Elevated IL-1β and Comparable IL-1 Receptor Antagonist Levels Are Characteristic Features of L-PRP in Female College Athletes Compared to Male Professional Soccer Players
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Definition of “Athlete” in This Study
3.2. Differences and Similarities between mPSPs and fCAs
3.3. Lower Levels of Growth Factors in fCAs’ L-PRP
3.4. Higher Levels of Inflammation-Related Cytokines in fCAs’ L-PRP
3.5. Clinical Relevance: Factors Influencing Clinical Outcomes of PRP Treatment
4. Materials and Methods
4.1. Participants and Study Design
4.2. Blood Collection and Preparation of L-PRP
4.3. Blood Cell Counting
4.4. Determination of Growth Factor and Cytokine Levels Using Enzyme-Linked Immunosorbent Assay (ELISA)
4.5. Determination of Platelet ATP Levels
4.6. Determination of Body Composition
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCI | body composition index |
BFP | body fat percentage |
BMR | basal metabolic rate |
BMW | bone mass weight |
fCA | female college athlete |
HCT | hematocrit |
HGB | hemoglobin |
IL-1β | interleukin-1β |
IL-1RA | interleukin-1 receptor antagonist |
L-PRP | leukocyte- and platelet-rich plasma |
mPSP | male professional soccer player |
MPV | mean platelet volume |
PBS | Dulbecco’s phosphate buffer saline |
PDGF-BB | platelet-derived growth factor-BB |
PDW | platelet distribution width |
PF4 | platelet factor 4 |
PLT | platelet |
PRP | platelet-rich plasma |
RBC | red blood cell |
RCT | randomized controlled trial |
SMP | skeletal muscle percentage |
TGFβ1 | transforming-growth factor-β1 |
VEGF | vascular endothelial growth factor |
WBC | white blood cell |
References
- Kawase, T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: Basic principles and concepts underlying recent advances. Odontology 2015, 103, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.T.; Borg-Stein, J.; McInnis, K. Applications of platelet-rich plasma in musculoskeletal and sports medicine: An evidence-based approach. PMR 2011, 3, 226–250. [Google Scholar] [CrossRef]
- Sebbagh, P.; Hirt-Burri, N.; Scaletta, C.; Abdel-Sayed, P.; Raffoul, W.; Gremeaux, V.; Laurent, A.; Applegate, L.A.; Gremion, G. Process Optimization and Efficacy Assessment of Standardized PRP for Tendinopathies in Sports Medicine: Retrospective Study of Clinical Files and GMP Manufacturing Records in a Swiss University Hospital. Bioengineering 2023, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Milano, G.; Sánchez, M.; Jo, C.H.; Saccomanno, M.F.; Thampatty, B.P.; Wang, J.H.C. Platelet-rich plasma in orthopaedic sports medicine: State of the art. J. ISAKOS 2019, 4, 188–195. [Google Scholar] [CrossRef]
- Herdea, A.; Struta, A.; Derihaci, R.P.; Ulici, A.; Costache, A.; Furtunescu, F.; Toma, A.; Charkaoui, A. Efficiency of platelet-rich plasma therapy for healing sports injuries in young athletes. Exp. Ther. Med. 2022, 23, 215. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, D.E.; Padaki, A.S.; Ahmad, C.S.; Lynch, T.S. Defining Platelet-Rich Plasma Usage by Team Physicians in Elite Athletes. Orthop. J. Sports Med. 2018, 6, 2325967118767077. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Ravaghi, H.; Salehi, M.; Yekta, A.A.; Doaee, S.; Jaafaripooyan, E. A systematic review and meta-analysis of the application of platelet rich plasma in sports medicine. Electron. Phys. 2016, 8, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.P.; Band, P.A.; Meislin, R.J.; Jazrawi, L.M.; Cardone, D.A. Platelet-rich plasma: Current concepts and application in sports medicine. J. Am. Acad. Orthop. Surg. 2009, 17, 602–608. [Google Scholar] [CrossRef]
- Su, Y.X. Healing the Elite Athlete Today: Investigating the Case of Platelet-Rich Plasma Therapy. Sport Ethics Philos. 2022, 16, 20–32. [Google Scholar] [CrossRef]
- Ficek, K.; Kamiński, T.; Wach, E.; Cholewiński, J.; Cięszczyk, P. Application of platelet rich plasma in sports medicine. J. Hum. Kinet. 2011, 30, 85–97. [Google Scholar] [CrossRef]
- Sneed, D.; Wong, C. Platelet-rich plasma injections as a treatment for Achilles tendinopathy and plantar fasciitis in athletes. RMR 2023, 15, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Evanson, J.R.; Guyton, M.K.; Oliver, D.L.; Hire, J.M.; Topolski, R.L.; Zumbrun, S.D.; McPherson, J.C.; Bojescul, J.A. Gender and age differences in growth factor concentrations from platelet-rich plasma in adults. Mil. Med. 2014, 179, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Ranalletta, M.; Pasqualini, I.; Zicaro, J.P.; Paz, M.C.; Camino, P.; Piuzzi, N.S. Substantial Variability in Platelet-Rich Plasma Composition Is Based on Patient Age and Baseline Platelet Count. Arthrosc. Sports Med. Rehabil. 2023, 5, e853–e858. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Lingampalli, N.; Koltsov, J.C.B.; Leung, L.L.; Bhutani, N.; Robinson, W.H.; Chu, C.R. Men and Women Differ in the Biochemical Composition of Platelet-Rich Plasma. Am. J. Sports Med. 2018, 46, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Maya, J.; Misra, M. The female athlete triad: Review of current literature. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Nazem, T.G.; Ackerman, K.E. The female athlete triad. Sports Health 2012, 4, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Ushiki, T.; Suzuki, K.; Sato, M.; Ishiguro, H.; Suwabe, T.; Edama, M.; Omori, G.; Yamamoto, N.; Kawase, T. Characterization of Leukocyte- and Platelet-Rich Plasma Derived from Female Collage Athletes: A Cross-Sectional Cohort Study Focusing on Growth Factor, Inflammatory Cytokines, and Anti-Inflammatory Cytokine Levels. Int. J. Mol. Sci. 2023, 24, 13592. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Ushiki, T.; Watanabe, S.; Omori, G.; Kawase, T. The levels of TGFβ1, VEGF, PDGF-BB, and PF4 in platelet-rich plasma of professional soccer players: A cross-sectional pilot study. J. Orthop. Surg. Res. 2022, 17, 465. [Google Scholar] [CrossRef]
- Ushiki, T.; Mochizuki, T.; Suzuki, K.; Kamimura, M.; Ishiguro, H.; Watanabe, S.; Omori, G.; Yamamoto, N.; Kawase, T. Platelet polyphosphate and energy metabolism in professional male athletes (soccer players): A cross-sectional pilot study. Physiol. Rep. 2022, 10, e15409. [Google Scholar] [CrossRef]
- Ushiki, T.; Mochizuki, T.; Suzuki, K.; Kamimura, M.; Ishiguro, H.; Suwabe, T.; Watanabe, S.; Omori, G.; Yamamoto, N.; Kawase, T. Strategic Analysis of Body Composition Indices and Resting Platelet ATP Levels in Professional Soccer Players for Better Platelet-Rich Plasma Therapy. Front. Bioeng. Biotechnol. 2023, 11, 1255860. [Google Scholar] [CrossRef]
- Araújo, C.G.; Scharhag, J. Athlete: A working definition for medical and health sciences research. Scand. J. Med. Sci. Sports 2016, 26, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.; Bonaccio, M.; Cerletti, C. How different are blood platelets from women or men, and young or elderly people? Haematologica 2023, 108, 1473–1475. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Iula, L.; Keitelman, I.A.; Sabbione, F.; Fuentes, F.; Guzman, M.; Galletti, J.G.; Gerber, P.P.; Ostrowski, M.; Geffner, J.R.; Jancic, C.C.; et al. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils. Front. Immunol. 2018, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Böcker, U.; Damião, A.; Holt, L.; Han, D.S.; Jobin, C.; Panja, A.; Mayer, L.; Sartor, R.B. Differential expression of interleukin 1 receptor antagonist isoforms in human intestinal epithelial cells. Gastroenterology 1998, 115, 1426–1438. [Google Scholar] [CrossRef] [PubMed]
- Lebois, M.; Josefsson, E.C. Regulation of platelet lifespan by apoptosis. Platelets 2016, 27, 497–504. [Google Scholar] [CrossRef]
- Juntendo Clinic, Reference Range for Laboratory Test Values. Available online: https://hosp.juntendo.ac.jp/clinic/support/rinsyo_kensabu/ketsuekikensa/kijyun.html (accessed on 25 September 2023).
- Coleman, J.R.; Moore, E.E.; Kelher, M.R.; Samuels, J.M.; Cohen, M.J.; Sauaia, A.; Banerjee, A.; Silliman, C.C.; Peltz, E.D. Female platelets have distinct functional activity compared with male platelets: Implications in transfusion practice and treatment of trauma-induced coagulopathy. J. Trauma Acute Care Surg. 2019, 87, 1052–1060. [Google Scholar] [CrossRef]
- Hadley, J.B.; Kelher, M.R.; Coleman, J.R.; Kelly, K.K.; Dumont, L.J.; Esparza, O.; Banerjee, A.; Cohen, M.J.; Jones, K.; Silliman, C.C. Hormones, age, and sex affect platelet responsiveness in vitro. Transfusion 2022, 62, 1882–1893. [Google Scholar] [CrossRef]
- Grau, M.; Cremer, J.M.; Schmeichel, S.; Kunkel, M.; Bloch, W. Comparisons of Blood Parameters, Red Blood Cell Deformability and Circulating Nitric Oxide Between Males and Females Considering Hormonal Contraception: A Longitudinal Gender Study. Front. Physiol. 2018, 9, 1835. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Yoshioka, T.; Sugaya, H.; Gosho, M.; Aoto, K.; Kanamori, A.; Yamazaki, M. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J. Exp. Orthop. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Weibrich, G.; Kleis, W.K.; Hafner, G. Growth factor levels in the platelet-rich plasma produced by 2 different methods: Curasan-type PRP kit versus PCCS PRP system. Int. J. Oral Maxillofac. Implant. 2002, 17, 184–190. [Google Scholar]
- Järemo, P.; Lindahl, T.L.; Fransson, S.G.; Richter, A. Individual variations of platelet inhibition after loading doses of clopidogrel. J. Intern. Med. 2002, 252, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Lindkvist, M.; Fernberg, U.; Ljungberg, L.U.; Fälker, K.; Fernström, M.; Hurtig-Wennlöf, A.; Grenegård, M. Individual variations in platelet reactivity towards ADP, epinephrine, collagen and nitric oxide, and the association to arterial function in young, healthy adults. Thromb. Res. 2019, 174, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Diodato, M.D.; Knöferl, M.W.; Schwacha, M.G.; Bland, K.I.; Chaudry, I.H. Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine 2001, 14, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Suarez, L.M.; Diaz-Del Cerro, E.; Felix, J.; Gonzalez-Sanchez, M.; Ceprian, N.; Guerra-Perez, N.; Novelle, M.G.; Martinez de Toda, I.; De la Fuente, M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech. Ageing Dev. 2023, 211, 111798. [Google Scholar] [CrossRef] [PubMed]
- Minuzzi, L.G.; Lira, F.S.; de Poli, R.A.B.; Fialho Lopes, V.H.; Zagatto, A.M.; Suzuki, K.; Antunes, B.M. High-intensity intermittent exercise induces a potential anti-inflammatory response in healthy women across the menstrual cycle. Cytokine 2022, 154, 155872. [Google Scholar] [CrossRef]
- Rathod, K.S.; Kapil, V.; Velmurugan, S.; Khambata, R.S.; Siddique, U.; Khan, S.; Van Eijl, S.; Gee, L.C.; Bansal, J.; Pitrola, K.; et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J. Clin. Investig. 2023, 127, 169–182. [Google Scholar] [CrossRef]
- Neel, N.F.; Schutyser, E.; Sai, J.; Fan, G.H.; Richmond, A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev. 2005, 16, 637–658. [Google Scholar] [CrossRef]
- Mansour, A.; Romani, M.; Acharya, A.B.; Rahman, B.; Verron, E.; Badran, Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023, 15, 695. [Google Scholar] [CrossRef]
- So, R.; Sasai, H.; Matsuo, T.; Tsujimoto, T.; Eto, M.; Saotome, K.; Tanaka, K. Multiple-slice magnetic resonance imaging can detect visceral adipose tissue reduction more accurately than single-slice imaging. Eur. J. Clin. Nutr. 2012, 66, 1351–1355. [Google Scholar] [CrossRef]
Cell Types | mPSP (-Fold) | fCA (-Fold) | p |
---|---|---|---|
WBC | 2.649 ± 1.097 | 2.547 ± 0.831 | 0.891 |
RBC | 0.128 ± 0.034 | 0.314 ± 0.123 | <0.001 |
PLT | 5.682 ± 1.470 | 9.754 ± 2.796 | <0.001 |
(a) Male Professional Soccer Players (mPSPs) | |||||
---|---|---|---|---|---|
mPSP | TGFβ1 (ng/mL) | PDGF-BB (pg/mL) | PF4 (ng/mL) | IL-1β (pg/mL) | IL-1RA (pg/mL) |
BMI | −0.160 | −0.100 | −0.214 | −0.214 | −0.098 |
BFP (%) | −0.436 | −0.125 | −0.187 | −0.210 | −0.322 |
SMP (%) | 0.429 | 0.160 | 0.156 | 0.179 | 0.307 |
BMW (kg) | −0.239 | 0.107 | −0.108 | −0.139 | −0.167 |
BMR (kcal) | −0.414 | 0.030 | −0.248 | −0.193 | −0.249 |
(b) Female College Athletes (fCAs) | |||||
fCA | TGFβ1 (ng/mL) | PDGF-BB (pg/mL) | PF4 (ng/mL) | IL-1β (pg/mL) | IL-1RA (pg/mL) |
BMI | 0.328 | 0.229 | 0.157 | 0.323 | 0.175 |
BFP (%) | 0.076 | 0.007 | 0.087 | 0.250 | 0.066 |
SMP (%) | −0.090 | −0.061 | −0.078 | −0.219 | −0.039 |
BMW (kg) | 0.096 | 0.057 | 0.147 | 0.200 | 0.185 |
BMR (kcal) | 0.039 | −0.004 | 0.120 | 0.222 | 0.148 |
(c) The Strength of the Correlation in Both Groups | |||||
Strength of Correlation | mPSP | fCA | |||
Very strong (0.8–1.0) | none | none | |||
Strong (0.6–0.79) | none | none | |||
Medium (0.4–0.59) | Positive | TGFβ1 vs. SMP | none | ||
Negative | TGFβ1 vs. BFP TGFβ1 vs. BMR | ||||
Weak (0.2–0.39) | Positive | TGFβ1 vs. BMW PF4 vs. BMI IL-1RA vs. SMP | Positive | TGFβ1 vs. BMI PDGF-BB vs. BMI IL-1β vs. BMI IL-1β vs. BFP IL-1β vs. BMW IL-1β vs. BMR | |
Negative | PF4 vs. BMR IL-1β vs. BMI IL-1β vs. BFP IL-1RA vs. BFP IL-1RA vs. BMR | Negative | IL-1β vs. SMP | ||
Very weak (0–0.19) | others | others |
(a) Male Professional Soccer Players (mPSPs) | |||||
---|---|---|---|---|---|
mPSP | TGFβ1 | PDGF-BB | PF4 | IL-1β | IL-1RA |
WBC (×102/μL) | 0.280 | −0.094 | 0.303 | 0.699 | 0.934 |
PLT (×104/μL) | 0.480 | 0.012 | 0.375 | 0.509 | 0.395 |
(b) Female College Athletes (fCAs) | |||||
fCA | TGFβ1 | PDGF-BB | PF4 | IL-1β | IL-1RA |
WBC (×102/μL) | 0.388 | 0.306 | 0.706 | 0.788 | 0.944 |
PLT (×104/μL) | 0.609 | 0.310 | 0.649 | 0.309 | 0.457 |
(c) The Strength of the Correlation in Both Groups | |||||
Strength of Correlation | mPSP | fCA | |||
Very strong (0.8–1.0) | Positive | IL-1RA vs. WBC | Positive | IL-1RA vs. WBC | |
Strong (0.6–0.79) | Positive | IL-1β vs. WBC | Positive | PF4 vs. WBC PF4 vs. PLT IL-1β vs. WBC | |
Medium (0.4–0.59) | Positive | TGFβ1 vs. PLT IL-1β vs. PLT | Positive | TGFβ1 vs. PLT IL-1RA vs. PLT | |
Weak (0.2–0.39) | Positive | TGFβ1 vs. WBC PF4 vs. WBC PF4 vs. PLT IL-1RA vs. PLT | Positive | TGFβ1 vs. WBC PDGF-BB vs. WBC PDGF-BB vs. PLT IL-1β vs. PLT | |
Very weak (0–0.19) | others | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochizuki, T.; Ushiki, T.; Suzuki, K.; Sato, M.; Ishiguro, H.; Suwabe, T.; Watanabe, S.; Edama, M.; Omori, G.; Yamamoto, N.; et al. Elevated IL-1β and Comparable IL-1 Receptor Antagonist Levels Are Characteristic Features of L-PRP in Female College Athletes Compared to Male Professional Soccer Players. Int. J. Mol. Sci. 2023, 24, 17487. https://doi.org/10.3390/ijms242417487
Mochizuki T, Ushiki T, Suzuki K, Sato M, Ishiguro H, Suwabe T, Watanabe S, Edama M, Omori G, Yamamoto N, et al. Elevated IL-1β and Comparable IL-1 Receptor Antagonist Levels Are Characteristic Features of L-PRP in Female College Athletes Compared to Male Professional Soccer Players. International Journal of Molecular Sciences. 2023; 24(24):17487. https://doi.org/10.3390/ijms242417487
Chicago/Turabian StyleMochizuki, Tomoharu, Takashi Ushiki, Katsuya Suzuki, Misato Sato, Hajime Ishiguro, Tatsuya Suwabe, Satoshi Watanabe, Mutsuaki Edama, Go Omori, Noriaki Yamamoto, and et al. 2023. "Elevated IL-1β and Comparable IL-1 Receptor Antagonist Levels Are Characteristic Features of L-PRP in Female College Athletes Compared to Male Professional Soccer Players" International Journal of Molecular Sciences 24, no. 24: 17487. https://doi.org/10.3390/ijms242417487
APA StyleMochizuki, T., Ushiki, T., Suzuki, K., Sato, M., Ishiguro, H., Suwabe, T., Watanabe, S., Edama, M., Omori, G., Yamamoto, N., & Kawase, T. (2023). Elevated IL-1β and Comparable IL-1 Receptor Antagonist Levels Are Characteristic Features of L-PRP in Female College Athletes Compared to Male Professional Soccer Players. International Journal of Molecular Sciences, 24(24), 17487. https://doi.org/10.3390/ijms242417487