Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Sitobion avenae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 559 KiB  
Article
Effects of Sitobion avenae Treated with Sublethal Concentrations of Dinotefuran on the Predation Function and Enzyme Activity of Harmonia axyridis
by Shaodan Fei, Jiacong Sun, Xingping Ren, Haiying Zhang and Yonggang Liu
Insects 2025, 16(7), 671; https://doi.org/10.3390/insects16070671 - 27 Jun 2025
Viewed by 397
Abstract
This study investigated the impact of sublethal concentrations of dinotefuran on the predatory behavior and detoxification enzyme activity of Harmonia axyridis, aiming to establish a theoretical foundation for the conservation and utilization of natural enemies and the effective management of wheat aphids. [...] Read more.
This study investigated the impact of sublethal concentrations of dinotefuran on the predatory behavior and detoxification enzyme activity of Harmonia axyridis, aiming to establish a theoretical foundation for the conservation and utilization of natural enemies and the effective management of wheat aphids. This study treated wheat aphids with sublethal concentrations (LC20 and LC30) of dinotefuran via the leaf dipping method and subsequently used them as prey for the fourth-instar larvae of H. axyridis. The predation amount, instantaneous attack rate, handling time, daily maximum predation amount, and detoxification enzyme activity of H. axyridis were statistically analyzed. The results indicated that the predation of H. axyridis on wheat aphids conformed to the Holling II disc equation. Moreover, in comparison to the control group, the handling time of H. axyridis on wheat aphids was extended, and at the same time, the instantaneous attack rate, maximum daily predation amount, and predation efficiency were all diminished. After the ingestion of LC20- and LC30-dinotefuran-treated aphids, the carboxylesterase levels in H. axyridis were not significantly different from the control, with levels 0.97-fold and 0.94-fold that of the control, respectively. Glutathione-S-transferase (GST) demonstrated an induction impact compared to the control, reaching 1.96- and 1.47-fold higher than the control, respectively. The activity of mixed-functional oxidase (MFO) demonstrated an induction effect compared to the control, measuring 1.98- and 3.04-fold higher than that of the control, respectively. Consequently, the predation function and detoxification enzyme activity of H. axyridis were influenced when consuming wheat aphids treated with sublethal concentrations of dinotefuran, with significant variations across different concentrations, potentially reflecting the survival strategy of insects under dinotefuran stress. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 1338 KiB  
Article
Effects of Confinement and Wheat Variety on the Performance of Two Aphid Species
by Maria Elisa D. A. Leandro, Joe M. Roberts, Ed T. Dickin and Tom W. Pope
Insects 2025, 16(5), 477; https://doi.org/10.3390/insects16050477 - 1 May 2025
Viewed by 634
Abstract
Bird cherry-oat aphid (Rhopalosiphum padi L.; Hemiptera: Aphididae) and English grain aphid (Sitobion avenae Fabricius; Hemiptera: Aphididae) are economically important cereal crop pests and effective vectors of barley yellow dwarf virus (BYDV). While these aphid species have traditionally been managed with [...] Read more.
Bird cherry-oat aphid (Rhopalosiphum padi L.; Hemiptera: Aphididae) and English grain aphid (Sitobion avenae Fabricius; Hemiptera: Aphididae) are economically important cereal crop pests and effective vectors of barley yellow dwarf virus (BYDV). While these aphid species have traditionally been managed with synthetic chemical insecticides, their use is increasingly difficult due to target organism resistance and potential non-target effects. Exploiting genetic diversity among cereal varieties offers a more sustainable control strategy. In this study, we evaluated how an experimental confinement method using clip cages to restrict an aphid to a single leaf versus free movement on the host plant affects the performance (growth and reproduction) of these two aphid species on various wheat varieties. Aphid performance was significantly influenced by both confinement and wheat variety. Notably, the two aphid species responded in opposite ways to confinement, with S. avenae growing quicker and producing a greater number of offspring under clip cage confinement compared to R. padi, which performed better when left free on the plant. This contrast is likely explained by species-specific feeding site preferences and sensitivity to the microenvironment created by the clip cages. We also found significant differences in aphid performance among host plant varieties, with both aphid species achieving their lowest growth rates on “Wolverine”, a modern BYDV-resistant wheat cultivar. Although none of the tested varieties were completely resistant to aphids, our results indicate that existing commercial cultivars may already carry partial resistance traits that can be leveraged in integrated pest management programs to help suppress aphid populations. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

17 pages, 4269 KiB  
Article
Potential Involvement of Buchnera aphidicola (Enterobacteriales, Enterobacteriaceae) in Biotype Differentiation of Sitobion avenae (Hemiptera: Aphididae)
by Yanyan Lan, Jingpeng Li, Shuo Zhang, Qiuju Qin, Deguang Liu, Chen Luo, Shipeng Han, Da Wang and Yunzhuan He
Insects 2024, 15(12), 980; https://doi.org/10.3390/insects15120980 - 11 Dec 2024
Cited by 1 | Viewed by 1056
Abstract
Buchnera aphidicola, an obligate endosymbiont of most aphid species, can influence aphids’ host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of Sitobion avenae remains unclear. To address this issue, six S. avenae biotypes [...] Read more.
Buchnera aphidicola, an obligate endosymbiont of most aphid species, can influence aphids’ host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of Sitobion avenae remains unclear. To address this issue, six S. avenae biotypes were tested in this study. Buchnera abundance varied among biotypes fed on different wheat/barley varieties (i.e., Zhong 4 wumang, 186-TM12-34; Dulihuang, Zaoshu No.3, Xiyin No.2). The reduction in Buchnera abundance through antibiotic (rifampicin) treatment altered the virulence of five S. avenae biotypes. Based on transcriptome analysis, the differential expression of three genes (i.e., LeuB, TrpE, and IlvD) related to leucine, tryptophan, isoleucine, and valine metabolism was detected between different biotypes. Principal component analysis showed that leucine and tryptophan deficiencies most significantly impacted nymph development duration and aphid fecundity. Additionally, a neighbor-joining phylogenetic tree indicated the genetic differentiation of Buchnera among different biotypes. These results suggest Buchnera-mediated amino acid metabolism is correlated with biotype differentiation in S. avenae, although the precise mechanisms by which Buchnera influences this differentiation require further investigation. This study can offer a theoretical basis for the development of resistant crops, leading to the sustainable control of this aphid and reduced reliance on chemical insecticides. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Graphical abstract

12 pages, 1203 KiB  
Article
Implications of the STAT5B and C1QBP Genes of Grain Aphid Sitobion avenae in the Transmission of Barley Yellow Dwarf Virus
by Chiping Liu, Manwen Zhang, Chen Luo and Zuqing Hu
Agronomy 2024, 14(12), 2787; https://doi.org/10.3390/agronomy14122787 - 23 Nov 2024
Viewed by 783
Abstract
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and [...] Read more.
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and activator of transcription 5B (STAT5B) in viruliferous vector aphids carrying barley yellow dwarf virus (BYDV) was upregulated, and the complement component 1 Q subcomponent binding protein (C1QBP) within the aphid interacted with the coat protein (CP) and aphid transmission protein (ATP) of BYDV. In this study, we examined the expression levels of STAT5B and C1QBP in the vector aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) using the qPCR method. We conducted this analysis during the acquisition accession periods (AAPs) and inoculation accession periods (IAPs) of the BYDV species GAV (BYDV-GAV). Furthermore, the effects of STAT5B and C1QBP on the acquisition, retention, and transmission of BYDV-GAV in S. avenae were verified using the RNA interference (RNAi) method. The results show the following: (1) the expression levels of STAT5B and C1QBP were significantly upregulated during the AAPs and IAPs of BYDV-GAV; (2) the silencing of STAT5B led to a significant increase in BYDV-GAV retention during IAPs; and (3) the silencing of C1QBP resulted in a notable decrease in BYDV-GAV acquisition during the AAPs, as well as a significant increase in BYDV-GAV retention during the IAPs. These results suggest that STAT5B and C1QBP in S. avenae play a role in BYDV-GAV transmission. These findings highlight the functions of the STAT5B and C1QBP genes and identify C1QBP as a potential target gene for further RNAi-based studies to control the transmission of BYDV-GAV. Full article
Show Figures

Figure 1

13 pages, 1972 KiB  
Article
Influence of Previous Infestation of Wheat Leaves and Ears by Sitobion avenae on Interaction with Rhopalosiphum padi
by Andreas Bühler and Rabea Schweiger
Insects 2024, 15(11), 871; https://doi.org/10.3390/insects15110871 - 6 Nov 2024
Viewed by 1008
Abstract
Different herbivorous species that share a host plant may interact via competition or facilitation, depending on whether the interaction partners are hindered by or benefit from the interaction. Sap-sucking insects, such as aphids, can influence each other indirectly by altering the composition of [...] Read more.
Different herbivorous species that share a host plant may interact via competition or facilitation, depending on whether the interaction partners are hindered by or benefit from the interaction. Sap-sucking insects, such as aphids, can influence each other indirectly by altering the composition of the shared phloem sap. Aphid-induced changes in the plant may affect aphid performance and lead to a shift in the balance between different co-occurring aphid species. In this study, we compared the performance of the English grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi) simultaneously infesting leaves or ears of wheat (Triticum aestivum) plants, which had been either previously infested by S. avenae or kept uninfested. Colonies of S. avenae were larger on ears than on leaves, while the opposite pattern was found for R. padi. Pre-infestation of ears, but not of leaves, by S. avenae led to a higher total aphid number and colony size of S. avenae at some time points. The balance between the two species was only slightly affected by previous infestation at some time points. The findings of this study contribute to the understanding of plant–aphid as well as aphid–aphid interactions in agricultural fields. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 8273 KiB  
Article
Utilizing Star Polycation Nanocarrier for the Delivery of miR-184 Agomir and Its Impact on the Life History Traits of the English Grain Aphid, Sitobion avenae
by Cong Zhang, Guohua Wei, Linyuan Wu, Yunhui Zhang, Xun Zhu, Austin Merchant, Xuguo Zhou, Xiangying Liu and Xiangrui Li
Insects 2024, 15(6), 459; https://doi.org/10.3390/insects15060459 - 19 Jun 2024
Cited by 3 | Viewed by 1308
Abstract
The investigation of genetics-based biopesticides has become a central focus in pesticide studies due to their inherent advantages, including species specificity, environmental safety, and a wide range of target genes. In this study, a mixture of miR-184 agomir and nanomaterial star polycation (SPc) [...] Read more.
The investigation of genetics-based biopesticides has become a central focus in pesticide studies due to their inherent advantages, including species specificity, environmental safety, and a wide range of target genes. In this study, a mixture of miR-184 agomir and nanomaterial star polycation (SPc) was used to treat the nymphs of the English grain aphid, Sitobion avenae (F.). The life parameters of the aphids at various developmental stages were analyzed using an age–stage two-sex life table to assess the effect of miR-184 agomir on the experimental population. The results indicated that miR-184 agomir had a significant negative effect on four key life parameters, including the intrinsic rate of increase, the finite rate of increase, the net rate of increase, and the mean generation time. The population prediction revealed a substantial reduction (91.81% and 95.88%) in the population size of S. avenae at 60 d after treatment with miR-184 agomir, compared to the control groups. Our findings suggest that the miR-184 agomir has the potential to reduce the survival rate and mean longevity of S. avenae, highlighting its potential as a promising candidate for the development of an effective genetics-based biopesticide. Full article
(This article belongs to the Special Issue New Advances in Insect Chemical Adaptation)
Show Figures

Figure 1

24 pages, 8075 KiB  
Article
Genome-Wide Comparative Analysis of the Cytochrome P450 Monooxygenase Family in 19 Aphid Species and Their Expression Analysis in 4 Cereal Crop Aphids
by Zhenyu Wang, Weixi Hao, Hao Wang, Pingchuan Deng, Tingdong Li, Changyou Wang, Jixin Zhao, Chunhuan Chen, Wanquan Ji and Xinlun Liu
Int. J. Mol. Sci. 2024, 25(12), 6668; https://doi.org/10.3390/ijms25126668 - 18 Jun 2024
Cited by 2 | Viewed by 1735
Abstract
Cytochrome P450 monooxygenases (CYP450s) play a variety of physiological roles, including pesticide resistance, plant allelochemical detoxification, and hormone metabolism catalysis. However, limited information is available on the classification and expression profiles of the CYP450 gene family in aphid species. This is [...] Read more.
Cytochrome P450 monooxygenases (CYP450s) play a variety of physiological roles, including pesticide resistance, plant allelochemical detoxification, and hormone metabolism catalysis. However, limited information is available on the classification and expression profiles of the CYP450 gene family in aphid species. This is the first study to identify the cytochrome P450 gene family in 19 aphid species at the whole genome level. A total of 1100 CYP450 genes were identified in 19 aphid species. Three hundred CYP450 genes belonged to six cereal crop aphid species, which were further classified into four subfamilies according to the phylogenetic relationship. The conserved motifs, exon-intron structures, and genomic organization of the same subfamilies were similar. Predictions of subcellular localization revealed that the endoplasmic reticulum harbored the majority of CYP450 proteins. In Sitobion avenae and Rhopalosiphum maidis, the increase in the CYP450 gene was primarily caused by segmental duplication events. However, only tandem duplication occurred in the CYP450 gene family of Diuraphis noxia, Rhopalosiphum padi, Schizaphis graminum, and Sitobion miscanthi. Synteny analysis found three continuous colinear CYP450 gene pairs among six cereal crop aphid species. Furthermore, we obtained the expression profiles of four cereal crop aphids, including R. padi, D. noxia, S. graminum, and S. avenae. Differential expression analysis provided growth stage specificity genes, tissue specificity genes, organ specificity genes and some detoxification metabolic genes among these four cereal crop aphids. Meanwhile, their expression patterns were showed. The related functions and pathways of CYP450s were revealed by GO and KEGG enrichment analysis. Above all, we picked the differentially expressed CYP450 genes from all of the differentially expressed genes (DEGs). These differentially expressed CYP450 genes provided some new potential candidates for aphid control and management. This work establishes the foundation for further investigations into the regulatory functions of the CYP450 gene family in aphid species and beyond. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance)
Show Figures

Figure 1

11 pages, 1472 KiB  
Article
Effects of miR-306 Perturbation on Life Parameters in the English Grain Aphid, Sitobion avenae (Homoptera: Aphididae)
by Linyuan Wu, Guohua Wei, Yi Yan, Xuguo Zhou, Xun Zhu, Yunhui Zhang and Xiangrui Li
Int. J. Mol. Sci. 2024, 25(11), 5680; https://doi.org/10.3390/ijms25115680 - 23 May 2024
Cited by 1 | Viewed by 1226
Abstract
MicroRNAs (miRNA) play a vital role in insects’ growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not [...] Read more.
MicroRNAs (miRNA) play a vital role in insects’ growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not only involves in wing morphogenesis, but also is critically important for aphid survival. Its specific impacts on the life history traits, however, remain unclear. Here, we evaluate the impact of miR-306 perturbation on S. avenae populations using a two-sex life table approach. This comprehensive analysis revealed that miR-306 perturbation significantly prolongs the developmental stages (9.64% and 8.20%) and adult longevity of S. avenae, while decreasing pre-adult survival rate (41.45% and 38.74%) and slightly reducing average fecundity (5.80% and 13.05%). Overall, miR-306 perturbation negatively affects the life table parameters of the aphid population. The population prediction models show a significant decline in the aphid population 60 days post interference, compared to the control groups (98.14% and 97.76%). Our findings highlight the detrimental effects of miR-306 perturbation on S. avenae population growth and suggest potential candidate genes for the development of RNAi-based biopesticides targeted specifically at this pest species. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 4398 KiB  
Article
Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation
by Yumeng Zhang, Xiaobei Liu, Yu Sun, Yong Liu, Yong Zhang, Tianbo Ding and Julian Chen
Int. J. Mol. Sci. 2024, 25(9), 4579; https://doi.org/10.3390/ijms25094579 - 23 Apr 2024
Cited by 5 | Viewed by 2057
Abstract
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous [...] Read more.
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 583 KiB  
Article
Identification of Candidate Genes for English Grain Aphid Resistance from QTLs Using a RIL Population in Wheat
by Mingxia Zhang, Zhenzhen Chen, Haimeng Wu, Fanmei Kong, Baojin Guo, Yijun Wang, Qi Zhao, Huiyan Xu, Hui Wang, Ping Huang, Ying Guo, Yanrong An, Sishen Li and Yongyu Xu
Agronomy 2024, 14(3), 637; https://doi.org/10.3390/agronomy14030637 - 21 Mar 2024
Cited by 1 | Viewed by 1669
Abstract
The English grain aphid (EGA) (Sitobion avenae F.) is one of the most destructive species of aphids in wheat- (Triticum aestivum L.) planting areas worldwide. Large quantities of insecticides are usually used to control aphid damage. The identification of new EGA-resistant genes is [...] Read more.
The English grain aphid (EGA) (Sitobion avenae F.) is one of the most destructive species of aphids in wheat- (Triticum aestivum L.) planting areas worldwide. Large quantities of insecticides are usually used to control aphid damage. The identification of new EGA-resistant genes is necessary for sustainable wheat production. The objective of this study was to identify candidate genes for EGA resistance from stable quantitative trait loci (QTLs). We previously constructed a genetic map of unigenes (UG-Map) with 31,445 polymorphic sub-unigenes via the RNA sequencing of ‘TN18 × LM6’ recombinant inbred lines (TL-RILs). The relative aphid index (RAI) for the TL-RILs was investigated for two growing seasons, with three measured times (MTs) in each season. Using the UG-Map, 43 candidate genes were identified from 22 stable QTLs, with an average of 1.95 candidate genes per QTL. Among the 34 candidate genes annotated in the reference genome Chinese Spring (CS) RefSeq v1.1, the homologous genes of seven candidate genes, TraesCS1A02G-319900, TraesCS1B02G397300, TraesCS2D02G460800, TraesCS4A02G015600LC, TraesCS5B02G329200, TraesCS-6A02G000600 and TraesCS6A02G418600LC have been previously reported to play roles in aphid resistance. This suggests that these genes are strongly associated with EGA resistance in wheat. The candidate genes in this study should facilitate the cloning of EGA-resistant genes and genetic improvement in wheat breeding programs. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 4813 KiB  
Article
Effects of Varying Planting Patterns on Wheat Aphids’ Occurrence and the Control Effect of Pesticide Reduction Spraying Process by Unmanned Aerial Vehicle
by Haifeng Gao, Yuyang Shen, Li Chen, Hanlin Lai, Hong Yang, Guangkuo Li, Sifeng Zhao and Feng Ge
Appl. Sci. 2023, 13(21), 11916; https://doi.org/10.3390/app132111916 - 31 Oct 2023
Viewed by 1729
Abstract
A walnut–wheat intercropping pattern is practiced widely in southern Xinjiang to alleviate the contradiction between the lack of cultivated land resources and to increase economic value. Previous studies have confirmed that an alley cropping pattern could change the microclimate by supplying additional ecological [...] Read more.
A walnut–wheat intercropping pattern is practiced widely in southern Xinjiang to alleviate the contradiction between the lack of cultivated land resources and to increase economic value. Previous studies have confirmed that an alley cropping pattern could change the microclimate by supplying additional ecological functions such as windbreak, light interception, water conservation, etc. Cereal aphids (including Sitobion avenae, Rhopalosiphum padi, Metopolophium dirhodum, etc.) are commonly spread pests that harm wheat plants. But, the difference in population numbers between local patterns is still unknown. Pesticide reduction is the national strategy in China to alleviate the contraction between the demand of grain yield and environment protection. Plant protection-unmanned aerial vehicles (UAV) spraying pesticides are the most efficient method to control pests. However, compared to traditional artificial spraying method, how the UAV spraying method affect the control effect of reduced concentration pesticide is unclear. In order to address this problem, we conducted field investigations at Zepu county in southern Xinjiang to test the difference between walnut–wheat intercropping and wheat monocropping patterns for three consecutive years. And, we employed the field experiments to ensure the effectiveness of the reduced concentration common pesticides through the UAV spraying method. In conclusion, we conducted a comparison of the control effects of two spraying methods under conditions of reduced pesticide usage. Our findings revealed that the population of cereal aphids was larger in the intercropping pattern compared to the monocropping pattern. Although the control effect of the reduced treatment was lower than the regular dosage, some treatments still demonstrated sufficient capability to eliminate aphids, particularly when considering the effect within major varieties. Additionally, the use of the UAV spraying method exhibited a satisfactory effect when compared to the traditional artificial spraying method. Full article
(This article belongs to the Special Issue Research on Insecticides and Their Applications)
Show Figures

Figure 1

14 pages, 1705 KiB  
Article
Wheat Oxylipins in Response to Aphids, CO2 and Nitrogen Regimes
by Mari Merce Cascant-Vilaplana, Eduardo Viteritti, Víctor Sadras, Sonia Medina, María Puerto Sánchez-Iglesias, Camille Oger, Jean-Marie Galano, Thierry Durand, José Antonio Gabaldón, Julian Taylor, Federico Ferreres, Manuel Sergi and Angel Gil-Izquierdo
Molecules 2023, 28(10), 4133; https://doi.org/10.3390/molecules28104133 - 16 May 2023
Viewed by 2012
Abstract
Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved [...] Read more.
Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved plant oxylipins. Plants were grown in chambers with a factorial combination of two nitrogen rates (100% N vs. 20% N in Hoagland solution), and two concentrations of CO2 (400 vs. 700 ppm). The seedlings were challenged with Rhopalosiphum padi or Sitobion avenae for 8 h. Wheat leaves produced phytoprostanes (PhytoPs) of the F1 series, and three types of phytofurans (PhytoFs): ent-16(RS)-13-epi-ST-Δ14-9-PhytoF, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF. The oxylipin levels varied with aphids, but not with other experimental sources of variation. Both Rhopalosiphum padi and Sitobion avenae reduced the concentrations of ent-16(RS)-13-epi-ST-Δ14-9-PhytoF and ent-16(RS)-9-epi-ST-Δ14-10-PhytoF in relation to controls, but had little or no effect on PhytoPs. Our results are consistent with aphids affecting the levels of PUFAs (oxylipin precursors), which decreased the levels of PhytoFs in wheat leaves. Therefore, PhytoFs could be postulated as an early indicator of aphid hosting for this plant species. This is the first report on the quantification of non-enzymatic PhytoFs and PhytoPs in wheat leaves in response to aphids. Full article
(This article belongs to the Special Issue Molecules in 2023)
Show Figures

Graphical abstract

12 pages, 2259 KiB  
Article
Functional Characterization of the Nuclear Receptor Gene SaE75 in the Grain Aphid, Sitobion avenae
by Haixia Zheng, Yi Yan, Guohua Wei, Austin Merchant, Yaxin Gu, Xuguo Zhou, Xun Zhu, Yunhui Zhang and Xiangrui Li
Insects 2023, 14(4), 383; https://doi.org/10.3390/insects14040383 - 14 Apr 2023
Cited by 5 | Viewed by 2796
Abstract
Ecdysteroid hormones are key regulators of insect development and metamorphosis. Ecdysone-inducible E75, a major component of insect ecdysone signaling pathway, has been well characterized in holometabolous insects, however, barely in hemimetabolous species. In this study, a total of four full-length E75 cDNAs [...] Read more.
Ecdysteroid hormones are key regulators of insect development and metamorphosis. Ecdysone-inducible E75, a major component of insect ecdysone signaling pathway, has been well characterized in holometabolous insects, however, barely in hemimetabolous species. In this study, a total of four full-length E75 cDNAs from the English grain aphid, Sitobion avenae, were identified, cloned, and characterized. The four SaE75 cDNAs contained 3048, 2625, 2505, and 2179 bp open reading frames (ORF), encoding 1015, 874, 856, and 835 amino acids, respectively. Temporal expression profiles showed that SaE75 expression was low in adult stages, while high in pseudo embryo and nymphal stages. SaE75 was differentially expressed between winged and wingless morphs. RNAi-mediated suppression of SaE75 led to substantial biological impacts, including mortality and molting defects. As for the pleiotropic effects on downstream ecdysone pathway genes, SaHr3 (hormone receptor like in 46) was significantly up-regulated, while Sabr-c (broad-complex core protein gene) and Saftz-f1 (transcription factor 1) were significantly down-regulated. These combined results not only shed light on the regulatory role of E75 in the ecdysone signaling pathway, but also provide a potential novel target for the long-term sustainable management of S. avenae, a devastating global grain pest. Full article
(This article belongs to the Special Issue Opportunities and Challenges in Insect Functional Genomics)
Show Figures

Figure 1

10 pages, 1664 KiB  
Article
Developmental, Reproduction, and Feeding Preferences of the Sitobion avenae Mediated by Soil Silicon Application
by Xiaoru Wang, Weiwei Li, Jia Yan, Yi Wang, Xingyan Zhang, Xiaoling Tan and Julian Chen
Plants 2023, 12(5), 989; https://doi.org/10.3390/plants12050989 - 21 Feb 2023
Cited by 11 | Viewed by 1924
Abstract
Silicon occupies an important position in the nutrient requirements of wheat. It has been reported that silicon enhances plant resistance to phytophagous insects. However, only limited research has been carried out on the effects of silicon application to wheat and Sitobion avenae populations. [...] Read more.
Silicon occupies an important position in the nutrient requirements of wheat. It has been reported that silicon enhances plant resistance to phytophagous insects. However, only limited research has been carried out on the effects of silicon application to wheat and Sitobion avenae populations. In this study, three silicon fertilizer concentrations were treated for potted wheat seedlings, including 0 g/L, 1 g/L, and 2 g/L of water-soluble silicon fertilizer solution. The effect of silicon application on the developmental period, longevity, reproduction, wing pattern differentiation, and other vital life table parameters of the S. avenae were determined. The cage method and the Petri dish isolated leaf method were used to determine the effect of silicon application on the feeding preference of the winged and wingless aphid. The results showed silicon application had no significant effect on the aphid instar of 1–4; although, 2 g/L silicon fertilizer prolonged the nymph stage and 1 and 2 g/L of silicon application all shortened the adult stage and reduced the longevity and fertility of the aphid. Two instances of silicon application reduced the net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ) of the aphid. A 2 g/L silicon application prolonged the population doubling time (td), significantly reduced the mean generation time (T), and increased the proportion of winged aphids. The results also demonstrated that the selection ratio of winged aphids in wheat leaves treated with 1 g/L and 2 g/L silicon was reduced by 8.61% and 17.88%, respectively. The number of aphids on leaves treated with 2 g/L silicon was significantly reduced at 48 and 72 h of aphids released, and the application of silicon to wheat was detrimental to the feeding preference of S. avenae. Therefore, the application of silicon at 2 g/L to wheat has an inhibitory effect on the life parameters and feeding preference of S. avenae. Full article
(This article belongs to the Special Issue Wheat–Pest Interaction: From Biology to Integrated Management)
Show Figures

Figure 1

21 pages, 774 KiB  
Article
Essential Oil Composition of Seven Bulgarian Hypericum Species and Its Potential as a Biopesticide
by Ivanka Semerdjieva, Valtcho D. Zheljazkov, Ivayla Dincheva, Neshka Piperkova, Vasilina Maneva, Charles L. Cantrell, Tess Astatkie, Albena Stoyanova and Tanya Ivanova
Plants 2023, 12(4), 923; https://doi.org/10.3390/plants12040923 - 17 Feb 2023
Cited by 11 | Viewed by 2750
Abstract
Hypericum species and especially H. perforatum L. are well known for their therapeutic applications. The present study assessed the essential oil (EO) composition, and antifungal and aphid suppression activity of seven Bulgarian Hypericum species. The EOs were analyzed by GC–MS–FID. Two experiments were [...] Read more.
Hypericum species and especially H. perforatum L. are well known for their therapeutic applications. The present study assessed the essential oil (EO) composition, and antifungal and aphid suppression activity of seven Bulgarian Hypericum species. The EOs were analyzed by GC–MS–FID. Two experiments were conducted. In the first experiment, H. perforatum, H. maculatum, and H. hirsutum were used. Additionally, the EO composition of H. perforatum extracted via hydrodistillation (ClevA) and via commercial steam distillation (Com) were compared. The second experiment compared the EOs of H. perforatum, H. cerastoides, H. rumeliacum, H. montbretii, and H. calycinum (flowers and leaves) extracted via hydrodistillation and collected with n-hexane. Overall, the EO constituents belonged to four classes, namely alkanes, monoterpenes, sesquiterpenes, and fatty acids. The main class for compounds in H. maculatum and H. perforatum (section Hypericum) were sesquiterpenes for both experiments except for H. perforatum (Com). Hypericum montbretii (section Drosocarpium) EO had monoterpenes (38.09%) and sesquiterpenes (37.09%) as major groups, while H. hirsutum EO (section Taeniocarpium) contained predominately alkanes (67.19%). Hypericum hirsutum EO contained cedrol (5.04%), found for the first time in Hypericum species. Fatty acids were the main compounds in H. cerastoides (section Campylopus), while monoterpenes were the most abundant class in H. rumeliacum and H. calycinum EOs. α-Pinene and germacrene D were the major EO constituents of all analyzed Hypericum species except for H. hirsutum and H. cerastoides. Hypericum perforatum EO (Com) had significant repellent and insecticidal activity against two aphid species, Rhopalosiphum padi (Bird Cherry-oat aphid) and Sitobion avenae (English grain aphid) at concentrations of 0%, 1%, 2.5%, 3.5%, 4.5%, and 5%. The tested EOs did not show significant activity against selected economically important agricultural fungal pathogens Fusarium spp., Botrytis cinerea, Colletotrichum spp., Rhizoctonia solani, and Aspergillus sp. The EO of the Hypericum species found in the Bulgarian flora could be utilized for the development of new biopesticides for aphid control. Full article
Back to TopTop