Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Regional and Cellular Distribution of GABAB1 in the DG of Control and APP/PS1 Mice
2.2. Reduction in GABAB1 in the Postsynaptic Cell Surface of Granule Cells in APP/PS1 Mice
2.3. Reduction in Presynaptic GABAB1 in the Dentate Gyrus of APP/PS1 Mice
2.4. GABAB1 Is Increased in the Cytoplasm of Granule Cells in APP/PS1 Mice
3. Discussion
3.1. Cellular Distribution of GABAB Receptors in the Mouse Model of AD
3.2. Altered Somato-Dendritic Localisation of GABAB Receptors in APP/PS1 Granule Cells
3.3. Altered Presynaptic GABAB Receptors in the Molecular Layer of APP/PS1 Mice
4. Material and Methods
4.1. Animals
4.2. Antibodies and Chemicals
4.3. Immunohistochemistry for Light Microscopy
4.4. Immunohistochemistry for Electron Microscopy
4.4.1. Pre-Embedding Immunogold Method
4.4.2. SDS-FRL Technique
4.5. Quantification and Analysis of SDS-FRL Data
Density Gradient of GABAB1 along the Neuronal Surface
4.6. Quantification and Analysis of Pre-Embedding Immunogold Data
4.7. Controls
4.8. Data analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amaral, D.G.; Scharfman, H.E.; Lavenex, P. The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 2007, 163, 3–22. [Google Scholar] [CrossRef][Green Version]
- Freund, T.F.; Buzsáki, G. Interneurons of the hippocampus. Hippocampus 1996, 6, 347–470. [Google Scholar] [CrossRef]
- Kampa, B.M.; Gundlfinger, A.; Letzkus, J.J.; Leibold, C. Circuit mechanisms of memory formation. Neural Plast. 2011, 2011. [Google Scholar] [CrossRef][Green Version]
- Morrison, J.H.; Patrick, H.R. Life and Death of Neurons in the Aging Brain. Science (80-) 1997, 278, 412–419. [Google Scholar] [CrossRef][Green Version]
- Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef][Green Version]
- Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148, 1204–1222. [Google Scholar] [CrossRef][Green Version]
- Scheff, S.; Sparks, D.L.; Price, D. Quantitative Assessment of Synaptic Density in the Outer Molecular Layer of the Hippocampal Dentate Gyrus in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 1996, 7, 226–232. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A. Synaptic Density in the Inner Molecular Layer of the Hippocampal Dentate Gyrus in Alzheimer Disease. J. Neuropathol. Exp. Neurol. 1998, 57, 1146–1153. [Google Scholar] [CrossRef][Green Version]
- Scheff, S.W.; Price, D.A. Synaptic pathology in Alzheimer’s disease: A review of ultrastructural studies. Neurobiol. Aging 2003, 24, 1029–1046. [Google Scholar] [CrossRef]
- Alonso-Nanclares, L.; Merino-Serrais, P.; Gonzalez, S.; Defelipe, J. Synaptic changes in the dentate gyrus of APP/PS1 transgenic mice revealed by electron microscopy. J. Neuropathol. Exp. Neurol. 2013, 72, 386–395. [Google Scholar] [CrossRef][Green Version]
- Li, B.; Yamamori, H.; Tatebayashi, Y.; Shafit-Zagardo, B.; Tanimukai, H.; Chen, S.; Iqbal, K.; Grundke-Iqbal, I. Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. J. Neuropathol. Exp. Neurol. 2008, 67, 78–84. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Macdonald, R.L.; Olsen, R.W. GABA A Receptor Channels. Annu. Rev. Neurosci. 1994, 17, 569–602. [Google Scholar] [CrossRef] [PubMed]
- Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular Structure and Physiological Functions of GABA B Receptors. Physiol. Rev. 2004, 84, 835–867. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kaupmann, K.; Schuler, V.; Mosbacher, J.; Bischoff, S.; Bittiger, H.; Heid, J.; Froestl, W.; Leonhard, S.; Pfaff, T.; Karschin, A.; et al. Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. USA 1998, 95, 14991–14996. [Google Scholar] [CrossRef]
- Schwenk, J.; Pérez-Garci, E.; Schneider, A.; Kollewe, A.; Gauthier-Kemper, A.; Fritzius, T.; Raveh, A.; Dinamarca, M.C.; Hanuschkin, A.; Bildl, W.; et al. Modular composition and dynamics of native GABA B receptors identified by high-resolution proteomics. Nat. Neurosci. 2016, 19, 233–242. [Google Scholar] [CrossRef]
- Dinamarca, M.C.; Raveh, A.; Schneider, A.; Fritzius, T.; Früh, S.; Rem, P.D.; Stawarski, M.; Lalanne, T.; Turecek, R.; Choo, M.; et al. Complex formation of APP with GABA B receptors links axonal trafficking to amyloidogenic processing. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef][Green Version]
- Martín-Belmonte, A.; Aguado, C.; Alfaro-Ruíz, R.; Moreno-Martínez, A.E.; de la Ossa, L.; Martínez-Hernández, J.; Buisson, A.; Früh, S.; Bettler, B.; Shigemoto, R.; et al. Reduction in the neuronal surface of post- and pre-synaptic GABA B receptors in the hippocampus in a mouse model of Alzheimer’s disease. Brain Pathol. 2019, 12802. [Google Scholar] [CrossRef][Green Version]
- Rice, H.C.; De Malmazet, D.; Schreurs, A.; Frere, S.; Van Molle, I.; Volkov, A.N.; Creemers, E.; Vertkin, I.; Nys, J.; Ranaivoson, F.M.; et al. Secreted amyloid-B precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science (80-) 2019, 363, 1–19. [Google Scholar] [CrossRef]
- Tang, B.L. Amyloid Precursor Protein (APP) and GABAergic Neurotransmission. Cells 2019, 8, 550. [Google Scholar] [CrossRef][Green Version]
- Kaupmann, K.; Huggel, K.; Heid, J.; Flor, P.J.; Bischoff, S.; Mickel, S.J.; McMaster, G.; Angst, C.; Bittiger, H.; Froestl, W.; et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 1997, 386, 239–246. [Google Scholar] [CrossRef]
- Bowery, N.G.; Brown, D.A. The cloning of GABAB receptors. Nature 1997, 386, 223–224. [Google Scholar] [CrossRef]
- Jones, K.A.; Borowsky, B.; Tamm, J.A.; Craig, D.A.; Durkin, M.M.; Dai, M.; Yao, W.; Johnson, M.; Gunwaldsen, C.; Huang, L.; et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 1998, 396, 674–679. [Google Scholar] [CrossRef]
- Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998, 396, 683–687. [Google Scholar] [CrossRef]
- White, J.H.; Wise, A.; Main, M.J.; Green, A.; Fraser, N.J.; Disney, G.H.; Barnes, A.A.; Emson, P.; Foord, S.M.; Marshall, F.H. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 1998, 396, 679–682. [Google Scholar] [CrossRef]
- Kuner, R.; Körh, G.; Grünewald, S.; Eisenhardt, G.; Bach, A.; Kornau, H. Role of Heteromer Formation in GABAB Receptor Function. Science (80-) 1999, 283, 74–77. [Google Scholar] [CrossRef]
- Chu, D.C.M.; Albin, R.L.; Young, A.B.; Penney, J.B. Distribution and kinetics of GABAB binding sites in rat central nervous system: A quantitative autoradiographic study. Neuroscience 1990, 34, 341–357. [Google Scholar] [CrossRef][Green Version]
- Bischoff, S.; Leonhard, S.; Reymann, N.; Schuler, V.; Shigemoto, R.; Kaupmann, K.; Bettler, B. Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. J. Comp. Neurol. 1999, 412, 1–16. [Google Scholar] [CrossRef]
- López-Bendito, G.; Shigemoto, R.; Kulik, A.; Vida, I.; Fairén, A.; Luján, R. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 2004, 14, 836–848. [Google Scholar] [CrossRef]
- Kulik, Á.; Vida, I.; Luján, R.; Haas, C.A.; López-Bendito, G.; Shigemoto, R.; Frotscher, M. Subcellular Localization of Metabotropic GABA B Receptor Subunits GABA B1a/b and GABA B2 in the Rat Hippocampus. J. Neurosci. 2003, 23, 11026–11035. [Google Scholar] [CrossRef][Green Version]
- Vigot, R.; Barbieri, S.; Bräuner-Osborne, H.; Turecek, R.; Shigemoto, R.; Zhang, Y.P.; Luján, R.; Jacobson, L.H.; Biermann, B.; Fritschy, J.M.; et al. Differential Compartmentalization and Distinct Functions of GABA B Receptor Variants. Neuron 2006, 50, 589–601. [Google Scholar] [CrossRef][Green Version]
- Degro, C.E.; Kulik, A.; Booker, S.A.; Vida, I. Compartmental distribution of gabab receptor-mediated currents along the somatodendritic axis of hippocampal principal cells. Front. Synaptic Neurosci. 2015, 7, 1–15. [Google Scholar] [CrossRef][Green Version]
- Garcia-Alloza, M.; Robbins, E.M.; Zhang-Nunes, S.X.; Purcell, S.M.; Betensky, R.A.; Raju, S.; Prada, C.; Greenberg, S.M.; Bacskai, B.J.; Frosch, M.P. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis. 2006, 24, 516–524. [Google Scholar] [CrossRef]
- Gimbel, D.A.; Nygaard, H.B.; Coffey, E.E.; Gunther, E.C.; Laurén, J.; Gimbel, Z.A.; Strittmatter, S.M. Memory impairment in transgenic alzheimer mice requires cellular prion protein. J. Neurosci. 2010, 30, 6367–6374. [Google Scholar] [CrossRef]
- Luján, R.; Aguado, C.; Ciruela, F.; Cózar, J.; Kleindienst, D.; de la Ossa, L.; Bettler, B.; Wickman, K.; Watanabe, M.; Shigemoto, R.; et al. Differential association of GABA B receptors with their effector ion channels in Purkinje cells. Brain Struct. Funct. 2018, 223, 1565–1587. [Google Scholar] [CrossRef][Green Version]
- Solas, M.; Puerta, E.; Ramirez, M. Treatment Options in Alzheimer’s Disease: The GABA Story. Curr. Pharm. Des. 2015, 21, 4960–4971. [Google Scholar] [CrossRef]
- Shahidi, S.; Komaki, A.; Mahmoodi, M.; Lashgari, R. The role of GABAergic transmission in the dentate gyrus on acquisition, consolidation and retrieval of an inhibitory avoidance learning and memory task in the rat. Brain Res. 2008, 1204, 87–93. [Google Scholar] [CrossRef]
- Helm, K.A.; Haberman, R.P.; Dean, S.L.; Hoyt, E.C.; Melcher, T.; Lund, P.K.; Gallagher, M. GABA B receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 2005, 48, 956–964. [Google Scholar] [CrossRef]
- Nazari, M.; Komaki, A.; Salehi, I.; Sarihi, A.; Shahidi, S.; Komaki, H.; Ganji, A. Interactive effects of AM251 and baclofen on synaptic plasticity in the rat dentate gyrus. Brain Res. 2016, 1651, 53–60. [Google Scholar] [CrossRef]
- Dal Prà, I.; Armato, U.; Chiarini, A. Family C G-protein-coupled receptors in Alzheimer’s disease and therapeutic implications. Front. Pharmacol. 2019, 10, 1–25. [Google Scholar] [CrossRef]
- Guetg, N.; Seddik, R.; Vigot, R.; Turecek, R.; Gassmann, M.; Vogt, K.E.; Bräuner-Osborne, H.; Shigemoto, R.; Kretz, O.; Frotscher, M.; et al. The GABA B1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. J. Neurosci. 2009, 29, 1414–1423. [Google Scholar] [CrossRef][Green Version]
- Lujan, R.; Ciruela, F. GABAB Receptors-Associated Proteins: Potential Drug Targets in Neurological Disorders? Curr. Drug Targets 2012, 13, 129–144. [Google Scholar] [CrossRef]
- Heaney, C.F.; Kinney, J.W. Role of GABAB receptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. 2016, 63, 1–28. [Google Scholar] [CrossRef]
- Fritzius, T.; Bettler, B. The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications. Basic Clin. Pharmacol. Toxicol. 2019, 1–10. [Google Scholar] [CrossRef][Green Version]
- Chu, D.C.M.; Penney, J.B.; Young, A.B. Quantitative autoradiography of hippocampal GABAB and GABAA receptor changes in Alzheimer’s disease. Neurosci. Lett. 1987, 82, 246–252. [Google Scholar] [CrossRef][Green Version]
- De Felipe, J. From the connectome to the synaptome: An epic love story. Science (80-) 2010, 330, 1198–1201. [Google Scholar] [CrossRef][Green Version]
- Irizarry, M.C.; Mcnamara, M.; Fedorchak, K.; Hsiao, K.; Hyman, B.T. APPSW Transgenic Mice Develop Age-related Aβ Deposits and Neuropil Abnormalities, but no Neuronal Loss in CA1. J. Neuropathol. Exp. Neurol. 1997, 56, 965–973. [Google Scholar] [CrossRef][Green Version]
- Lüscher, C.; Jan, L.Y.; Stoffel, M.; Malenka, R.C.; Nicoll, R.A. G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons. Neuron 1997, 19, 687–695. [Google Scholar] [CrossRef][Green Version]
- Koyrakh, L. Molecular and Cellular Diversity of Neuronal G-Protein-Gated Potassium Channels. J. Neurosci. 2005, 25, 11468–11478. [Google Scholar] [CrossRef]
- Mott, D.D.; Xie, C.W.; Wilson, W.A.; Swartzwelder, H.S.; Lewis, D.V. GABA(B) autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus. J. Neurophysiol. 1993, 69, 674–691. [Google Scholar] [CrossRef]
- Brucato, F.H.; Mott, D.D.; Lewis, D.V.; Swartzwelder, H.S. GABAB receptors modulate synaptically-evoked responses in the rat dentate gyrus, in vivo. Brain Res. 1995, 677, 326–332. [Google Scholar] [CrossRef]
- Foster, J.D.; Kitchen, I.; Bettler, B.; Chen, Y. GABAB receptor subtypes differentially modulate synaptic inhibition in the dentate gyrus to enhance granule cell output. Br. J. Pharmacol. 2013, 168, 1808–1819. [Google Scholar] [CrossRef][Green Version]
- Mircheva, Y.; Peralta, M.R.; Tóth, K. Interplay of Entorhinal Input and Local Inhibitory Network in the Hippocampus at the Origin of Slow Inhibition in Granule Cells. J. Neurosci. 2019, 39, 6399–6413. [Google Scholar] [CrossRef][Green Version]
- Anderson, P.; Morris, R.; Amaral, D.; Bliss, T.; O’Kefefe, J. The Hippocampus Book; Anderson, P., Morris, R., Amaral, D., Bliss, T., O’Kefefe, J., Eds.; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Fajardo-Serrano, A.; Wydeven, N.; Young, D.; Watanabe, M.; Shigemoto, R.; Martemyanov, K.A.; Wickman, K.; Luján, R. Association of Rgs7/Gβ5 complexes with girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons. Hippocampus 2013, 23, 1231–1245. [Google Scholar] [CrossRef][Green Version]
- Llorens-Martín, M.; Blazquez-Llorca, L.; Benavides-Piccione, R.; Rabano, A.; Hernandez, F.; Avila, J.; DeFelipe, J. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Front. Neuroanat. 2014, 8, 1–12. [Google Scholar] [CrossRef][Green Version]
- Hyman, B.; Van Hoesen, G.; Damasio, A.; Barnes, C. Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation. Science (80-) 1984, 225, 1168–1170. [Google Scholar] [CrossRef]
- Lanthorn, T.H.; Cotman, C.W. Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res. 1981, 225, 171–178. [Google Scholar] [CrossRef]
- Malm, T.M.; Iivonen, H.; Goldsteins, G.; Keksa-Goldsteine, V.; Ahtoniemi, T.; Kanninen, K.; Salminen, A.; Auriola, S.; Van Groen, T.; Tanila, H.; et al. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting β-amyloid burden. J. Neurosci. 2007, 27, 3712–3721. [Google Scholar] [CrossRef][Green Version]
- Kleschevnikov, A.M.; Belichenko, P.V.; Faizi, M.; Jacobs, L.F.; Htun, K.; Shamloo, M.; Mobley, W.C. Deficits in Cognition and Synaptic Plasticity in a Mouse Model of Down Syndrome Ameliorated by GABAB Receptor Antagonists. J. Neurosci. 2012, 32, 9217–9227. [Google Scholar] [CrossRef][Green Version]
- Almasi, A.; Zarei, M.; Raoufi, S.; Sarihi, A.; Salehi, I.; Komaki, A.; Hashemi-Firouzi, N.; Shahidi, S. Influence of hippocampal GABAB receptor inhibition on memory in rats with acute β-amyloid toxicity. Metab. Brain Dis. 2018, 33, 1859–1867. [Google Scholar] [CrossRef]
- Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 1996, 2, 864–870. [Google Scholar] [CrossRef]
- Kulik, Á.; Nakadate, K.; Nyíri, G.; Notomi, T.; Malitschek, B.; Bettler, B.; Shigemoto, R. Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur. J. Neurosci. 2002, 15, 291–307. [Google Scholar] [CrossRef]
- Luján, R.; Shigemoto, R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur. J. Neurosci. 2006, 23, 1479–1490. [Google Scholar] [CrossRef]
- Luján, R.; Nusser, Z.; Roberts, J.D.B.; Shigemoto, R.; Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 1996, 8, 1488–1500. [Google Scholar] [CrossRef]
- Tanaka, J.I.; Matsuzaki, M.; Tarusawa, E.; Momiyama, A.; Molnar, E.; Kasai, H.; Shigemoto, R. Number and density of AMPA receptors in single synapses in immature cerebellum. J. Neurosci. 2005, 25, 799–807. [Google Scholar] [CrossRef][Green Version]
- Merino-Serrais, P.; Knafo, S.; Alonso-Nanclares, L.; Fernaud-Espinosa, I.; Defelipe, J. Layer-specific alterations to CA1 dendritic spines in a mouse model of Alzheimer’s disease. Hippocampus 2011, 21, 1037–1044. [Google Scholar] [CrossRef]
- Spires, T.L.; Meyer-Luehmann, M.; Stern, E.A.; McLean, P.J.; Skoch, J.; Nguyen, P.T.; Bacskai, B.J.; Hyman, B.T. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 2005, 25, 7278–7287. [Google Scholar] [CrossRef]
- Knafo, S.; Alonso-Nanclares, L.; Gonzalez-Soriano, J.; Merino-Serrais, P.; Fernaud-Espinosa, I.; Ferrer, I.; DeFelipe, J. Widespread changes in dendritic spines in a model of Alzheimer’s Disease. Cereb. Cortex 2009, 19, 586–592. [Google Scholar] [CrossRef][Green Version]
- Merino-Serrais, P.; Benavides-Piccione, R.; Blazquez-Llorca, L.; Kastanauskaite, A.; Rábano, A.; Avila, J.; DeFelipe, J. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain 2013, 136, 1913–1928. [Google Scholar] [CrossRef]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef]
- Guo, J.L.; Lee, V.M.Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014, 20, 130–138. [Google Scholar] [CrossRef][Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Belmonte, A.; Aguado, C.; Alfaro-Ruíz, R.; Moreno-Martínez, A.E.; de la Ossa, L.; Martínez-Hernández, J.; Buisson, A.; Shigemoto, R.; Fukazawa, Y.; Luján, R. Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 2459. https://doi.org/10.3390/ijms21072459
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, de la Ossa L, Martínez-Hernández J, Buisson A, Shigemoto R, Fukazawa Y, Luján R. Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease. International Journal of Molecular Sciences. 2020; 21(7):2459. https://doi.org/10.3390/ijms21072459
Chicago/Turabian StyleMartín-Belmonte, Alejandro, Carolina Aguado, Rocío Alfaro-Ruíz, Ana Esther Moreno-Martínez, Luis de la Ossa, José Martínez-Hernández, Alain Buisson, Ryuichi Shigemoto, Yugo Fukazawa, and Rafael Luján. 2020. "Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease" International Journal of Molecular Sciences 21, no. 7: 2459. https://doi.org/10.3390/ijms21072459