Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin
Abstract
:1. Introduction
2. Results
2.1. Structural Analysis
2.2. Computational Results
2.3. Effect of Elevated Temperature of the Tested Formulations on the Survival of Caov-3 and OVCAR-3 Cells
2.4. Effect of Elevated Temperature of Tested Formulations on Caov-3 and OVCAR-3 Cell Mortality
2.5. Assessment of the Effects of the Tested Formulations on the Expression of Selected Genes on Caov-3 and OVCAR-3 Cells
3. Materials and Methods
3.1. Cambridge Structural Database Search
3.2. Molecular Hirshfeld Surface Analysis
3.3. Computational Methods
3.4. Cells and Reagents
3.5. Viability Assays
3.6. Cytotoxicity Assay
3.7. Real-Time PCR Amplification Product Quantitative Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Didkowska, J.; Wojciechowska, U. Cancer in Poland in 2013. Available online: http://onkologia.org.pl/wp-content/uploads/BIUL2013.pdf (accessed on 7 March 2020).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://onkologia.org.pl/wp-content/uploads/Nowotwory_2017.pdf (accessed on 7 March 2020).
- Available online: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html (accessed on 7 March 2020).
- Mądry, R. Chemotherapy for Ovarian Cancer. W: Oncological Gynaecology; Markowska, J., Ed.; Wydawnictwo Medyczne Urban & Part-ner: Wrocław, Poland, 2006; pp. 894–909. [Google Scholar]
- Ozols, R.F. Challenges for chemotherapy in ovarian cancer. Ann. Oncol. 2006, 17, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Raja, F.A.; Chopra, N.; Ledermann, J.A. Optimal first-line treatment in ovarian cancer. Ann. Oncol. 2012, 23, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Berkenblit, A.; Matulonis, U.A.; Kroener, J.F.; Dezube, B.J.; Lam, G.N.; Cuasay, L.C.; Brünner, N.; Jones, T.R.; Silverman, M.H.; Gold, M.A. A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: A phase I trial. Gynecol. Oncol. 2005, 99, 50–57. [Google Scholar] [CrossRef]
- Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA Cancer J. Clin. 2004, 54, 150–180. [Google Scholar] [CrossRef] [Green Version]
- Matlawska-Wasowska, K.; Rainczuk, K.; Kalinowska-Lis, U.; Osiecka, R.; Ochocki, J. Genotoxicity of novel trans-platinum(II) complex with diethyl (pyridin-4-ylmethyl) phosphate in human non-small cell lung cancer cells A549. Chem. Biol. Interact. 2007, 168, 135–142. [Google Scholar] [CrossRef]
- Herrera, J.M.; Mendes, F.; Gama, S.; Santos, I.; Navarro Ranninger, C.; Cabrera, S.; Quiroga, A.G. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg. Chem. 2014, 53, 12627–12634. [Google Scholar] [CrossRef]
- Fabijańska, M.; Studzian, K.; Szmigiero, L.; Rybarczyk-Pirek, A.J.; Pfitzner, A.; Cebula-Obrzut, B.; Smolewski, P.; Zyner, E.; Ochocki, J. trans-Platinum(II) complex of 3-aminoflavone-synthesis, X-ray crystal structure and biological activities in vitro. Dalton Trans. 2015, 44, 938–947. [Google Scholar] [CrossRef]
- Palazzi, M.; Maluta, S.; Dall’Oglio, S.; Romano, M. The role of hyperthermia in the battle against cancer. Tumori 2010, 96, 902–910. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56. [Google Scholar] [CrossRef]
- Horsman, M.R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. 2007, 19, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Timorek-Lemieszczuk, A.; Nalewczyńska, A.; Śpiewankiwicz, B. Zastosowanie hipertermii w onkologii. Curr. Gynecol. Oncol. 2009, 7, 264–269. [Google Scholar]
- Sato, I.; Umemuro, M.; Mitsudo, K.; Fukumura, H.; Jeong-Hwan, K.; Hoshino, Y.; Nakashima, H.; Kioi, M.; Nakakaji, R.; Sato, M.; et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci. Rep. 2016, 6, 24629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issels, R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Emi, Y.; Hasuda, S.; Kakeji, Y.; Maehara, Y.; Sugimachi, K. Clinical application of 13 hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery 2002, 131, S78–S84. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Agnoletti, V.; Amadori, A.; Catena, F.; Cavaliere, D.; Coccolini, F.; De Iaco, P.; Di Battista, M.; Framarini, M.; Gazzotti, F.; et al. Evaluation of extensive cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with advanced epithelial ovarian cancer. Int. J. Gynecol. Cancer 2012, 22, 778–785. [Google Scholar] [CrossRef]
- Cashin, P.H.; Graf, W.; Nygren, P.; Mahteme, H. Cytoreductive surgery and intraperitoneal chemotherapy for colorectal peritoneal carcinomatosis: Prognosis and treatment of recurrences in a cohort study. Eur. J. Surg. Oncol. 2012, 38, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Śpiewankiewicz, B.; Osuch, B.; Kuśnierz, J.; Symonides, M.; Smorczewska, M. Preliminary evaluation of the usefulness of peritoneal peritonealhyperthermic chemotherapy (HIPEC) in patients with neoplastic intraperitoneal dissemination. Curr. Gynecol. Oncol. 2013, 11, 33–41. [Google Scholar] [CrossRef]
- Rutkowski, P.; Śpiewankiewicz, B.; Herman, K.; Jastrzębski, T.; Kładny, J.; Kojs, Z.; Krzakowski, M.; Polkowski, W.; Wyrwicz, L.; Wysocki, P.; et al. Polish clinical practice guidelines on Hyperthermic Intraperitoneal Chemotherapy (HIPEC) with Cytoreductice Surgery (CRS) in peritoneal malignancy treatment. Curr. Gynecol. Oncol. 2014, 12, 86–97. [Google Scholar] [CrossRef]
- Polom, K.; Roviello, G.; Generali, D.; Marano, L.; Petrioli, R.; Marsili, S.; Caputo, E.; Marrelli, D.; Roviello, F. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for treatment of ovarian cancer. Int. J. Hyperther. 2016, 32, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Raudaschl, G.; Lippert, B.; Hoeschele, J.D.; Howard-Lock, H.E.; Lock, C.J.L.; Pilon, P. Adduct formation of cis-(NH3)2PtX2 (X = Cl−, I−) with formamides and the crystal structures of cis-(NH3)2PtCl2·(CH3)2NCHO. Application for the purification of the antitumor agent cisplatin. Inorg. Chim. Acta 1985, 106, 141–149. [Google Scholar] [CrossRef]
- Goto, M.; Tsutsui, H.; Matsuda, S.; Tanaka, Y.; Tsuruda, N.; Kurosaki, H. Structures of platinum(II) complexes of 2-aminomethylaziridine and S-2-aminomethylazetidine and correlation of anticancer activities of (2-aminomethylazacycloalkane)platinum(II) complexes with the geometry of the chelate rings formed with platinum(II). Chem. Pharm. Bull. 2004, 52, 47–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, L.T.; Hambley, T.W. Dichloro(ethylenediamine) platinum(II). Acta Crystallogr. Sect. CCryst. Struct. Commun. 1994, C50, 1888–1889. [Google Scholar] [CrossRef]
- Tsubomura, T.; Yano, S.; Kobayashi, K.; Sakurai, T.; Yoshikawa, S. First Synthesis and Characterization of Platinum(II) Complexes of Amino Sugars having Anti-tumour Activity; Crystal Structure of [PtCI2( methyl 2,3-diamino-2,3- dideoxy-a-~-mannopyranoside)]=H. J. Chem. Soc. Chem. Commun. 1986, 6, 459–460. [Google Scholar] [CrossRef]
- Witiak, D.T.; Rotella, D.P.; Filppi, J.A.; Gallucci, J. Stereocontrolled syntheses for the six diastereomeric 1,2-dihydroxy-4,5-diaminocyclohexanes: PtII complexes and P-388 antitumor properties. J. Med. Chem. 1987, 30, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Yongsheng, C.; Heeg, M.J.; Braunschweiger, P.G.; Wenhua, X.; Peng, G.W. A Carbohydrate-Linked Cisplatin Analogue Having Antitumor Activity. Angew. Chem. Int. Ed. 1999, 38, 1768–1769. [Google Scholar]
- Gust, R.; Schonenberger, H.; Kritzenberger, J.; Range, K.J.; Klement, U.; Burgemeister, T. Crystal Structure, Solution Chemistry, and Antitumor Activity of Diastereomeric [l,2-Bis(2-hydroxyphenyl)ethylenediamine] dichloroplatinum(II) Complexes. Inorg. Chem. 1993, 32, 5939–5950. [Google Scholar] [CrossRef]
- Zimmermann, W.; Galanski, M.; Keppler, B.K.; Giester, G. Synthesis and structures of (SP-4-2)-diiodobis(2-hydroxyethylamine)platinum(II),(SP-4-2)-dichlorobis(2-hydroxyethylamine)platinum(II) and (OC-6-22)-bis(2-hydroxyethylamine)tetrachloroplatinum(IV) in the crystal. Inorg. Chim. Acta 1999, 292, 127–130. [Google Scholar] [CrossRef]
- Hanessian, S.; Gauthier, J.-Y.; Okamoto, K.; Beauchamp, A.L.; Theophanides, T. Synthesis of diaminodideoxyalditol analogs of cisplatin as antitumor agents. Can. J. Chem. 1993, 71, 880–885. [Google Scholar] [CrossRef]
- Vickery, K.; Bonin, A.M.; Fenton, R.R.; O’Mara, S.; Russell, P.J.; Webster, L.K.; Hambley, T.W. Preparation, characterization, cytotoxicity, and mutagenicity of a pair of enantiomeric platinum (II) complexes with the potential to bind enantioselectively to DNA. J. Med. Chem. 1993, 36, 3663–3668. [Google Scholar] [CrossRef]
- Kirik, S.D.; Starkov, A.K. X-ray powder study of cis-dichloridobis(methylamine)platinum(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, m2685–m2686. [Google Scholar] [CrossRef]
- Wang, J.; Bennani, Y.L.; Belanger-Gariepy, F.; Hanessian, S. Structure of DL-dichloro(trans-1,2-diamino-trans-3,6-cyclohexanediol)platinum(II) monohydrate, [PtCl2(C6H14N2O2)].H2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1991, C47, 1067–1069. [Google Scholar] [CrossRef]
- Klement, U.; Range, K.J.; Gust, R. Crystal structure of [erythro-N-ethyl-1,2-bis(4-fluorophenyl)ethylenediamine]dichloroplatin(II), (FC6H4)2(CH)2(NH2)(NHC2H5)PtCl2. Kristallogr. 1996, 211, 849. [Google Scholar] [CrossRef]
- Odoko, M.; Okabe, N. Dichloro(propane-1,3-diamine-kappa2N,N’)platinum(II), dichloro(propane-1,3-diamine-kappa2N,N’)palladium(II) and mu-4,9-diazadodecane-1,12-diamine-kappa2N1,N4:kappa2N9,N12-bis[dichloroplatinum(II)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2006, C62, m136–m139. [Google Scholar] [CrossRef]
- Ming-Jin, X.; Xi-Zhu, C.; Wei-Ping, L.; Shu-Qian, H.; Qing-Shong, Y. cis-Dichlorido(N-cyclohexylpropane-1,3-diamine-κ2N,N′)platinum(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2007, E63, m1667. [Google Scholar]
- Sbovata, S.M.; Bettio, F.; Marzano, C.; Tassan, A.; Mozzon, M.; Bertani, R.; Benetollo, F.; Michelin, R.A. Synthesis, characterization and cytotoxic activity of substituted benzyl iminoether Pt(II) complexes of the type cis- and trans-[PtCl2{E-N(H)=C(OMe)CH2–C6H4–p–R}2] (R = Me, OMe, F). X-ray structure of trans-[PtCl2{E-N(H)=C(OMe)CH2–C6H4–p–F}2]. J. Inorg. Biochem. 2008, 102, 882–891. [Google Scholar] [CrossRef]
- Sbovata, S.M.; Bettio, F.; Marzano, C.; Mozzon, M.; Bertani, R.; Benetollo, F.; Michelin, R.A. Benzylamidine complexes of platinum(II) derived by nucleophilic addition of primary and secondary amines. X-ray crystal structure of trans-[PtCl2{Z-N(H)=C(NHMe)CH2Ph}2]. Inorg. Chim. Acta 2008, 361, 3109–3116. [Google Scholar] [CrossRef]
- Chomczyński, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Bürgi, H.B. Stereochemistry of Reaction Paths as Determined from Crystal Structure Data—A Relationship between Structure and Energy. Angew. Chem. Int. Ed. Engl. 1975, 14, 460. [Google Scholar] [CrossRef]
- Malik, M.; Michalska, D. Assessment of new DFT methods for predicting vibrational spectra and structure of cisplatin: Which density functional should we choose for studying platinum(II) complexes? Spectrochim. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Wysokiński, R.; Hernik, K.; Szostak, R.; Michalska, D. Electronic structure and vibrational spectra of cis-diammine-(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study. Chem. Phys. 2007, 333, 37–48. [Google Scholar]
- Dunitz, J.D. X-Ray Analysis and the Structure of Organic Molecules; Cornell University Press: Ithaca, NY, USA; London, UK, 1979. [Google Scholar]
- Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Burda, J.V.; Zeizinger, M.; Leszczynski, J. Hydration Process as an Activation of Trans- and Cisplatin Complexes in Anticancer Treatment. DFT andAb InitioComputational Study of Thermodynamic andKinetic Parameters. J. Comput. Chem. 2005, 26, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Parcellier, A.; Gurbuxani, S.; Schmitt, E. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Commun. 2003, 304, 505–512. [Google Scholar] [CrossRef]
- Łabędzka, K.; Izdebska, M. Mitochondrium a śmierć komórki. Postępy Hig. Med. Dośw. 2006, 60, 439–446. [Google Scholar]
- Pivovarova, A.V.; Mikhailova, V.V. Effects of small heat shock proteins non the thermal denaturation and aggregation of F-actin. Biochem. Biophys. Res. Commun. 2005, 331, 1548–1553. [Google Scholar] [CrossRef]
- Kaźmierczuk, A.; Kiliańska, Z.M. Rola białek szoku cieplnego w apoptozie komórek. Postępy Hig. Med. Dośw. 2010, 64, 273–283. [Google Scholar]
- Mirkes, P.E. Molecular cellular biology of the heat stress response and its role in agent-induced teratogenesis. Mutat. Res. 1997, 396, 163–173. [Google Scholar] [CrossRef]
- Jolesch, A.; Elmer, K.; Bendz, H.; Issels, R.D.; Noessner, E. Hsp70, a messenger from hyperthermia for the immune system. Eur. J. Cell Biol. 2012, 91, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Hurwitz, M.D.; Krishnan, S.; Asea, A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 2011, 30, 3799–3823. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W. Effect of local hyperthermia on blood flow and microenvironment: A review. Cancer Res. 1984, 44, 4721–4730. [Google Scholar]
- Colombo, R.; Salonia, A.; Da Pozzo, L.F.; Naspro, R.; Freschi, M.; Paroni, R. Combination of intravesical chemotherapy and hyperthermia for the treatment of superficial bladder cancer: Preliminary clinical experience. Crit. Rev. Oncol. Hematol. 2003, 47, 127–139. [Google Scholar] [CrossRef]
- Konings, A.W.T.; Heitinga, W.V.E.; Lemstra, W.; Humphrey, G.B.; Kampinga, H.H. Sensitizing for cis-diamminedichloroplatinum(II) action by hyperthermia in resistant cells. Int. J. Hyperther. 1993, 9, 553–562. [Google Scholar] [CrossRef]
- Hettinga, J.V.; Lemstra, W.; Meijer, C.; Mulder, N.H.; Konings, A.W.; de Vries, E.G.; Kampinga, H.H. Hyperthermic potentiation of cisplatin toxicity in a human small cell lung carcinoma cell line and a cisplatin resistant subline. Int. J. Hyperther. 1994, 10, 795–805. [Google Scholar] [CrossRef]
- Helm, C.W.; Richard, S.D.; Pan, J.; Bartlett, D.; Goodman, M.D.; Hoefer, R.; Lentz, S.S.; Levine, E.A.; Loggie, B.W.; Metzinger, D.S.; et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer: First report of the HYPER-O registry. Int. J. Gynecol. Cancer 2010, 20, 61–69. [Google Scholar] [CrossRef]
- Van der Heijden, A.G.; Verhaegh, G.; Jansen, C.F.; Schalken, J.A.; Witjes, J.A. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: An in vitro study. J. Urol. 2005, 173, 1375–1380. [Google Scholar] [CrossRef]
- Xu, M.J.; Alberts, D.S. Potentiation of platinum analogue cytotoxicity by hyperthermia. Cancer Chemother. Pharmacol. 1988, 21, 191–196. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P. Interactions between hyperthermia and cytotoxic drugs. Cancer Treat. Res. 2007, 134, 185–193. [Google Scholar]
- Hahn, G.M.; Li, G.C. Interactions of hyperthermia and drugs: Treatments and probes. Natl. Cancer Inst. Monogr. 1982, 61, 317–323. [Google Scholar]
- Barnes, A.P.; Miller, B.E.; Kucera, G.L. Cyclooxygenase inhibition and hyperthermia for the potentiation of the cytotoxic response in ovarian cancer cells. Gynecol. Oncol. 2007, 104, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Haveman, J.; Bergs, J.W.; Franken, N.A.; van Bree, C.; Stalpers, L.J. Effect of hyperthermia on uptake and cytotoxicity of cisplatin in cultured murine mammary carcinoma cells. Oncol. Rep. 2005, 14, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Othman, T.; Goto, S.; Lee, J.B.; Taimura, A.; Matsumoto, T.; Kosaka, M. Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 2001, 62, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Schrump, D.S.; Zhai, S.; Nguyen, D.M.; Weiser, T.S.; Fisher, B.A.; Terrill, R.E.; Flynn, B.M.; Duray, P.H.; Figg, W.D. Pharmacokinetics of paclitaxel administered by hyperthermic retrograde isolated lung perfusion techniques. J. Thorac. Cardiovasc. Surg. 2002, 123, 686–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, F.; Marchettini, P.; Stuart, O.A.; Urano, M.; Sugarbaker, P.H. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann. Surg. Oncol. 2003, 10, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Robins, H.I.; Javid, M.J. Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. J. Neurooncol. 1990, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, T.; Zhang, Y.; Zheng, Z.; Yu, S.; Jing, S.; Chen, S.; Jiang, H.; Ma, S. Anticancer effects of β-elemene with hyperthermia in lung cancer cells. Exp. Ther. Med. 2017, 13, 3153–3157. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Jiang, H.; Su, D.; Feng, J.; Ma, S.; Zhu, X. Inhibition of cell proliferation by mild hyperthermia at 43 °C with Paris Saponin I in the lung adenocarcinoma cell line PC-9. Mol. Med. Rep. 2015, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Fabbiani, F.P.A.; Spackman, M.A. Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. Cryst. Growth Des. 2007, 7, 755–769. [Google Scholar] [CrossRef]
- Chopra, D. Advances in Understanding of Chemical Bonding: Inputs from Experimental and Theoretical Charge Density. Anal. Phys. Chem. A 2012, 116, 9791–9801. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. Cryst. Eng. Comm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Rybarczyk-Pirek, A.J.; Łukomska-Rogala, M.; Wojtulewski, S.; Palusiak, M. N-oxide as a proton accepting group in multicomponent crystals: X-ray and theoretical studies o. new p-nitropyridine-N-oxide co-crystals. Cryst. Growth Des. 2015, 15, 5802–5815. [Google Scholar] [CrossRef]
- Łukomska-Rogala, M.; Rybarczyk-Pirek, A.J.; Ejsmont, K.; Jasiński, M.; Palusiak, M. Non-covalent interactions of N-phenyl-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide derivatives -a case ofintramolecular N-oxide hydrogen bonds. Struct. Chem. 2017, 28, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Rybarczyk-Pirek, A.J.; Chęcińska, L.; Małecka, M.; Wojtulewski, S. Intermolecular interactions of trichloromethyl group in the crystal state, the case of 2-trichloromethyl-3H-4-quinazoline polymorphs and 1-methyl-2-trichloroacetylpyrrole -Hirshfeld surface analysis of chlorine halogen bonding. Cryst. Growth Des. 2013, 13, 3913–3924. [Google Scholar] [CrossRef]
- Chęcińska, L.; Grabowsky, S.; Małecka, M.; Rybarczyk-Pirek, A.J.; Jóźwiak, A.; Paulmann, C.; Luger, P. Experimental and theoretical electron-density study of three isoindole derivatives: Topological and Hirshfeld surface analysis of weak intermolecular interactions. Acta Crystallogr. 2011, B67, 569–581. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Program, M.J.; Frisch, G.W.; Trucks, H.B.; Schlegel, G.E.; Scuseria, M.A.; Robb, J.R.; Cheeseman, G.; Scalmani, V.; Barone, G.A.; Petersson, H.; et al. Gaussian09, Revision, D.01, Gaussian, Inc., Wallingford, CT. 2009. Available online: http://www.gaussian.com (accessed on 20 April 2019).
- Bader, R.F.W. Atomsin Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Łukomska, M.; Rybarczyk-Pirek, A.J.; Jabłoński, M.; Palusiak, M. The nature of NO-bonding in N-oxide group. Phys. Chem. Chem. Phys. 2015, 17, 16375–16387. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk-Pirek, A.J.; Małecka, M.; Palusiak, M. Use of Quantum Theory of Atoms in Molecules in the Search for Appropriate Hydrogen Atom Locations in X-ray Diffraction Based Studies. Cryst. Growth. Des. 2016, 16, 6841–6848. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Rybarczyk-Pirek, A.J.; Wojtulewski, S.; Pindelska, E.; Palusiak, M. Oxidation of 2-mercaptopyridine N-oxide upon iodine agent: Structural and FT-IR studies on charge-assisted hydrogen bonds CAHB(+) and I…I halogen interactions in 2,2′-dithiobis(pyridine N-oxide) ionic cocrystal. Struct. Chem. 2019, 30, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Keith, T.A. AIMAll Professional (Version 14.10.27), TK Gristmill Software, Overland Park KS. 2014. Available online: aim.tkgristmill.com (accessed on 14 May 2019).
- Orzechowska, M.; Fabijańska, M.; Ochocki, J.; Małecki, M. Anticancer activity of a trans-platinum(II) complex of 3-aminoflavone to ovarian cancer cells. Ginekol. Pol. 2017, 88, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, R.J.; Harris, M.L.; Ménoret, A.; Srivastava, P.K. Saturation, Competition, and Specificity in Interaction of Heat Shock Proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ Cells. J. Immunol. 2000, 165, 2582–2587. [Google Scholar] [CrossRef] [Green Version]
Refcode | Pt…Pt | Pt…H | Pt…All | Cl…H | Pt…Pt/Pt…All | Pt…H/Pt…All |
---|---|---|---|---|---|---|
trans | ||||||
MONVIW | - | - | - | 8.5 | - | - |
RIWCEG | 0.5 | 0.3 | 0.8 | 11.5 | 0.63 | 0.38 |
VOHBAW | - | 1.5 | 1.9 | 10.3 | - | 0.79 |
cis | ||||||
BERDAE | 1.0 | 2.6 | 4.2 | 36.1 | 0.24 | 0.62 |
BERDEI | 0.3 | 2.7 | 3.1 | 33.4 | 0.10 | 0.87 |
CCENPT01 | 2.5 | 1.6 | 4.1 | 38.7 | 0.61 | 0.39 |
CUKRAB01 | 1.8 | 3.6 | 5.4 | 43.5 | 0.33 | 0.67 |
DIVXOV | - | 1.3 | 1.8 | 20.5 | - | 0.72 |
FITFUJ | 0.9 | 1.3 | 2.5 | 21.2 | 0.36 | 0.52 |
KIPSEH | - | 2.8 | 2.9 | 30.0 | - | 0.97 |
LAYZEQ | 0.4 | 1.6 | 2.0 | 18.3 | 0.20 | 0.80 |
LIXTOB | - | 0.1 | 0.1 | 25.1 | - | 1.00 |
PEXTIV | 0.9 | 1.5 | 2.9 | 24.9 | 0.31 | 0.52 |
PIFGIU | - | - | - | 19.4 | - | - |
SUDMIN02 | 1.5 | 1.4 | 3.2 | 32.4 | 0.47 | 0.44 |
TAJTED | 1.2 | 1.2 | 3.0 | 25.9 | 0.40 | 0.40 |
UCIZUC | 2.1 | 1.4 | 3.6 | 34.2 | 0.58 | 0.39 |
YIDVUD | 0.1 | 0.6 | 0.8 | 21.9 | 0.13 | 0.75 |
Bond | Crystal Structure | Optimized Structure |
---|---|---|
Pt1-N3 | 2.064(5) | 2.100 |
Pt1-Cl1 | 2.298(1) | 2.340 |
O1-C2 | 1.366(7) | 1.360 |
O1-C9 | 1.374(7) | 1.363 |
C2-C3 | 1.355(8) | 1.358 |
C2-C11 | 1.479(8) | 1.473 |
C3-N3 | 1.443(7) | 1.433 |
C3-C4 | 1.451(8) | 1.461 |
C4-O4 | 1.231(7) | 1.228 |
C4-C10 | 1.460(8) | 1.461 |
N3-Pt1-Cl1 | 92.7(1) | 95.7 |
Pt1-N3-C3 | 121.7(4) | 121.0 |
C2-O1-C9 | 120.0(4) | 121.6 |
O1-C2-C3 | 121.4(5) | 120.2 |
O1-C2-C11 | 111.2(5) | 111.3 |
C3-C2-C11 | 127.3(5) | 128.4 |
C2-C3-N3 | 122.0(5) | 125.0 |
C2-C3-C4 | 122.2(5) | 122.1 |
N3-C3-C4 | 115.7(5) | 112.9 |
O4-C4-C3 | 122.1(5) | 120.7 |
O4-C4-C10 | 123.0(5) | 124.2 |
C3-C4-C10 | 114.8(5) | 115.4 |
C3-C2-C11-C12 | −56.5(8) | −38.3 |
C4-C3-C2-C11 | −179.4(5) | −172.5 |
Pt1-N3-C3-C2 | 88.0(6) | 89.5 |
Complex | Bond Type | d | ρBCP | ∇2ρBCP | GBCP | VBCP | HBCP |
---|---|---|---|---|---|---|---|
cis-Pt(NH3)2Cl2 | Pt-N | 2.109 | 0.1033 | 0.3584 | 0.1210 | −0.1526 | −0.0317 |
Pt-Cl | 2.305 | 0.1026 | 0.1947 | 0.0878 | −0.1271 | −0.0393 | |
trans-Pt(NH3)2Cl2 | Pt-N | 2.059 | 0.1160 | 0.3962 | 0.1387 | −0.1789 | −0.0401 |
Pt-Cl | 2.333 | 0.0957 | 0.2031 | 0.0847 | −0.1187 | −0.0341 | |
trans-Pt(3-af )2Cl2 | Pt-N | 2.100 | 0.1074 | 0.3355 | 0.1193 | −0.1550 | −0.0357 |
Pt-Cl | 2.340 | 0.0944 | 0.1996 | 0.0830 | −0.1163 | −0.0333 |
Drugs | Caov-3 | OVCAR-3 |
---|---|---|
Cisplatin | 10 µM | 50 µM |
Trans-Pt(3-af)2Cl2 | 10 µM | 50 µM |
Carboplatin | 10 µM | 25 µM |
Paclitaxel | 10 µM | 5 µM |
Gen | Probe Number |
---|---|
BAX | Hs 00180269-m1 |
BIRC5 | Hs 00153353-m1 |
CASP3 | Hs 00234387-m1 |
ACTB | Hs 01060665-g1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabijańska, M.; Orzechowska, M.; Rybarczyk-Pirek, A.J.; Dominikowska, J.; Bieńkowska, A.; Małecki, M.; Ochocki, J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int. J. Mol. Sci. 2020, 21, 2116. https://doi.org/10.3390/ijms21062116
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. International Journal of Molecular Sciences. 2020; 21(6):2116. https://doi.org/10.3390/ijms21062116
Chicago/Turabian StyleFabijańska, Małgorzata, Magdalena Orzechowska, Agnieszka J. Rybarczyk-Pirek, Justyna Dominikowska, Alicja Bieńkowska, Maciej Małecki, and Justyn Ochocki. 2020. "Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin" International Journal of Molecular Sciences 21, no. 6: 2116. https://doi.org/10.3390/ijms21062116
APA StyleFabijańska, M., Orzechowska, M., Rybarczyk-Pirek, A. J., Dominikowska, J., Bieńkowska, A., Małecki, M., & Ochocki, J. (2020). Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. International Journal of Molecular Sciences, 21(6), 2116. https://doi.org/10.3390/ijms21062116