An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae
Abstract
:1. Introduction
2. Results
2.1. Identification and Characterization of the SaveOBP9
2.2. Fluorescence Binding Assay
2.3. Behavioral Trials
2.4. RNAi-Based Silencing and Post-RNAi Behavior of Sitobion avenae
2.5. Protein Structure and Interaction Analysis by 3-Dimensional Docking
3. Discussion
4. Materials and Methods
4.1. Sitobion avenae Rearing
4.2. Cloning, Expression, and Purification of SaveOBP9
4.3. Fluorescence Ligand Binding Assays
4.4. Double-Stranded RNA Synthesis
4.5. Dietary RNAi and Gene Expression Analysis
4.6. Olfactometer Bioassay
4.7. Modeling of Three-Dimensional (3D) Structure and Molecular Docking of Ligands
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, J.J. Odorant-binding proteins in insects. Vitam. Horm. 2010, 83, 241–272. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Tuccori, E.; He, X.; Gazzano, A.; Field, L.; Zhou, J.J.; Pelosi, P. Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 2009, 39, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Lassance, J.M.; Löfstedt, C. Chemical communication: A jewel sheds light on signal evolution. Curr. Biol. 2013, 23, R346–R348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Shang, Y.; Hilton, D.S.; Inthavong, K.; Zhang, D.; Elgar, M.A. Antennal scales improve signal detection efficiency in moths. Proc. R. Soc. B Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Francis, F.; Liu, Y.; Chen, J.L.; Cheng, D.F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 2011, 10, 3056–3069. [Google Scholar] [CrossRef]
- Vandermoten, S.; Francis, F.; Haubruge, E.; Leal, W.S. Conserved odorant-binding proteins from aphids and eavesdropping predators. PLoS ONE 2012, 7, e23608. [Google Scholar] [CrossRef]
- Zhong, T.; Yin, J.; Deng, S.; Li, K.; Cao, Y. Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius). J. Insect Physiol. 2012, 58, 771–781. [Google Scholar] [CrossRef]
- YJ, Z.; Zeng, J. Occurring trends of major crop pests in national significances in 2009. China Plant Prot. 2009, 29, 33–36. [Google Scholar]
- Webster, B. The role of olfaction in aphid host location. Physiol. Entomol. 2012, 37, 10–18. [Google Scholar] [CrossRef]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Riffell, J.A.; Lei, H.; Christensen, T.A. Report Characterization and Coding of Behaviorally Significant Odor Mixtures. Curr. Biol. 2009, 19, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Bruce, T.J.A. Interplay between insects and plants: Dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 2015, 66, 455–465. [Google Scholar] [CrossRef]
- Pickett, J.A.; Khan, Z.R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytol. 2016, 212, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Sobhy, I.S.; Caulfield, J.C.; Pickett, J.A.; Birkett, M.A. Sensing the Danger Signals: Cis-Jasmone Reduces Aphid Performance on Potato and Modulates the Magnitude of Released Volatiles. Front. Ecol. Evol. 2020, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Fan, J.; Zhang, Y.; Xu, Q.; Han, Z.; Sun, J.; Chen, J. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of sitobion avenae. PLoS ONE 2016, 11, e161839. [Google Scholar] [CrossRef]
- Younas, A.; Waris, M.I.; Chang, X.Q.; Shaaban, M.; Abdelnabby, H.; Ul Qamar, M.T.; Wang, M.Q. A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm Mythimna separata. Int. J. Biol. Sci. 2018, 14, 1935–1949. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Zhang, S.; Luo, J.Y.; Cui, J.J.; Ma, Y.; Dong, S.L. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 2013, 59, 263–272. [Google Scholar] [CrossRef]
- Damberger, F.; Horst, R.; Wüthrich, K.; Peng, G.; Nikonova, L.; Leal, W.S. NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 2000, 9, 1038–1041. [Google Scholar] [CrossRef] [Green Version]
- Horst, R.; Damberger, F.; Luginbühl, P.; Güntert, P.; Peng, G.; Nikonova, L.; Leal, W.S.; Wüthrich, K. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. USA 2001, 98, 14374–14379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hekmat-Scafe, D.S.; Scafe, C.R.; McKinney, A.J.; Tanouye, M.A. Genome-Wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002, 12, 1357–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, H.M.; Baits, R.L.; Walden, K.K.O.; Wada-Katsumata, A.; Schal, C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. J. Exp. Zool. Part B Mol. Dev. Evol. 2018, 330, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.P.; Zhang, H.J.; Zhao, P.; Xia, Q.Y.; Xiang, Z.H. The odorant binding protein gene family from the genome of silkworm, bombyx mori. BMC Genom. 2009, 10, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Winberg, G.; Ren, H.; Zhang, S. Expression, purification and functional analysis of an odorant binding protein AaegOBP22 from Aedes aegypti. Protein Expr. Purif. 2011, 75, 165–171. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
- Visser, J.H.; Yan, F.-S. Electroantennogram responses of the grain aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walk.) (Hom., Aphididae) to plant odour components. J. Appl. Entomol. 1995, 119, 539–542. [Google Scholar] [CrossRef]
- Lautenschlager, C.; Leal, W.S.; Clardy, J. Pheromone Ligands: Implications for Pheromone Recognition. Structure 2007, 15, 1148–1154. [Google Scholar]
- Leal, W.S.; Chen, A.M.; Ishida, Y.; Chiang, V.P.; Erickson, M.L.; Morgan, T.I.; Tsuruda, J.M. Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. USA 2005, 102, 5386–5391. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.J.; Robertson, G.; He, X.; Dufour, S.; Hooper, A.M.; Pickett, J.A.; Keep, N.H.; Field, L.M. Characterisation of Bombyx mori Odorant-binding Proteins Reveals that a General Odorant-binding Protein Discriminates between Sex Pheromone Components. J. Mol. Biol. 2009, 389, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zeng, F.F.; Yan, M.J.; Zhang, A.; Lu, Z.X.; Wang, M.Q. Interactions of two odorant-binding proteins influence insect chemoreception. Insect Mol. Biol. 2016, 25, 712–723. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, S.; Cai, X.M.; Luo, J.Y.; Dong, S.L.; Cui, J.J.; Chen, Z.M. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene. Insect Mol. Biol. 2017, 26, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R.; Haven, N. A Novel Family of Divergent Seven-Transmembrane Proteins: Candidate Odorant Receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Vosshall, L.B.; Wong, A.M.; Axel, R. An Olfactory Sensory Map in the Fly Brain. Cell 2000, 102, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Visser, J.H.; Piron, P.G.M.; Hardie, J. The aphids’ peripheral perception of plant volatiles. Exp. Appl. 1996, 80, 35–38. [Google Scholar] [CrossRef]
- Webster, B.; Bruce, T.; Dufour, S.; Birkemeyer, C.; Birkett, M.; Hardie, J.; Pickett, J. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J. Chem. Ecol. 2008, 34, 1153–1161. [Google Scholar] [CrossRef]
- Gu, S.; Wang, W.; Wang, G.-R.; Zhang, X.-Y.; Guo, Y.-Y.; Zhang, Z.; Zhou, J.-J.; Zhang, Y.-J. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (Goeze). Arch. Insect Biochem. Physiol. 2011, 77, 81–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, E.; Nakagawa, J.; Asano, T.; Taoka, M.; Sorimachi, H.; Ito, Y. Functional Evolution of Duplicated Odorant-Binding Protein Genes, Obp57d and Obp57e, in Drosophila. PLoS ONE 2012, 7, e29710. [Google Scholar] [CrossRef]
- Pesenti, M.E.; Spinelli, S.; Bezirard, V.; Briand, L.; Pernollet, J.; Campanacci, V.; Tegoni, M.; Cambillau, C. Queen Bee Pheromone Binding Protein pH-Induced Domain Swapping Favors Pheromone Release. J. Mol. Biol. 2009, 390, 981–990. [Google Scholar] [CrossRef]
- Pesenti, M.E.; Spinelli, S.; Bezirard, V.; Briand, L.; Pernollet, J.; Tegoni, M.; Cambillau, C. Structural Basis of the Honey Bee PBP Pheromone and pH-induced Conformational Change. J. Mol. Biol. 2008, 380, 158–169. [Google Scholar] [CrossRef]
- Li, N.; Sun, X.; Wang, M. Expression pattern and ligand-binding properties of odorant- binding protein 13 from Monochamus alternatus hope. J. Appl. Entomol. 2017, 141, 751–757. [Google Scholar] [CrossRef]
- Sandler, B.H.; Nikonova, L.; Leal, W.S.; Clardy, J. Sexual attraction in the silkworm moth: Structure of the pheromone-binding-protein—bombykol complex. Chem. Biol. 2000, 7, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Leite, N.R.; Krogh, R.; Xu, W.; Ishida, Y.; Iulek, J.; Leal, W.S.; Oliva, G. Structure of an Odorant-Binding Protein from the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive “Lid”. PLoS ONE 2009, 4, e8006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, E.; Damberger, F.F.; Ishida, Y.; Fiorito, F.; Lee, D.; Leal, W.S.; Wüthrich, K. Dynamic Conformational Equilibria in the Physiological Function of the Bombyx mori Pheromone-Binding Protein. J. Mol. Biol. 2011, 408, 922–931. [Google Scholar] [CrossRef]
- Farag, M.A.; Paré, P.W. C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 2002, 61, 545–554. [Google Scholar] [CrossRef]
- Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Röse, U.S.R.; Schnitzler, J.P. Practical approaches to plant volatile analysis. Plant J. 2006, 45, 540–560. [Google Scholar] [CrossRef]
- Francis, F.; Vandermoten, S.; Verheggen, F.; Lognay, G.; Haubruge, E. Is the (E)-β-farnesene only volatile terpenoid in aphids? J. Appl. Entomol. 2005, 129, 6–11. [Google Scholar] [CrossRef]
- Das, A.; Lee, S.H.; Hyun, T.K.; Kim, S.W.; Kim, J.Y. Plant volatiles as method of communication. Plant Biotechnol. Rep. 2013, 7, 9–26. [Google Scholar] [CrossRef]
- Waris, M.I.; Younas, A.; ul Qamar, M.T.; Hao, L.; Ameen, A.; Ali, S.; Abdelnabby, H.E.; Zeng, F.F.; Wang, M.Q. Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Nilaparvata lugens. Front. Physiol. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Wang, B.; Grossi, G.; Falabella, P.; Liu, Y.; Yan, S.; Lu, J.; Xi, J.; Wang, G. Molecular Basis of Alarm Pheromone Detection in Aphids. Curr. Biol. 2017, 27, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, C.; Xia, D.; Wang, J.; Tang, Q. Characterization of the Expression and Functions of Two Odorant-Binding Proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). Insects 2019, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.L.; Yi, S.C.; Li, D.Z.; Nie, X.P.; Li, S.Q.; Wang, M.; Zhou, A.M. Optimization of reverse chemical ecology method: False positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism. Insect Mol. Biol. 2018, 27, 305–318. [Google Scholar] [CrossRef]
- Yang, R.; Li, D.; Yu, G.; Yi, S.; Zhang, Y. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides. J. Chem. Ecol. 2017, 43, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Bao, W.; Wuriyanghan, H. Silencing of Target Chitinase Genes via Oral Delivery of dsRNA Caused Lethal Phenotypic Effects in Mythimna separata (Lepidoptera: Noctuidae). Appl. Biochem. Biotechnol. 2017, 181, 860–866. [Google Scholar] [CrossRef]
- Deng, F.; Zhao, Z. Influence of catalase gene silencing on the survivability of Sitobion avenae. Arch. Insect Biochem. Physiol. 2014, 86, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef] [PubMed]
Ligands | CAS No. | Purity % | pH 5.0 | pH 7.4 | ||
---|---|---|---|---|---|---|
IC50 (μM) | Ki (μM) | IC50 (μM) | Ki (μM) | |||
Compounds from the Wheat Plants Identified by GC-MS | ||||||
2-Ethyl-1-hexanol | 104-76-7 | 99 | 43.85 | 39.61 | 11.18 | 9.93 |
Nonanal | 124-19-6 | 95 | 12.32 | 11.13 | 39.85 | 35.41 |
Naphthalene | 91-20-3 | 98 | 30.34 | 27.41 | 12.97 | 11.53 |
Decanal | 112-31-2 | 97 | 19.77 | 17.86 | 9.95 | 8.84 |
Tetradecane | 629-59-4 | 98 | 11.87 | 10.73 | 7.96 | 7.07 |
Pentadecane | 629-62-9 | 97 | 15.12 | 13.66 | 12.82 | 11.39 |
Butylated Hydroxytoluene | 128-37-0 | 100 | 8.80 | 7.95 | 45.58 | 40.49 |
Hexadecane | 544-76-3 | 98 | 14.64 | 13.22 | 10.90 | 9.68 |
General Odorants and Phenylpropanoids | ||||||
Acetophenone | 98-86-2 | 99 | 30.75 | 27.78 | 12.98 | 11.53 |
Octanal | 124-13-0 | 99 | 20.28 | 18.32 | 8.79 | 7.80 |
3-Butenyl isothiocyanate | 3386-97-8 | 99 | 26.32 | 23.78 | 52.70 | 46.82 |
Methyl salicylate | 119-36-8 | 98 | 24.20 | 21.86 | 13.42 | 11.92 |
Benzaldehyde | 100-52-7 | 99 | 40.99 | 37.03 | 108.63 | 96.51 |
Terpenoids | ||||||
α-Pinene | 7785-70-8 | 99 | 27.19 | 24.56 | 37.97 | 33.73 |
β -Pinene | 18172-67-3 | 99 | 27.73 | 25.05 | 37.42 | 33.25 |
β-Myrcene, | 123-35-3 | 97 | 10.70 | 9.67 | 12.19 | 10.83 |
(+)-Limonene oxide | 203719-54-4 | 97 | 37.47 | 33.85 | 24.31 | 21.60 |
α-Farnesene | 502-61-4 | 98 | 9.51 | 8.59 | 10.26 | 9.11 |
S-(−)-Limonene | 5989-54-8 | 99 | 11.52 | 10.41 | 32.10 | 28.52 |
Linalool | 78-70-6 | 97 | 11.78 | 10.65 | 24.10 | 21.41 |
β-Caryophyllene | 87-44-5 | 99 | 622.0954 | 561.97 | 52.43 | 46.58 |
(+)-3-Carene | 13466-78-9 | 99 | 39.94 | 36.08 | 14.67 | 13.04 |
(±)-Camphor | 76-22-2 | 95 | 17.37 | 15.70 | 48.17 | 42.79 |
Green Leaf Volatiles and Alcohols | ||||||
trans-2-Hexen-1-al | 6728-26-3 | 97 | 21.56 | 19.48 | 41.87 | 37.20 |
cis-3-Hexenyl acetate | 3634-71-8 | 97 | - | - | 29.73 | 26.41 |
cis-3-Hexen-1-ol | 928-96-1 | 90 | 36.88 | 33.32 | 13.22 | 11.75 |
Hexanal | 66-25-1 | 98 | 16.81 | 15.18 | 8.23 | 7.31 |
α-Terpineol | 10482-56-1 | 99 | 37.38 | 33.77 | 26.19 | 23.26 |
trans-2-Hexen-1-ol | 928-95-0 | 96 | 21.69 | 19.60 | 14.48 | 12.86 |
1-Octen-3-ol | 3391-86-4 | 98 | 34.23 | 30.92 | 24.24 | 21.53 |
PubChem IDs | Ligands | S-Score | Residues Interacting with H-Bonding | Covalent Bonds (Pi Alkyls and Sigma Alkayls) | Van der Waals Interactions |
---|---|---|---|---|---|
629-59-4 | Tetradecane | −4.7 | Lys38, Leu15, Phe117, Ile114, Ala113 | ||
66-25-1 | Hexanal | −5.6 | Ile81, Ile41, Ala116 | Gln43, Ile114,Glu110, Phe117,Ala113,Met53,Tyr77 | |
124-13-0 | Octanal | −4.8 | Ile114, Phe117,Ala113, | Tyr77,Ala116,Ile81,Ile41, Met53, Gln43, Glu110 | |
112-31-2 | Decanal | −5.4 | Lys38, Tyr77, Lys 80 | Ile41, Phe117,Ala113 | |
502-61-4 | α-farnesene | −5.7 | Met12,Lys80,Leu15,Leu11,Tyr77, Lys38,Ile41,Ala113, Phe117 | Mer53, Ala116, Thr42 | |
544-76-3 | Hexadecane | −3.9 | Phe16, Tyr39, Ile35 | ||
104-76-7 | 2-ethyl-1-hexanal | −4.6 | Thr42 | Ile81,Ile41,Ala116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.M.K.; Quershi, S.R.; Adeel, M.M.; Abdelnabby, H.; Waris, M.I.; Duan, S.-G.; Wang, M.-Q. An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae. Int. J. Mol. Sci. 2020, 21, 8331. https://doi.org/10.3390/ijms21218331
Ullah RMK, Quershi SR, Adeel MM, Abdelnabby H, Waris MI, Duan S-G, Wang M-Q. An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae. International Journal of Molecular Sciences. 2020; 21(21):8331. https://doi.org/10.3390/ijms21218331
Chicago/Turabian StyleUllah, Rana Muhammad Kaleem, Sundas Rana Quershi, Muhammad Muzammal Adeel, Hazem Abdelnabby, Muhammad Irfan Waris, Shuang-Gang Duan, and Man-Qun Wang. 2020. "An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae" International Journal of Molecular Sciences 21, no. 21: 8331. https://doi.org/10.3390/ijms21218331
APA StyleUllah, R. M. K., Quershi, S. R., Adeel, M. M., Abdelnabby, H., Waris, M. I., Duan, S.-G., & Wang, M.-Q. (2020). An Odorant Binding Protein (SaveOBP9) Involved in Chemoreception of the Wheat Aphid Sitobion avenae. International Journal of Molecular Sciences, 21(21), 8331. https://doi.org/10.3390/ijms21218331