditory Nerve: II Deafened Kittens. Hear Res. 1994, 81, 150–166. [Google Scholar] [CrossRef]
- Peter, M.N.; Warnecke, A.; Reich, U.; Olze, H.; Szczepek, A.J.; Lenarz, T.; Paasche, G. Influence of In Vitro Electrical Stimulation on Survival of Spiral Ganglion Neurons. Neurotox Res. 2019, 36, 204–216. [Google Scholar] [CrossRef]
- Shen, N.; Liang, Q.; Liu, Y.; Lai, B.; Li, W.; Wang, Z.; Li, S. Charge-Balanced Biphasic Electrical Stimulation Inhibits Neurite Extension of Spiral Ganglion Neurons. Neurosci. Lett. 2016, 624, 92–99. [Google Scholar] [CrossRef]
- Liang, Q.; Shen, N.; Lai, B.; Xu, C.; Sun, Z.; Wang, Z.; Li, S. Electrical Stimulation Degenerated Cochlear Synapses Through Oxidative Stress in Neonatal Cochlear Explants. Front Neurosci. 2019, 13, 1073. [Google Scholar] [CrossRef] [Green Version]
- Reich, U.; Warnecke, A.; Szczepek, A.J.; Mazurek, B.; Olze, H. Establishment of an Experimental System to Study the Influence of Electrical Field on Cochlear Structures. Neurosci. Lett. 2015, 599, 38–42. [Google Scholar] [CrossRef]
- Sendin, G.; Bourien, J.; Rassendren, F.; Puel, J.L.; Nouvian, R. Spatiotemporal Pattern of Action Potential Firing in Developing Inner Hair Cells of the Mouse Cochlea. Proc. Natl. Acad. Sci. USA 2014, 111, 1999–2004. [Google Scholar] [CrossRef]
- Gähwiler, B.H. Organotypic Cultures of Neural Tissue. Trends Neurosci. 1988, 11, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.J.; Minner, S.A.; Zander, K.; Clark, J.J.; Kane, C.J.; Green, S.H.; Hansen, M.R. P75 NTR Expression and Nuclear Localization of P75 NTR Intracellular Domain in Spiral Ganglion Schwann Cells Following Deafness Correlate with Cell Proliferation. Mol. Cell. Neurosci. 2011, 47, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonoska, R.; Stenberg, A.; Masironi, B.; Sahlin, L.; Hultcrantz, M. Estrogen Receptors in the Inner Ear during Dif-ferent Stages of Pregnancy and Development in the Rat. Acta Otolaryngol. 2009, 129, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.B.; Ye, K. Sex Differences in Brain-Derived Neurotrophic Factor Signaling and Functions. J. Neurosci. Res. 2017, 95, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.B.; Schmitz, H.M.; Santi, P.A. TSLIM Imaging and a Morphometric Analysis of the Mouse Spiral Ganglion. Hear Res. 2011, 278, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Parra-Vargas, M.; Ramon-Krauel, M.; Lerin, C.; Jimenez-Chillaron, J.C. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab. 2020, 32, 334–340. [Google Scholar] [CrossRef]
- Lam, P.; Gunewardene, N.; Ma, Y.; Caruso, F.; Nguyen, T.; Flynn, B.; Wise, A.K.; Richardson, R.T. A Radiolabeled Drug Tracing Method to Study Neurotrophin-3 Retention and Distribution in the Cochlea after Nano-Based Local Delivery. MethodsX 2020, 7, 101078. [Google Scholar] [CrossRef]
- Richardson, R.T.; Wise, A.; O’Leary, S.; Hardman, J.; Casley, D.; Clark, G. Tracing Neurotrophin-3 Diffusion and Uptake in the Guinea Pig Cochlea. Hear Res. 2004, 198, 25–35. [Google Scholar] [CrossRef]
- Bailey, E.M.; Green, S.H. Postnatal Expression of Neurotrophic Factors Accessible to Spiral Ganglion Neurons in the Auditory System of Adult Hearing and Deafened Rats. J. Neurosci. 2014, 34, 13110–13126. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, M.; Murtie, J.C.; Stankovic, K.M.; Liberman, M.C.; Corfas, G. Dynamic Patterns of Neurotrophin 3 Expression in the Postnatal Mouse Inner Ear. J. Comp. Neurol. 2007, 501, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.C.; Richardson, R.T.; Moulton, S.E.; Evans, A.J.; O’Leary, S.; Clark, G.M.; Wallace, G.G. Conducting Polymers, Dual Neurotrophins and Pulsed Electrical Stimulation - Dramatic Effects on Neurite Outgrowth. J. Control. Release 2010, 141, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Cosker, K.E.; Segal, R.A. Neuronal Signaling through Endocytosis. Cold Spring Harb. Perspect. Biol. 2014, 6, a020669. [Google Scholar] [CrossRef] [PubMed]
- Philo, J.; Talvenheimo, J.; Wen, J.; Rosenfeld, R.; Welcher, A.; Arakawa, T. Interactions of Neurotrophin-3 (NT-3), Brain-Derived Neurotrophic Factor (BDNF), and the NT-3 BDNF Heterodimer with the Extracellular Domains of the TrkB and TrkC Receptors. J. Biol. Chem. 1994, 269, 27840–27846. [Google Scholar] [CrossRef] [PubMed]
- Barclay, M.; Ryan, A.F.; Housley, G.D. Type I vs Type II Spiral Ganglion Neurons Exhibit Differential Survival and Neuritogenesis during Cochlear Development. Neural. Dev. 2011, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Harre, J.; Heinkele, L.; Steffens, M.; Warnecke, A.; Lenarz, T.; Just, I.; Rohrbeck, A. Potentiation of Brain-Derived Neurotrophic Factor-Induced Protection of Spiral Ganglion Neurons by C3 Exoenzyme/Rho Inhibitor. Front Cell Neurosci. 2021, 15, 602897. [Google Scholar] [CrossRef]
- Glueckert, R.; Johnson Chacko, L.; Schmidbauer, D.; Potrusil, T.; Pechriggl, E.J.; Hoermann, R.; Brenner, E.; Reka, A.; Schrott-Fischer, A.; Handschuh, S. Visualization of the Membranous Labyrinth and Nerve Fiber Pathways in Human and Animal Inner Ears Using MicroCT Imaging. Front Neurosci. 2018, 12, 501. [Google Scholar] [CrossRef] [Green Version]
- Rask-Andersen, H.; Liu, W.; Erixon, E.; Kinnefors, A.; Pfaller, K.; Schrott-Fischer, A.; Glueckert, R. Human Cochlea: Anatomical Characteristics and Their Relevance for Cochlear Implantation. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1791–1811. [Google Scholar] [CrossRef]
- Ateaque, S.; Merkouris, S.; Wyatt, S.; Allen, N.D.; Xie, J.; DiStefano, P.S.; Lindsay, R.M.; Barde, Y.-A. Selective Activation and Down-Regulation of Trk Receptors by Neurotrophins in Human Neurons Co-Expressing TrkB and TrkC. J. Neurochem. 2022, 161, 463–477. [Google Scholar] [CrossRef]
- Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of Local and Intercellular BDNF Signaling. Pflügers Archiv. Eur. J. Physiol. 2017, 469, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Shepherd, R.K. Aminoglycoside-Induced Degeneration of Adult Spiral Ganglion Neurons Involves Differential Modulation of Tyrosine Kinase B and P75 Neurotrophin Receptor Signaling. Am. J. Pathol. 2006, 169, 528–543. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.M.; Taniuchi, M.; DiStefano, P.S. Expression and Possible Function of Nerve Growth Factor Receptors on Schwann Cells. Trends Neurosci. 1988, 11, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-F.; Li, H.-Y. Roles of Glial P75NTR in Axonal Regeneration. J. Neurosci. Res. 2007, 85, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- Bentley, C.A.; Lee, K.F. P75 Is Important for Axon Growth and Schwann Cell Migration during Development. J. Neurosci. 2000, 20, 7706–7715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamauchi, J.; Chan, J.R.; Shooter, E.M. Neurotrophin 3 Activation of TrkC Induces Schwann Cell Migration through the C-Jun N-Terminal Kinase Pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 14421–14426. [Google Scholar] [CrossRef] [Green Version]
- Brosenitsch, T.A.; Katz, D.M. Physiological Patterns of Electrical Stimulation Can Induce Neuronal Gene Expression by Activating N-Type Calcium Channels. J. Neurosci. 2001, 21, 2571–2579. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Xue, H.Z.; Hsu, Y.L.; Liu, Q.; Patel, S.; Davis, R.L. Complex Distribution Patterns of Voltage-Gated Calcium Channel α-Subunits in the Spiral Ganglion. Hear Res. 2011, 278, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Carnahan, J.; Greenberg, M.E. Requirement for BDNF in Activity-Dependent Survival of Cortical Neurons. Science 1994, 263, 1618–1623. [Google Scholar] [CrossRef]
- Zhou, X.-F.; Deng, Y.-S.; Chie, E.; Xue, Q.; Zhong, J.-H.; McLachlan, E.M.; Rush, R.A.; Xian, C.J. Satellite-Cell-Derived Nerve Growth Factor and Neurotrophin-3 Are Involved in Noradrenergic Sprouting in the Dorsal Root Ganglia Following Peripheral Nerve Injury in the Rat. Eur. J. Neurosci. 1999, 11, 1711–1722. [Google Scholar] [CrossRef]
- Matei, V.; Pauley, S.; Kaing, S.; Rowitch, D.; Beisel, K.W.; Morris, K.; Feng, F.; Jones, K.; Lee, J.; Fritzsch, B. Smaller Inner Ear Sensory Epithelia in Neurog1 Null Mice Are Related to Earlier Hair Cell Cycle Exit. Dev. Dyn. 2005, 234, 633–650. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Feng, L.; Zaitsev, E.; Je, H.-S.; Liu, X.; Lu, B. Regulation of TrkB Receptor Tyrosine Kinase and Its Internalization by Neuronal Activity and Ca2+ Influx. J. Cell Biol. 2003, 163, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Glueckert, R.; Schrott-Fischer, A.; Li, H.; Ladak, H.M.; Agrawal, S.K.; Rask-Andersen, H. Vascular Supply of the Human Spiral Ganglion: Novel Three-Dimensional Analysis Using Synchrotron Phase-Contrast Imaging and Histology. Sci. Rep. 2020, 10, 5877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landegger, L.D.; Dilwali, S.; Stankovic, K.M. Neonatal Murine Cochlear Explant Technique as an In Vitro Screening Tool in Hearing Research. J. Vis. Exp. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, H.; Wang, Z. Orientation of Spiral Ganglion Neurite Extension in Electrical Fields of Charge-Balanced Biphasic Pulses and Direct Current in Vitro. Hear Res. 2010, 267, 111–118. [Google Scholar] [CrossRef]
- Sirkkunan, D.; Pingguan-Murphy, B.; Muhamad, F. Directing Axonal Growth: A Review on the Fabrication of Fibrous Scaffolds That Promotes the Orientation of Axons. Gels 2021, 8, 25. [Google Scholar] [CrossRef]
- Schmidbauer, D.; Fink, S.; Rousset, F.; Senn, P.; Müller, M.; Youssef, A.; Glueckert, R. ExplantAnalyzer: An Advanced Automated Neurite Outgrowth Analysis Evaluated by Means of Organotypic Auditory Neuron Explant Cultures. J. Neurosci. Methods 2021, 363, 109341. [Google Scholar] [CrossRef]
- Stöver, T.; Lenarz, T. Biomaterials in Cochlear Implants. GMS Curr. Top Otorhinolaryngol. Head Neck Surg. 2009, 8, Doc10. [Google Scholar] [CrossRef]
- Coleman, B.; Rickard, N.A.; de Silva, M.G.; Shepherd, R.K. A Protocol for Cryoembedding the Adult Guinea Pig Cochlea for Fluorescence Immunohistology. J. Neurosci. Methods 2009, 176, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Luque, M.; Schrott-Fischer, A.; Dudas, J.; Pechriggl, E.; Brenner, E.; Rask-Andersen, H.; Liu, W.; Glueckert, R. HCN Channels in the Mammalian Cochlea: Expression Pattern, Subcellular Location, and Age-Dependent Changes. J. Neurosci. Res. 2021, 99, 699–728. [Google Scholar] [CrossRef]
- Adamson, C.L.; Reid, M.A.; Davis, R.L. Opposite Actions of Brain-Derived Neurotrophic Factor and Neurotrophin-3 on Firing Features and Ion Channel Composition of Murine Spiral Ganglion Neurons. J. Neurosci. 2002, 22, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Jesse, F.; Miao, Z.; Zhao, L.; Chen, Y.; Lv, Y.Y. Optical Fiber Light Source Directs Neurite Growth. Biomed. Opt. Express 2013, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Fujiwara, K.; Kumeta, M.; Koyama, D. Ultrasonic Control of Neurite Outgrowth Direction. Sci. Rep. 2021, 11, 20099. [Google Scholar] [CrossRef] [PubMed]
- Wittig, J.H.; Ryan, A.F.; Asbeck, P.M. A Reusable Microfluidic Plate with Alternate-Choice Architecture for Assessing Growth Preference in Tissue Culture. J. Neurosci. Methods 2005, 144, 79–89. [Google Scholar] [CrossRef] [PubMed]
Antigen | Host | Company | Product | Dilution |
---|---|---|---|---|
Beta-III-tubulin/Tuj1 | Rabbit | Abcam | ab52623 | 1:1000 |
Rabbit IgG + Alexa 546 * | Donkey | Thermo Fisher Scientific | A10040 | 1:1500 |
trkB | Goat | R&D Systems | AF1494 | 1:2000 |
trkC | Goat | R&D Systems | AF1404 | 1:1000 |
p75NTR | Goat | R&D Systems | AF1157 | 1:32,000 |
Goat IgG + Biotin * | Rabbit | Dako | E0466 | 1:400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidbauer, D.; Fink, S.; Rousset, F.; Löwenheim, H.; Senn, P.; Glueckert, R. Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial? Int. J. Mol. Sci. 2023, 24, 2013. https://doi.org/10.3390/ijms24032013
Schmidbauer D, Fink S, Rousset F, Löwenheim H, Senn P, Glueckert R. Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial? International Journal of Molecular Sciences. 2023; 24(3):2013. https://doi.org/10.3390/ijms24032013
Chicago/Turabian StyleSchmidbauer, Dominik, Stefan Fink, Francis Rousset, Hubert Löwenheim, Pascal Senn, and Rudolf Glueckert. 2023. "Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial?" International Journal of Molecular Sciences 24, no. 3: 2013. https://doi.org/10.3390/ijms24032013
APA StyleSchmidbauer, D., Fink, S., Rousset, F., Löwenheim, H., Senn, P., & Glueckert, R. (2023). Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial? International Journal of Molecular Sciences, 24(3), 2013. https://doi.org/10.3390/ijms24032013