Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin
Abstract
1. Introduction
2. Results
2.1. Structural Analysis
2.2. Computational Results
2.3. Effect of Elevated Temperature of the Tested Formulations on the Survival of Caov-3 and OVCAR-3 Cells
2.4. Effect of Elevated Temperature of Tested Formulations on Caov-3 and OVCAR-3 Cell Mortality
2.5. Assessment of the Effects of the Tested Formulations on the Expression of Selected Genes on Caov-3 and OVCAR-3 Cells
3. Materials and Methods
3.1. Cambridge Structural Database Search
3.2. Molecular Hirshfeld Surface Analysis
3.3. Computational Methods
3.4. Cells and Reagents
3.5. Viability Assays
3.6. Cytotoxicity Assay
3.7. Real-Time PCR Amplification Product Quantitative Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Didkowska, J.; Wojciechowska, U. Cancer in Poland in 2013. Available online: http://onkologia.org.pl/wp-content/uploads/BIUL2013.pdf (accessed on 7 March 2020).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://onkologia.org.pl/wp-content/uploads/Nowotwory_2017.pdf (accessed on 7 March 2020).
- Available online: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html (accessed on 7 March 2020).
- Mądry, R. Chemotherapy for Ovarian Cancer. W: Oncological Gynaecology; Markowska, J., Ed.; Wydawnictwo Medyczne Urban & Part-ner: Wrocław, Poland, 2006; pp. 894–909. [Google Scholar]
- Ozols, R.F. Challenges for chemotherapy in ovarian cancer. Ann. Oncol. 2006, 17, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Raja, F.A.; Chopra, N.; Ledermann, J.A. Optimal first-line treatment in ovarian cancer. Ann. Oncol. 2012, 23, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Berkenblit, A.; Matulonis, U.A.; Kroener, J.F.; Dezube, B.J.; Lam, G.N.; Cuasay, L.C.; Brünner, N.; Jones, T.R.; Silverman, M.H.; Gold, M.A. A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: A phase I trial. Gynecol. Oncol. 2005, 99, 50–57. [Google Scholar] [CrossRef]
- Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA Cancer J. Clin. 2004, 54, 150–180. [Google Scholar] [CrossRef]
- Matlawska-Wasowska, K.; Rainczuk, K.; Kalinowska-Lis, U.; Osiecka, R.; Ochocki, J. Genotoxicity of novel trans-platinum(II) complex with diethyl (pyridin-4-ylmethyl) phosphate in human non-small cell lung cancer cells A549. Chem. Biol. Interact. 2007, 168, 135–142. [Google Scholar] [CrossRef]
- Herrera, J.M.; Mendes, F.; Gama, S.; Santos, I.; Navarro Ranninger, C.; Cabrera, S.; Quiroga, A.G. Design and biological evaluation of new platinum(II) complexes bearing ligands with DNA-targeting ability. Inorg. Chem. 2014, 53, 12627–12634. [Google Scholar] [CrossRef]
- Fabijańska, M.; Studzian, K.; Szmigiero, L.; Rybarczyk-Pirek, A.J.; Pfitzner, A.; Cebula-Obrzut, B.; Smolewski, P.; Zyner, E.; Ochocki, J. trans-Platinum(II) complex of 3-aminoflavone-synthesis, X-ray crystal structure and biological activities in vitro. Dalton Trans. 2015, 44, 938–947. [Google Scholar] [CrossRef]
- Palazzi, M.; Maluta, S.; Dall’Oglio, S.; Romano, M. The role of hyperthermia in the battle against cancer. Tumori 2010, 96, 902–910. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56. [Google Scholar] [CrossRef]
- Horsman, M.R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. 2007, 19, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Timorek-Lemieszczuk, A.; Nalewczyńska, A.; Śpiewankiwicz, B. Zastosowanie hipertermii w onkologii. Curr. Gynecol. Oncol. 2009, 7, 264–269. [Google Scholar]
- Sato, I.; Umemuro, M.; Mitsudo, K.; Fukumura, H.; Jeong-Hwan, K.; Hoshino, Y.; Nakashima, H.; Kioi, M.; Nakakaji, R.; Sato, M.; et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci. Rep. 2016, 6, 24629. [Google Scholar] [CrossRef] [PubMed]
- Issels, R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Emi, Y.; Hasuda, S.; Kakeji, Y.; Maehara, Y.; Sugimachi, K. Clinical application of 13 hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery 2002, 131, S78–S84. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Agnoletti, V.; Amadori, A.; Catena, F.; Cavaliere, D.; Coccolini, F.; De Iaco, P.; Di Battista, M.; Framarini, M.; Gazzotti, F.; et al. Evaluation of extensive cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with advanced epithelial ovarian cancer. Int. J. Gynecol. Cancer 2012, 22, 778–785. [Google Scholar] [CrossRef]
- Cashin, P.H.; Graf, W.; Nygren, P.; Mahteme, H. Cytoreductive surgery and intraperitoneal chemotherapy for colorectal peritoneal carcinomatosis: Prognosis and treatment of recurrences in a cohort study. Eur. J. Surg. Oncol. 2012, 38, 509–515. [Google Scholar] [CrossRef]
- Śpiewankiewicz, B.; Osuch, B.; Kuśnierz, J.; Symonides, M.; Smorczewska, M. Preliminary evaluation of the usefulness of peritoneal peritonealhyperthermic chemotherapy (HIPEC) in patients with neoplastic intraperitoneal dissemination. Curr. Gynecol. Oncol. 2013, 11, 33–41. [Google Scholar] [CrossRef]
- Rutkowski, P.; Śpiewankiewicz, B.; Herman, K.; Jastrzębski, T.; Kładny, J.; Kojs, Z.; Krzakowski, M.; Polkowski, W.; Wyrwicz, L.; Wysocki, P.; et al. Polish clinical practice guidelines on Hyperthermic Intraperitoneal Chemotherapy (HIPEC) with Cytoreductice Surgery (CRS) in peritoneal malignancy treatment. Curr. Gynecol. Oncol. 2014, 12, 86–97. [Google Scholar] [CrossRef]
- Polom, K.; Roviello, G.; Generali, D.; Marano, L.; Petrioli, R.; Marsili, S.; Caputo, E.; Marrelli, D.; Roviello, F. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for treatment of ovarian cancer. Int. J. Hyperther. 2016, 32, 298–310. [Google Scholar] [CrossRef]
- Raudaschl, G.; Lippert, B.; Hoeschele, J.D.; Howard-Lock, H.E.; Lock, C.J.L.; Pilon, P. Adduct formation of cis-(NH3)2PtX2 (X = Cl−, I−) with formamides and the crystal structures of cis-(NH3)2PtCl2·(CH3)2NCHO. Application for the purification of the antitumor agent cisplatin. Inorg. Chim. Acta 1985, 106, 141–149. [Google Scholar] [CrossRef]
- Goto, M.; Tsutsui, H.; Matsuda, S.; Tanaka, Y.; Tsuruda, N.; Kurosaki, H. Structures of platinum(II) complexes of 2-aminomethylaziridine and S-2-aminomethylazetidine and correlation of anticancer activities of (2-aminomethylazacycloalkane)platinum(II) complexes with the geometry of the chelate rings formed with platinum(II). Chem. Pharm. Bull. 2004, 52, 47–50. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ellis, L.T.; Hambley, T.W. Dichloro(ethylenediamine) platinum(II). Acta Crystallogr. Sect. CCryst. Struct. Commun. 1994, C50, 1888–1889. [Google Scholar] [CrossRef]
- Tsubomura, T.; Yano, S.; Kobayashi, K.; Sakurai, T.; Yoshikawa, S. First Synthesis and Characterization of Platinum(II) Complexes of Amino Sugars having Anti-tumour Activity; Crystal Structure of [PtCI2( methyl 2,3-diamino-2,3- dideoxy-a-~-mannopyranoside)]=H. J. Chem. Soc. Chem. Commun. 1986, 6, 459–460. [Google Scholar] [CrossRef]
- Witiak, D.T.; Rotella, D.P.; Filppi, J.A.; Gallucci, J. Stereocontrolled syntheses for the six diastereomeric 1,2-dihydroxy-4,5-diaminocyclohexanes: PtII complexes and P-388 antitumor properties. J. Med. Chem. 1987, 30, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Yongsheng, C.; Heeg, M.J.; Braunschweiger, P.G.; Wenhua, X.; Peng, G.W. A Carbohydrate-Linked Cisplatin Analogue Having Antitumor Activity. Angew. Chem. Int. Ed. 1999, 38, 1768–1769. [Google Scholar]
- Gust, R.; Schonenberger, H.; Kritzenberger, J.; Range, K.J.; Klement, U.; Burgemeister, T. Crystal Structure, Solution Chemistry, and Antitumor Activity of Diastereomeric [l,2-Bis(2-hydroxyphenyl)ethylenediamine] dichloroplatinum(II) Complexes. Inorg. Chem. 1993, 32, 5939–5950. [Google Scholar] [CrossRef]
- Zimmermann, W.; Galanski, M.; Keppler, B.K.; Giester, G. Synthesis and structures of (SP-4-2)-diiodobis(2-hydroxyethylamine)platinum(II),(SP-4-2)-dichlorobis(2-hydroxyethylamine)platinum(II) and (OC-6-22)-bis(2-hydroxyethylamine)tetrachloroplatinum(IV) in the crystal. Inorg. Chim. Acta 1999, 292, 127–130. [Google Scholar] [CrossRef]
- Hanessian, S.; Gauthier, J.-Y.; Okamoto, K.; Beauchamp, A.L.; Theophanides, T. Synthesis of diaminodideoxyalditol analogs of cisplatin as antitumor agents. Can. J. Chem. 1993, 71, 880–885. [Google Scholar] [CrossRef]
- Vickery, K.; Bonin, A.M.; Fenton, R.R.; O’Mara, S.; Russell, P.J.; Webster, L.K.; Hambley, T.W. Preparation, characterization, cytotoxicity, and mutagenicity of a pair of enantiomeric platinum (II) complexes with the potential to bind enantioselectively to DNA. J. Med. Chem. 1993, 36, 3663–3668. [Google Scholar] [CrossRef]
- Kirik, S.D.; Starkov, A.K. X-ray powder study of cis-dichloridobis(methylamine)platinum(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, m2685–m2686. [Google Scholar] [CrossRef]
- Wang, J.; Bennani, Y.L.; Belanger-Gariepy, F.; Hanessian, S. Structure of DL-dichloro(trans-1,2-diamino-trans-3,6-cyclohexanediol)platinum(II) monohydrate, [PtCl2(C6H14N2O2)].H2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1991, C47, 1067–1069. [Google Scholar] [CrossRef]
- Klement, U.; Range, K.J.; Gust, R. Crystal structure of [erythro-N-ethyl-1,2-bis(4-fluorophenyl)ethylenediamine]dichloroplatin(II), (FC6H4)2(CH)2(NH2)(NHC2H5)PtCl2. Kristallogr. 1996, 211, 849. [Google Scholar] [CrossRef]
- Odoko, M.; Okabe, N. Dichloro(propane-1,3-diamine-kappa2N,N’)platinum(II), dichloro(propane-1,3-diamine-kappa2N,N’)palladium(II) and mu-4,9-diazadodecane-1,12-diamine-kappa2N1,N4:kappa2N9,N12-bis[dichloroplatinum(II)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2006, C62, m136–m139. [Google Scholar] [CrossRef]
- Ming-Jin, X.; Xi-Zhu, C.; Wei-Ping, L.; Shu-Qian, H.; Qing-Shong, Y. cis-Dichlorido(N-cyclohexylpropane-1,3-diamine-κ2N,N′)platinum(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2007, E63, m1667. [Google Scholar]
- Sbovata, S.M.; Bettio, F.; Marzano, C.; Tassan, A.; Mozzon, M.; Bertani, R.; Benetollo, F.; Michelin, R.A. Synthesis, characterization and cytotoxic activity of substituted benzyl iminoether Pt(II) complexes of the type cis- and trans-[PtCl2{E-N(H)=C(OMe)CH2–C6H4–p–R}2] (R = Me, OMe, F). X-ray structure of trans-[PtCl2{E-N(H)=C(OMe)CH2–C6H4–p–F}2]. J. Inorg. Biochem. 2008, 102, 882–891. [Google Scholar] [CrossRef]
- Sbovata, S.M.; Bettio, F.; Marzano, C.; Mozzon, M.; Bertani, R.; Benetollo, F.; Michelin, R.A. Benzylamidine complexes of platinum(II) derived by nucleophilic addition of primary and secondary amines. X-ray crystal structure of trans-[PtCl2{Z-N(H)=C(NHMe)CH2Ph}2]. Inorg. Chim. Acta 2008, 361, 3109–3116. [Google Scholar] [CrossRef]
- Chomczyński, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Bürgi, H.B. Stereochemistry of Reaction Paths as Determined from Crystal Structure Data—A Relationship between Structure and Energy. Angew. Chem. Int. Ed. Engl. 1975, 14, 460. [Google Scholar] [CrossRef]
- Malik, M.; Michalska, D. Assessment of new DFT methods for predicting vibrational spectra and structure of cisplatin: Which density functional should we choose for studying platinum(II) complexes? Spectrochim. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Wysokiński, R.; Hernik, K.; Szostak, R.; Michalska, D. Electronic structure and vibrational spectra of cis-diammine-(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study. Chem. Phys. 2007, 333, 37–48. [Google Scholar]
- Dunitz, J.D. X-Ray Analysis and the Structure of Organic Molecules; Cornell University Press: Ithaca, NY, USA; London, UK, 1979. [Google Scholar]
- Bondi, A. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Burda, J.V.; Zeizinger, M.; Leszczynski, J. Hydration Process as an Activation of Trans- and Cisplatin Complexes in Anticancer Treatment. DFT andAb InitioComputational Study of Thermodynamic andKinetic Parameters. J. Comput. Chem. 2005, 26, 907–914. [Google Scholar] [CrossRef]
- Parcellier, A.; Gurbuxani, S.; Schmitt, E. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Commun. 2003, 304, 505–512. [Google Scholar] [CrossRef]
- Łabędzka, K.; Izdebska, M. Mitochondrium a śmierć komórki. Postępy Hig. Med. Dośw. 2006, 60, 439–446. [Google Scholar]
- Pivovarova, A.V.; Mikhailova, V.V. Effects of small heat shock proteins non the thermal denaturation and aggregation of F-actin. Biochem. Biophys. Res. Commun. 2005, 331, 1548–1553. [Google Scholar] [CrossRef]
- Kaźmierczuk, A.; Kiliańska, Z.M. Rola białek szoku cieplnego w apoptozie komórek. Postępy Hig. Med. Dośw. 2010, 64, 273–283. [Google Scholar]
- Mirkes, P.E. Molecular cellular biology of the heat stress response and its role in agent-induced teratogenesis. Mutat. Res. 1997, 396, 163–173. [Google Scholar] [CrossRef]
- Jolesch, A.; Elmer, K.; Bendz, H.; Issels, R.D.; Noessner, E. Hsp70, a messenger from hyperthermia for the immune system. Eur. J. Cell Biol. 2012, 91, 48–52. [Google Scholar] [CrossRef]
- Kaur, P.; Hurwitz, M.D.; Krishnan, S.; Asea, A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 2011, 30, 3799–3823. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W. Effect of local hyperthermia on blood flow and microenvironment: A review. Cancer Res. 1984, 44, 4721–4730. [Google Scholar]
- Colombo, R.; Salonia, A.; Da Pozzo, L.F.; Naspro, R.; Freschi, M.; Paroni, R. Combination of intravesical chemotherapy and hyperthermia for the treatment of superficial bladder cancer: Preliminary clinical experience. Crit. Rev. Oncol. Hematol. 2003, 47, 127–139. [Google Scholar] [CrossRef]
- Konings, A.W.T.; Heitinga, W.V.E.; Lemstra, W.; Humphrey, G.B.; Kampinga, H.H. Sensitizing for cis-diamminedichloroplatinum(II) action by hyperthermia in resistant cells. Int. J. Hyperther. 1993, 9, 553–562. [Google Scholar] [CrossRef]
- Hettinga, J.V.; Lemstra, W.; Meijer, C.; Mulder, N.H.; Konings, A.W.; de Vries, E.G.; Kampinga, H.H. Hyperthermic potentiation of cisplatin toxicity in a human small cell lung carcinoma cell line and a cisplatin resistant subline. Int. J. Hyperther. 1994, 10, 795–805. [Google Scholar] [CrossRef]
- Helm, C.W.; Richard, S.D.; Pan, J.; Bartlett, D.; Goodman, M.D.; Hoefer, R.; Lentz, S.S.; Levine, E.A.; Loggie, B.W.; Metzinger, D.S.; et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer: First report of the HYPER-O registry. Int. J. Gynecol. Cancer 2010, 20, 61–69. [Google Scholar] [CrossRef]
- Van der Heijden, A.G.; Verhaegh, G.; Jansen, C.F.; Schalken, J.A.; Witjes, J.A. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: An in vitro study. J. Urol. 2005, 173, 1375–1380. [Google Scholar] [CrossRef]
- Xu, M.J.; Alberts, D.S. Potentiation of platinum analogue cytotoxicity by hyperthermia. Cancer Chemother. Pharmacol. 1988, 21, 191–196. [Google Scholar] [CrossRef]
- Hildebrandt, B.; Wust, P. Interactions between hyperthermia and cytotoxic drugs. Cancer Treat. Res. 2007, 134, 185–193. [Google Scholar]
- Hahn, G.M.; Li, G.C. Interactions of hyperthermia and drugs: Treatments and probes. Natl. Cancer Inst. Monogr. 1982, 61, 317–323. [Google Scholar]
- Barnes, A.P.; Miller, B.E.; Kucera, G.L. Cyclooxygenase inhibition and hyperthermia for the potentiation of the cytotoxic response in ovarian cancer cells. Gynecol. Oncol. 2007, 104, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Haveman, J.; Bergs, J.W.; Franken, N.A.; van Bree, C.; Stalpers, L.J. Effect of hyperthermia on uptake and cytotoxicity of cisplatin in cultured murine mammary carcinoma cells. Oncol. Rep. 2005, 14, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Othman, T.; Goto, S.; Lee, J.B.; Taimura, A.; Matsumoto, T.; Kosaka, M. Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 2001, 62, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Schrump, D.S.; Zhai, S.; Nguyen, D.M.; Weiser, T.S.; Fisher, B.A.; Terrill, R.E.; Flynn, B.M.; Duray, P.H.; Figg, W.D. Pharmacokinetics of paclitaxel administered by hyperthermic retrograde isolated lung perfusion techniques. J. Thorac. Cardiovasc. Surg. 2002, 123, 686–694. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mohamed, F.; Marchettini, P.; Stuart, O.A.; Urano, M.; Sugarbaker, P.H. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann. Surg. Oncol. 2003, 10, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Robins, H.I.; Javid, M.J. Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. J. Neurooncol. 1990, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, T.; Zhang, Y.; Zheng, Z.; Yu, S.; Jing, S.; Chen, S.; Jiang, H.; Ma, S. Anticancer effects of β-elemene with hyperthermia in lung cancer cells. Exp. Ther. Med. 2017, 13, 3153–3157. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, H.; Su, D.; Feng, J.; Ma, S.; Zhu, X. Inhibition of cell proliferation by mild hyperthermia at 43 °C with Paris Saponin I in the lung adenocarcinoma cell line PC-9. Mol. Med. Rep. 2015, 11, 27–32. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Fabbiani, F.P.A.; Spackman, M.A. Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis. Cryst. Growth Des. 2007, 7, 755–769. [Google Scholar] [CrossRef]
- Chopra, D. Advances in Understanding of Chemical Bonding: Inputs from Experimental and Theoretical Charge Density. Anal. Phys. Chem. A 2012, 116, 9791–9801. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. Cryst. Eng. Comm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Rybarczyk-Pirek, A.J.; Łukomska-Rogala, M.; Wojtulewski, S.; Palusiak, M. N-oxide as a proton accepting group in multicomponent crystals: X-ray and theoretical studies o. new p-nitropyridine-N-oxide co-crystals. Cryst. Growth Des. 2015, 15, 5802–5815. [Google Scholar] [CrossRef]
- Łukomska-Rogala, M.; Rybarczyk-Pirek, A.J.; Ejsmont, K.; Jasiński, M.; Palusiak, M. Non-covalent interactions of N-phenyl-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide derivatives -a case ofintramolecular N-oxide hydrogen bonds. Struct. Chem. 2017, 28, 1229–1241. [Google Scholar] [CrossRef]
- Rybarczyk-Pirek, A.J.; Chęcińska, L.; Małecka, M.; Wojtulewski, S. Intermolecular interactions of trichloromethyl group in the crystal state, the case of 2-trichloromethyl-3H-4-quinazoline polymorphs and 1-methyl-2-trichloroacetylpyrrole -Hirshfeld surface analysis of chlorine halogen bonding. Cryst. Growth Des. 2013, 13, 3913–3924. [Google Scholar] [CrossRef]
- Chęcińska, L.; Grabowsky, S.; Małecka, M.; Rybarczyk-Pirek, A.J.; Jóźwiak, A.; Paulmann, C.; Luger, P. Experimental and theoretical electron-density study of three isoindole derivatives: Topological and Hirshfeld surface analysis of weak intermolecular interactions. Acta Crystallogr. 2011, B67, 569–581. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Program, M.J.; Frisch, G.W.; Trucks, H.B.; Schlegel, G.E.; Scuseria, M.A.; Robb, J.R.; Cheeseman, G.; Scalmani, V.; Barone, G.A.; Petersson, H.; et al. Gaussian09, Revision, D.01, Gaussian, Inc., Wallingford, CT. 2009. Available online: http://www.gaussian.com (accessed on 20 April 2019).
- Bader, R.F.W. Atomsin Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Łukomska, M.; Rybarczyk-Pirek, A.J.; Jabłoński, M.; Palusiak, M. The nature of NO-bonding in N-oxide group. Phys. Chem. Chem. Phys. 2015, 17, 16375–16387. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk-Pirek, A.J.; Małecka, M.; Palusiak, M. Use of Quantum Theory of Atoms in Molecules in the Search for Appropriate Hydrogen Atom Locations in X-ray Diffraction Based Studies. Cryst. Growth. Des. 2016, 16, 6841–6848. [Google Scholar] [CrossRef]
- Wzgarda-Raj, K.; Rybarczyk-Pirek, A.J.; Wojtulewski, S.; Pindelska, E.; Palusiak, M. Oxidation of 2-mercaptopyridine N-oxide upon iodine agent: Structural and FT-IR studies on charge-assisted hydrogen bonds CAHB(+) and I…I halogen interactions in 2,2′-dithiobis(pyridine N-oxide) ionic cocrystal. Struct. Chem. 2019, 30, 827–833. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll Professional (Version 14.10.27), TK Gristmill Software, Overland Park KS. 2014. Available online: aim.tkgristmill.com (accessed on 14 May 2019).
- Orzechowska, M.; Fabijańska, M.; Ochocki, J.; Małecki, M. Anticancer activity of a trans-platinum(II) complex of 3-aminoflavone to ovarian cancer cells. Ginekol. Pol. 2017, 88, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Binder, R.J.; Harris, M.L.; Ménoret, A.; Srivastava, P.K. Saturation, Competition, and Specificity in Interaction of Heat Shock Proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ Cells. J. Immunol. 2000, 165, 2582–2587. [Google Scholar] [CrossRef]
Refcode | Pt…Pt | Pt…H | Pt…All | Cl…H | Pt…Pt/Pt…All | Pt…H/Pt…All |
---|---|---|---|---|---|---|
trans | ||||||
MONVIW | - | - | - | 8.5 | - | - |
RIWCEG | 0.5 | 0.3 | 0.8 | 11.5 | 0.63 | 0.38 |
VOHBAW | - | 1.5 | 1.9 | 10.3 | - | 0.79 |
cis | ||||||
BERDAE | 1.0 | 2.6 | 4.2 | 36.1 | 0.24 | 0.62 |
BERDEI | 0.3 | 2.7 | 3.1 | 33.4 | 0.10 | 0.87 |
CCENPT01 | 2.5 | 1.6 | 4.1 | 38.7 | 0.61 | 0.39 |
CUKRAB01 | 1.8 | 3.6 | 5.4 | 43.5 | 0.33 | 0.67 |
DIVXOV | - | 1.3 | 1.8 | 20.5 | - | 0.72 |
FITFUJ | 0.9 | 1.3 | 2.5 | 21.2 | 0.36 | 0.52 |
KIPSEH | - | 2.8 | 2.9 | 30.0 | - | 0.97 |
LAYZEQ | 0.4 | 1.6 | 2.0 | 18.3 | 0.20 | 0.80 |
LIXTOB | - | 0.1 | 0.1 | 25.1 | - | 1.00 |
PEXTIV | 0.9 | 1.5 | 2.9 | 24.9 | 0.31 | 0.52 |
PIFGIU | - | - | - | 19.4 | - | - |
SUDMIN02 | 1.5 | 1.4 | 3.2 | 32.4 | 0.47 | 0.44 |
TAJTED | 1.2 | 1.2 | 3.0 | 25.9 | 0.40 | 0.40 |
UCIZUC | 2.1 | 1.4 | 3.6 | 34.2 | 0.58 | 0.39 |
YIDVUD | 0.1 | 0.6 | 0.8 | 21.9 | 0.13 | 0.75 |
Bond | Crystal Structure | Optimized Structure |
---|---|---|
Pt1-N3 | 2.064(5) | 2.100 |
Pt1-Cl1 | 2.298(1) | 2.340 |
O1-C2 | 1.366(7) | 1.360 |
O1-C9 | 1.374(7) | 1.363 |
C2-C3 | 1.355(8) | 1.358 |
C2-C11 | 1.479(8) | 1.473 |
C3-N3 | 1.443(7) | 1.433 |
C3-C4 | 1.451(8) | 1.461 |
C4-O4 | 1.231(7) | 1.228 |
C4-C10 | 1.460(8) | 1.461 |
N3-Pt1-Cl1 | 92.7(1) | 95.7 |
Pt1-N3-C3 | 121.7(4) | 121.0 |
C2-O1-C9 | 120.0(4) | 121.6 |
O1-C2-C3 | 121.4(5) | 120.2 |
O1-C2-C11 | 111.2(5) | 111.3 |
C3-C2-C11 | 127.3(5) | 128.4 |
C2-C3-N3 | 122.0(5) | 125.0 |
C2-C3-C4 | 122.2(5) | 122.1 |
N3-C3-C4 | 115.7(5) | 112.9 |
O4-C4-C3 | 122.1(5) | 120.7 |
O4-C4-C10 | 123.0(5) | 124.2 |
C3-C4-C10 | 114.8(5) | 115.4 |
C3-C2-C11-C12 | −56.5(8) | −38.3 |
C4-C3-C2-C11 | −179.4(5) | −172.5 |
Pt1-N3-C3-C2 | 88.0(6) | 89.5 |
Complex | Bond Type | d | ρBCP | ∇2ρBCP | GBCP | VBCP | HBCP |
---|---|---|---|---|---|---|---|
cis-Pt(NH3)2Cl2 | Pt-N | 2.109 | 0.1033 | 0.3584 | 0.1210 | −0.1526 | −0.0317 |
Pt-Cl | 2.305 | 0.1026 | 0.1947 | 0.0878 | −0.1271 | −0.0393 | |
trans-Pt(NH3)2Cl2 | Pt-N | 2.059 | 0.1160 | 0.3962 | 0.1387 | −0.1789 | −0.0401 |
Pt-Cl | 2.333 | 0.0957 | 0.2031 | 0.0847 | −0.1187 | −0.0341 | |
trans-Pt(3-af )2Cl2 | Pt-N | 2.100 | 0.1074 | 0.3355 | 0.1193 | −0.1550 | −0.0357 |
Pt-Cl | 2.340 | 0.0944 | 0.1996 | 0.0830 | −0.1163 | −0.0333 |
Drugs | Caov-3 | OVCAR-3 |
---|---|---|
Cisplatin | 10 µM | 50 µM |
Trans-Pt(3-af)2Cl2 | 10 µM | 50 µM |
Carboplatin | 10 µM | 25 µM |
Paclitaxel | 10 µM | 5 µM |
Gen | Probe Number |
---|---|
BAX | Hs 00180269-m1 |
BIRC5 | Hs 00153353-m1 |
CASP3 | Hs 00234387-m1 |
ACTB | Hs 01060665-g1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabijańska, M.; Orzechowska, M.; Rybarczyk-Pirek, A.J.; Dominikowska, J.; Bieńkowska, A.; Małecki, M.; Ochocki, J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int. J. Mol. Sci. 2020, 21, 2116. https://doi.org/10.3390/ijms21062116
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. International Journal of Molecular Sciences. 2020; 21(6):2116. https://doi.org/10.3390/ijms21062116
Chicago/Turabian StyleFabijańska, Małgorzata, Magdalena Orzechowska, Agnieszka J. Rybarczyk-Pirek, Justyna Dominikowska, Alicja Bieńkowska, Maciej Małecki, and Justyn Ochocki. 2020. "Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin" International Journal of Molecular Sciences 21, no. 6: 2116. https://doi.org/10.3390/ijms21062116
APA StyleFabijańska, M., Orzechowska, M., Rybarczyk-Pirek, A. J., Dominikowska, J., Bieńkowska, A., Małecki, M., & Ochocki, J. (2020). Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. International Journal of Molecular Sciences, 21(6), 2116. https://doi.org/10.3390/ijms21062116